999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

成骨細胞代謝重編程與早期腎性骨病發生發展的研究進展

2024-04-29 00:00:00王左鈺周陽熊明霞趙沙沙楊俊偉
中國全科醫學 2024年15期

【摘要】 慢性腎臟病礦物質和骨骼疾病(CKD-MBD)對患者的生活質量、住院率和骨折風險有直接影響。近年來成骨細胞及骨細胞成為CKD-MBD病理生理學研究的中心,成骨細胞通過合成成纖維細胞生長因子23(FGF-23)、硬化素等,與其他器官相互作用,使骨骼成為內分泌器官。因此,成骨細胞分化失調是慢性腎臟病發病過程中重要的早期事件。本文系統討論了成骨細胞的代謝途徑及早期CKD-MBD病理狀態下成骨細胞代謝重編程改變的相關機制,表明Wnt家族分泌蛋白/β-連環蛋白(Wnt/β-catenin)、FGF-23、尿毒癥毒素、代謝性酸中毒等信號通路及代謝物異??筛淖兂晒羌毎x活性,引起成骨譜系成熟障礙,進而影響骨重塑,對于解釋腎性骨病病理改變及臨床治療方案提供新思路。

【關鍵詞】 慢性腎疾病-礦物質和骨代謝異常;腎性骨??;細胞重新編程;成纖維細胞生長因子23

【中圖分類號】 R 681.1 【文獻標識碼】 A DOI:10.12114/j.issn.1007-9572.2023.0799

Advances in Metabolic Reprogramming of Osteoblasts with the Development of Early Renal Bone Disease

WANG Zuoyu,ZHOU Yang,XIONG Mingxia,ZHAO Shasha,YANG Junwei*

Center for Kidney Disease,Second Affiliated Hospital of Nanjing Medical University,Nanjing 210003,China

*Corresponding author:YANG Junwei,Professor/Doctoral supervisor;E-mail:jwyang@njmu.edu.cn

【Abstract】 Chronic kidney disease-mineral and bone disorder(CKD-MBD)has a direct impact on patients' quality of life,hospitalization rates and fracture risk. In recent years,osteoblasts and osteoclasts have become central to the pathophysiology of CKD-MBD. Osteoblasts interact with other organs by synthesizing fibroblast growth factor-23(FGF-23)and sclerostin(SOST),making the skeleton an endocrine organ. Therefore,dysregulation of osteoblast differentiation is an important early event in the pathogenesis of CKD. In this paper,we systematically discuss the metabolic pathways of osteoblasts and the mechanisms related to the altered metabolic reprogramming of osteoblasts in the early CKD-MBD pathology. This paper shows that abnormalities in signaling pathways and metabolites such as Wnt/β-catenin,FGF-23,uremic toxins,metabolic acidosis,can alter the metabolic activity of osteoblasts,causing impaired maturation of the osteogenic spectrum,which in turn affects bone remodeling,which will provide a new way of thinking for explaining the pathological changes in renal bone disease and developing clinical treatment options.

【Key words】 Chronic kidney disease-mineral and bone disorder;Renal bone disease;Cellular reprogramming;Fibroblast growth factor-23

腎臟疾病改善全球預后研究(Kidney Disease:Improving Global Outcomes,KDIGO)于2005年首次提出了慢性腎臟病礦物質和骨骼疾病(CKD-MBD)的概念,強調慢性腎臟?。–KD)可引起骨代謝紊亂及骨外鈣化的發生[1-2]。D'MARCO等[3]發現CKD-MBD增加了患者骨折、心血管事件的發生率及死亡率,這種全身性疾病與鈣、磷、甲狀旁腺激素(parathyroid hormone,PTH)和成纖維細胞生長因子23(FGF-23)等骨代謝相關因子紊亂相關[4-6]。骨代謝紊亂表現為低轉運性骨病、高轉運性骨病、混合性骨病和β2-微球蛋白變性引起的骨關節病,低轉運性骨病為早期腎性骨病的主要表現,因此早期預防腎性骨病發生、發展已成為改善慢性腎臟病患者并發癥及預后的重要措施。

成骨細胞在骨吸收與重建中可以作為橋梁,協調自身和破骨細胞分化[7];此外其分泌細胞外基質蛋白、細胞因子并調節鈣磷代謝,能夠對負荷、炎癥、激素和電解質等的變化做出反應,不僅可以作用于骨表面細胞,還可以作用于其他器官,包括肌肉、心血管、胰腺和腎臟[8-12],因此成骨細胞功能異常在CKD-MBD病變中起重要作用。但成骨細胞在早期骨代謝紊亂中作用的整理和歸納較少,本文通過闡述病理狀態下成骨細胞代謝重編程及整合相關機制,補充CKD-MBD理論體系,為臨床早期預防腎性骨病發生、發展提供新的研究思路。

1 本文文獻檢索策略

計算機檢索PubMed、Web of Science數據庫,檢索時間設定為建庫至2023年6月,英文檢索詞包括“CKD”“CKD-MBD”“osteoblast”“metabolism”“glycolysis”“glutamine”“fatty acids”。納入標準:文獻內容涉及CKD對成骨細胞形態及代謝的影響、成骨細胞分化抑制相關機制;排除標準:與本文主題無關、質量差、無法獲得全文的文獻。最終納入文獻73篇。

2 成骨細胞生理特征

成骨細胞起源于骨髓中的間充質干細胞(mesenchymal stem cell,MSC)。MSC可分化為不同譜系,其定型為骨祖細胞的過程受到不同分子因素的嚴格控制,此過程復雜多樣,主要包括轉化生長因子-β/骨形成蛋白(TGF-β/BMP)[13]和Wnt家族分泌蛋白/β-連環蛋白(Wnt/β-catenin)[14]途徑,以及許多其他途徑,包括核因子κB(nuclear factor kappa-B,NF-κB)、沉默信息調節因子1(SIRT1)、單磷酸腺苷活化蛋白激酶/細胞外調節蛋白激酶(AMPK/ERK1/2)信號通路等[15-18]。前體成骨細胞作為骨祖細胞和成骨細胞之間的過渡狀態,具有較強的分裂能力,并表達間充質干細胞標志蛋白,堿性磷酸酶(alkaline phosphatase,ALP),三角狀五肽重復蛋白(PPR)和Ⅰ型膠原蛋白(collagen Ⅰ,COL1A1)[19]。成熟的成骨細胞則廣泛表達ALP、骨橋蛋白(osteopontin,OPN)、骨唾液酸蛋白(bone sialoprotein,BSP)和骨鈣素(osteocalcin,OC),分泌基質囊泡(matrix vesicles,MVs)并產生多種分泌蛋白及細胞因子,并通過細胞接觸調節自身、破骨細胞及MSC細胞行為[20-21]。此外其調節鈣代謝并促進礦物質沉積,最終部分嵌入合成的類骨質成為骨細胞,部分則分化為骨襯細胞或啟動細胞凋亡程序[22-24]。成骨系細胞標志物及轉錄因子變化情況見表1。

3 成骨細胞代謝特征

成熟的成骨細胞通常停止增殖狀態,合成新的膠原分泌至基質,此過程可通過增加葡萄糖轉運和通過上調葡萄糖轉運蛋白1攝取以滿足能量需求[27-28]。研究顯示在成熟成骨細胞中,有氧糖酵解約占ATP產量的80%[29],并且ESEN等[30]發現,無論氧氣條件如何,乳酸是成骨細胞中葡萄糖代謝的主要最終產物,可以看出糖酵解在成骨細胞代謝中占主要地位,這種與前體成骨細胞不同的代謝方式可能因為有氧糖酵解可快速產生ATP并提供用于活性脂質和核苷酸合成的代謝中間體[31-32]。此外,shRNA靶向氨基酸轉運蛋白可減少細胞谷氨酰胺攝取并阻止成骨細胞分化[33],可見氨基酸代謝對于細胞的膠原基質合成非常重要,這兩大代謝途徑共同促進成骨細胞分化及維持其骨形成功能。

線粒體一定程度上與成骨細胞中的有氧糖酵解耦合,LEE等[34]發現蘋果酸酶的線粒體NAD依賴性亞型(ME2)在成骨細胞分化過程中被特異性上調,并且ME2的敲低明顯降低了糖酵解通量并損害了成骨細胞的增殖和分化。值得一提的是,線粒體形態的動態變化以及線粒體和線粒體衍生囊泡可加速成骨細胞成熟和骨再生[35],因此線粒體氧化磷酸化過程在成骨細胞代謝中的作用不容小覷,其不僅通過三羧酸循環影響供能,也可改變糖酵解通量最終影響成骨細胞分化。

脂肪酸的分解代謝可產生較多的能量,FREY等[36]證明隨著成骨細胞在體外成熟,脂肪酸通過低密度脂蛋白受體相關蛋白5(LDL receptor-related protein 5,LRP5)增加氧化,體外抑制β氧化會損害成骨細胞分化過程。此外多項研究證明成骨細胞可表達清道夫受體或脂肪酸轉運蛋白等,推測可啟動脂蛋白攝取促進脂肪酸分解,但胞內代謝通路目前尚未得到很好的闡述[37-38]。

4 早期CKD-MBD中成骨細胞變化

在CKD 3a期患者中已存在多種生化指標異常,例如PTH、FGF-23、1,25-二羥維生素D3[1,25(OH)2D3]等,以維持內環境穩定。但隨著腎小球濾過率持續下降,這種平衡被破壞,繼而出現高磷低鈣血癥、骨微結構紊亂和骨量減少等[39-42],因此描述此過程的特點對于開展早期生化檢測及臨床干預具有指導意義。

4.1 細胞形態及功能的病理變化

在早期CKD過程中,多種細胞因子、尿毒癥毒素、代謝性酸中毒(metabolic acidosis,MET)等可導致成骨細胞功能異常,表現為細胞活性下降、成骨細胞成熟標志物mRNA表達降低、細胞凋亡增加等[43-45]。在成骨譜系來源上,KAMPROM等[46]發現尿毒癥毒素可導致MSC成骨化潛力受損并加速細胞衰老,進一步減少成骨細胞數量。此外,HEVERAN等[47]發現無PTH升高的CKD小鼠骨骼新生區域礦物質體積分數較低,骨彈性的機械性能受損,這種骨質特性的改變可能涉及骨形成狀態紊亂和礦物質沉積異常。

4.2 細胞代謝重編程

4.2.1 糖酵解代謝改變:成骨細胞主要通過糖酵解方式提供大量ATP以供應代謝。已有研究指出CKD狀態可引起成骨細胞PTH抵抗[48],PTH可誘導大鼠成骨細胞系攝取葡萄糖,并通過激活胰島素樣生長因子信號通路激活磷脂酰肌醇3激酶/哺乳動物雷帕霉素靶蛋白(PI3K/mTORC)級聯反應,上調有氧糖酵解代謝酶表達水平[49],此外間歇性使用PTH可刺激小鼠和人類的骨形成[50]。這些結果側面反映出CKD早期成骨細胞可能存在糖酵解抑制進而出現骨重塑異常,產生病理性骨改變。

4.2.2 谷氨酰胺代謝改變:同前文所述,谷氨酰胺代謝增加與成骨細胞礦化相關,并有利于穩定氧化還原狀態。目前對于CKD中成骨細胞谷氨酰胺代謝變化知之甚少,CHEN等[51]用轉谷酰胺酶抑制劑抑制MVs 分泌引起的膠原鈣化過程,進而CKD大鼠主動脈平滑肌細胞的成骨樣分化。MVs提供磷酸鈣晶體成核位點,在骨礦化的初始啟動過程中發揮重要作用,因此推測谷氨酰胺氧化抑制可能是引起成骨細胞分化障礙的另一機制。

4.2.3 脂肪酸氧化改變:與骨祖細胞相比,成骨細胞中脂肪酸代謝研究較少。有研究顯示中國CKD患者的血清丁酸鹽水平是健康對照組的1/3,丁酸鹽作為短鏈脂肪酸重要組成部分可提供ATP供機體消耗[52]。短鏈脂肪酸雖然對于成骨細胞無直接抑制作用,但其可抑制破骨細胞分化,間接通過破骨細胞分泌的可溶性因子,包括鞘氨醇1磷酸、信號素4D、膠原三螺旋重復蛋白1影響成骨細胞的形成和分化[20]。

5 早期CKD-MBD中成骨細胞代謝重編程機制

5.1 成骨相關病理生理改變

5.1.1 FGF-23表達增高:早期CKD患者循環中即可出現骨細胞分泌的FGF-23含量增加,FGF-23是一種磷酸激素,主要由骨骼中的骨細胞產生[53]。FGF-23通過下調近端腎小管中的鈉依賴性磷協同轉運蛋白,增加腎臟磷的排泄,并抑制1,25(OH)2D3的產生,從而使早期CKD患者的鈣磷代謝相對穩定,并通過依賴或非依賴跨膜蛋白Klotho進行信號轉導而影響骨重建過程[54]。

5.1.2 尿毒癥毒素蓄積:尿毒癥毒素如硫酸吲哚鹽和對甲苯磺酰硫酸鹽可降低成骨細胞中PTH受體以及PTH誘導環磷酸腺苷的產生[55],因此尿毒癥毒素的存在可能會通過有機陰離子轉運體3進入成骨細胞[56],抑制成骨細胞糖酵解及氧化磷酸化進程,損傷骨重建過程,但具體機制尚不清楚??诜蚨舅匚絼┛筛纳颇蚨景Y毒素誘導的骨骼異常[57-58]。

5.1.3 MET:MET見于7%、13%和37%的CKD2、CKD3和CKD4期患者[59],MET可增加成骨細胞中細胞內Ca2+信號傳導和環氧化酶2誘導的前列腺素產生,并直接刺激小鼠骨器官培養物和原代成骨細胞中的FGF-23分泌增高,導致成骨細胞成骨活性降低[60],具體機制仍未明確。

5.2 成骨細胞代謝重編程相關調節通路

5.2.1 Wnt/β-catenin通路受抑制:Wnt/β-catenin通路是一種重要的信號傳導通路,被認為是骨形成的主要調節因子,可增加成骨細胞葡萄糖消耗和乳酸生成,調節成骨細胞活性[61-62]。從機制上講,其通過LRP5激活哺乳動物雷帕霉素靶蛋白2(mammalian target of rapamycin-2,mTORC2)和蛋白激酶B(protein Kinase B,PKB),增加糖酵解相關酶表達,上調丙酮酸脫氫酶-1(pyruvate dehydrogenase kinase-1,Pdk1),從而減少葡萄糖代謝產物丙酮酸進入三羧酸循環,有利于快速產生大量ATP供應成骨細胞系分化的能量需求[56]。另外,Wnt通路激活可增加哺乳動物雷帕霉素靶蛋白1(mammalian target of rapamycin-1,mTORC1)下游的谷氨酰胺酶來刺激谷氨酰胺氧化,不僅產生更多的能量,還可激活一般性調控阻遏蛋白激酶2(general control non-derepressible-2,GCN2)介導的綜合應激反應,刺激負責氨基酸供應,促進蛋白質折疊相關基因的表達,進而影響骨礦化[50]。

多項研究發現CKD患者體內的硬化素(sclerostin,SOST)及NF-κB受體激活因子配體表達升高,可抑制Wnt通路,導致礦化缺陷,并減少負責骨礦化的磷酸鹽調節中性內肽酶[63-65],相反抗SOST單抗治療可增加CKD大鼠的骨量[66]。此外,在慢性腎臟病期間,Wnt通路抑制劑之一的Dickkopf相關蛋白1(Dickkopf-related protein 1,Dkk1)在疾病早期隨著腎小管上皮修復而增加,抑制成骨細胞分化,這種抑制蛋白表達水平隨著腎小球濾過率的降低而顯著下調,并且與PTH獨立關聯[67],這種動態變化可能引起繼發性甲狀旁腺功能亢進相關的高轉運性骨病發生。

5.2.2 FGF-23信號傳導增強:研究表明骨形成細胞也可表達少量的Klotho[68-69],成骨細胞局部產生的FGF-23可與Klotho及成纖維生長因子受體1(fibroblast growth factor receptor-1,FGFR1c)復合體結合,通過有絲分裂原?活化蛋白激酶(mitogen-activated protein kinases,MAPK)途徑誘導Dkk1表達,從而抑制Wnt/β-catenin信號傳導,減少成骨細胞葡萄糖供能作用,起抗礦化作用[70]。不過這種作用在CKD中會被削弱,因為研究發現骨Klotho在5/6腎切除小鼠的表達減少,并且高FGF-23、低1,25(OH)2D3、高磷血癥和尿毒癥毒素也會抑制骨Klotho表達[71-73]。

由于FGF-23的所有受體(FGFR1c,FGFR2c和FGFR3c)在成骨細胞中表達,推測FGF-23可能通過直接激活FGF信號傳導通路抑制成骨細胞糖酵解作用。兩項研究均發現FGF-23過表達可增強FGFRs的磷酸化,顯著抑制成骨細胞的分化和礦化[74-75]。因此在CKD患者中大量的FGF-23也可通過直接激活FGF信號直接抑制骨形成,但具體通路機制仍需探尋。

6 總結

適宜的代謝狀態對于骨單位中各個細胞的正常功能發揮至關重要,其中成骨細胞的新陳代謝活動一直是骨生物學研究的焦點,與負責骨吸收的破骨細胞協同形成新骨。在CKD-MBD發展的不同階段,成骨細胞代謝重編程引起表型改變,進而引起骨質量異常狀態發生。

到目前為止,研究指出成骨細胞中最具特征性的代謝特征是有氧糖酵解及谷氨酰胺氧化模式,Wnt/β-catenin、FGF-23、尿毒癥毒素、MET等信號通路及代謝物異常改變均可改變成骨細胞代謝活性,引起成骨譜系成熟障礙,進而影響骨重塑。這些見解還反映了一個統一的主題,即成骨細胞的新陳代謝與機體的整體生物能有著內在的聯系。

需要注意的是,目前大多數研究均為體外狀態,但細胞可能會根據培養過程中有限底物可利用,從而難以將這些發現推斷為體內條件,并且未完全描繪成骨細胞分化過程中其他代謝物利用方式,例如脂肪酸、蛋白質等。了解CKD-MBD發生、發展中的生物能量改變,明確成骨細胞的病理改變過程,對于解釋不同類型骨病的出現及患者的治療有指導性意義,并推動新型醫療藥物的研發。

作者貢獻:王左鈺負責文章的構思與設計、研究資料的收集與整理、論文撰寫;周陽負責論文表格繪制;熊明霞、趙沙沙負責論文修改;楊俊偉負責論文質量控制及審校、對文章整體負責,監督管理。

本文無利益沖突。

參考文獻

DESBIENS L C,GOUPIL R,MADORE F,et al. Incidence of fractures in middle-aged individuals with early chronic kidney disease:a population-based analysis of CARTaGENE[J]. Nephrol Dial Transplant,2020,35(10):1712-1721. DOI:10.1093/ndt/gfz259.

KAUR R,SINGH R. Mechanistic insights into CKD-MBD-related vascular calcification and its clinical implications[J]. Life Sci,2022,311(Pt B):121148. DOI:10.1016/j.lfs.2022.121148.

D'MARCO L,BELLASI A,RAGGI P. Cardiovascular biomarkers in chronic kidney disease:state of current research and clinical applicability[J]. Dis Markers,2015,2015:586569. DOI:10.1155/2015/586569.

HRUSKA K A,SEIFERT M,SUGATANI T. Pathophysiology of the chronic kidney disease-mineral bone disorder[J]. Curr Opin Nephrol Hypertens,2015,24(4):303-309. DOI:10.1097/MNH.0000000000000132.

RROJI M,FIGUREK A,SPASOVSKI G. Should we consider the cardiovascular system while evaluating CKD-MBD?[J]. Toxins,2020,12(3):140. DOI:10.3390/toxins12030140.

PAZIANAS M,MILLER P D. Osteoporosis and chronic kidney disease-mineral and bone disorder(CKD-MBD):back to basics[J]. Am J Kidney Dis,2021,78(4):582-589. DOI:10.1053/j.ajkd.2020.12.024.

CHEN X,WANG Z Q,DUAN N,et al. Osteoblast-osteoclast interactions[J]. Connect Tissue Res,2018,59(2):99-107. DOI:10.1080/03008207.2017.1290085.

AGORO R,NI P,NOONAN M L,et al. Osteocytic FGF23 and its kidney function[J]. Front Endocrinol,2020,11:592. DOI:10.3389/fendo.2020.00592.

VIEGAS C,ARAúJO N,MARREIROS C,et al. The interplay between mineral metabolism,vascular calcification and inflammation in Chronic Kidney Disease(CKD):challenging old concepts with new facts[J]. Aging,2019,11(12):4274-4299. DOI:10.18632/aging.102046.

HAN Y J,YOU X L,XING W H,et al. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts,osteocytes,and osteoclasts[J]. Bone Res,2018,6:16. DOI:10.1038/s41413-018-0019-6.

BALDELLI R,COUDERT A E,DEL FATTORE A. Editorial:advances in the endocrine role of the skeleton[J]. Front Endocrinol,2020,11:591085. DOI:10.3389/fendo.2020.591085.

MODI P K,PRABHU A,BHANDARY Y P,et al. Effect of calcium glucoheptonate on proliferation and osteogenesis of osteoblast-like cells in vitro[J]. PLoS One,2019,14(9):e0222240. DOI:10.1371/journal.pone.0222240.

IAQUINTA M R,LANZILLOTTI C,MAZZIOTTA C,et al.

The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies[J]. Theranostics,2021,11(13):6573-6591. DOI:10.7150/thno.55664.

ZHOU X,BEILTER A,XU Z H,et al. Wnt/β-catenin-mediated p53 suppression is indispensable for osteogenesis of mesenchymal progenitor cells[J]. Cell Death Dis,2021,12(6):521. DOI:10.1038/s41419-021-03758-w.

HUANG F,WANG H,ZHANG Y,et al. Synergistic effect of QNZ,an inhibitor of NF-κB signaling,and bone morphogenetic protein 2 on osteogenic differentiation in mesenchymal stem cells through fibroblast-induced yes-associated protein activation[J]. Int J Mol Sci,2023,24(9):7707. DOI:10.3390/ijms24097707.

SONG J,LI J,YANG F J,et al. Nicotinamide mononucleotide promotes osteogenesis and reduces adipogenesis by regulating mesenchymal stromal cells via the SIRT1 pathway in aged bone marrow[J]. Cell Death Dis,2019,10(5):336. DOI:10.1038/s41419-019-1569-2.

WANG C,LIN K L,CHANG J,et al. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways[J]. Biomaterials,2013,34(1):64-77. DOI:10.1016/j.biomaterials.2012.09.021.

GAO S Q,CHEN B W,ZHU Z L,et al. PI3K-Akt signaling regulates BMP2-induced osteogenic differentiation of mesenchymal stem cells(MSCs):a transcriptomic landscape analysis[J]. Stem Cell Res,2023,66:103010. DOI:10.1016/j.scr.2022.103010.

KIM J,ADACHI T. Cell condensation triggers the differentiation of osteoblast precursor cells to osteocyte-like cells[J]. Front Bioeng Biotechnol,2019,7:288. DOI:10.3389/fbioe.2019.00288.

KIM J M,LIN C J,STAVRE Z,et al. Osteoblast-osteoclast communication and bone homeostasis[J]. Cells,2020,9(9):2073. DOI:10.3390/cells9092073.

DELGADO-CALLE J,BELLIDO T. The osteocyte as a signaling cell[J]. Physiol Rev,2022,102(1):379-410. DOI:10.1152/physrev.00043.2020.

LIN X,PATIL S,GAO Y G,et al. The bone extracellular matrix in bone formation and regeneration[J]. Front Pharmacol,2020,11:757. DOI:10.3389/fphar.2020.00757.

ROBLING A G,BONEWALD L F. The osteocyte:new insights[J]. Annu Rev Physiol,2020,82:485-506. DOI:10.1146/annurev-physiol-021119-034332.

TRESGUERRES F G F,TORRES J,LóPEZ-QUILES J,et al. The osteocyte:a multifunctional cell within the bone[J]. Ann Anat,2020,227:151422. DOI:10.1016/j.aanat.2019.151422.

CHAN W C W,TAN Z J,TO M K T,et al. Regulation and role of transcription factors in osteogenesis[J]. Int J Mol Sci,2021,

22(11):5445. DOI:10.3390/ijms22115445.

AMARASEKARA D S,KIM S,RHO J. Regulation of osteoblast differentiation by cytokine networks[J]. Int J Mol Sci,2021,

22(6):2851. DOI:10.3390/ijms22062851.

KARNER C M,LONG F X. Wnt signaling and cellular metabolism in osteoblasts[J]. Cell Mol Life Sci,2017,74(9):1649-1657. DOI:10.1007/s00018-016-2425-5.

WEI J W,SHIMAZU J,MAKINISTOGLU M P,et al. Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation[J]. Cell,2015,161(7):1576-1591. DOI:10.1016/j.cell.2015.05.029.

GUNTUR A R,GERENCSER A A,LE P T,et al. Osteoblast-like MC3T3-E1 cells prefer glycolysis for ATP production but adipocyte-like 3T3-L1 cells prefer oxidative phosphorylation[J]. J Bone Miner Res,2018,33(6):1052-1065. DOI:10.1002/jbmr.3390.

ESEN E,LONG F X. Aerobic glycolysis in osteoblasts[J]. Curr Osteoporos Rep,2014,12(4):433-438. DOI:10.1007/s11914-014-0235-y.

NIAN F G,QIAN Y Z,XU F Y,et al. LDHA promotes osteoblast differentiation through histone lactylation[J]. Biochem Biophys Res Commun,2022,615:31-35. DOI:10.1016/j.bbrc.2022.05.028.

ARPONEN M,JALAVA N,WIDJAJA N,et al. Glucose transporters GLUT1,GLUT3,and GLUT4 have different effects on osteoblast proliferation and metabolism[J]. Front Physiol,2022,13:1035516. DOI:10.3389/fphys.2022.1035516.

SHEN L Y,SHARMA D,YU Y L,et al. Biphasic regulation of glutamine consumption by WNT during osteoblast differentiation[J]. J Cell Sci,2021,134(1):jcs251645. DOI:10.1242/jcs.251645.

LEE W C,JI X,NISSIM I,et al. Malic enzyme couples mitochondria with aerobic glycolysis in osteoblasts[J]. Cell Rep,2020,32(10):108108. DOI:10.1016/j.celrep.2020.108108.

SUH J,KIM N K,SHIM W,et al. Mitochondrial fragmentation and donut formation enhance mitochondrial secretion to promote osteogenesis[J]. Cell Metab,2023,35(2):345-360.e7. DOI:10.1016/j.cmet.2023.01.003.

FREY J L,LI Z,ELLIS J M,et al. Wnt-Lrp5 signaling regulates fatty acid metabolism in the osteoblast[J]. Mol Cell Biol,2015,35(11):1979-1991. DOI:10.1128/MCB.01343-14.

KUSHWAHA P,WOLFGANG M J,RIDDLE R C. Fatty acid metabolism by the osteoblast[J]. Bone,2018,115:8-14. DOI:10.1016/j.bone.2017.08.024.

KEVORKOVA O,MARTINEAU C,MARTIN-FALSTRAULT L,et al. Low-bone-mass phenotype of deficient mice for the cluster of differentiation 36(CD36)[J]. PLoS One,2013,8(10):e77701. DOI:10.1371/journal.pone.0077701.

VORLAND C J,BIRUETE A,LACHCIK P J,et al. Kidney disease progression does not decrease intestinal phosphorus absorption in a rat model of chronic kidney disease-mineral bone disorder[J]. J Bone Miner Res,2020,35(2):333-342. DOI:10.1002/jbmr.3894.

OKAMOTO K,FUJII H,GOTO S,et al. Changes in the whole/intact parathyroid hormone ratio and their clinical implications in patients with chronic kidney disease[J]. J Nephrol,2020,

33(4):795-802. DOI:10.1007/s40620-019-00690-3.

FAYED A,EL NOKEETY M M,HEIKAL A A,et al. Serum 25-hydroxyvitamin D level is negatively associated with serum phosphorus level among stage 3a-5 chronic kidney disease patients[J]. Nefrologia,2018,38(5):514-519. DOI:10.1016/j.nefro.2018.02.011.

FIDAN N,INCI A,COBAN M,et al. Bone mineral density and biochemical markers of bone metabolism in predialysis patients with chronic kidney disease[J]. J Investig Med,2016,64(4):861-866. DOI:10.1136/jim-2015-000043.

KIM Y H,KWAK K A,GIL H W,et al. Indoxyl sulfate promotes apoptosis in cultured osteoblast cells[J]. BMC Pharmacol Toxicol,2013,14:60. DOI:10.1186/2050-6511-14-60.

MOYSéS R M A,SCHIAVI S C. Sclerostin,osteocytes,and chronic kidney disease - mineral bone disorder[J]. Semin Dial,2015,28(6):578-586. DOI:10.1111/sdi.12415.

PEREIRA R C,SALUSKY I B,ROSCHGER P,et al. Impaired osteocyte maturation in the pathogenesis of renal osteodystrophy[J]. Kidney Int,2018,94(5):1002-1012. DOI:10.1016/j.kint.2018.08.011.

KAMPROM W,TAWONSAWATRUK T,MAS-OODI S,et al. P-cresol and indoxyl sulfate impair osteogenic differentiation by triggering mesenchymal stem cell senescence[J]. Int J Med Sci,2021,18(3):744-755. DOI:10.7150/ijms.48492.

HEVERAN C M,ORTEGA A M,CURETON A,et al. Moderate chronic kidney disease impairs bone quality in C57Bl/6J mice[J]. Bone,2016,86:1-9. DOI:10.1016/j.bone.2016.02.006.

PAWLAK K,SIEKLUCKA B,PAWLAK D. Paracrine kynurenic pathway activation in the bone of young uremic rats can antagonize anabolic effects of PTH on bone turnover and strength through the disruption of PTH-dependent molecular signaling[J]. Int J Mol Sci,2021,22(12):6563. DOI:10.3390/ijms22126563.

ESEN E,LEE S Y,WICE B M,et al. PTH promotes bone anabolism by stimulating aerobic glycolysis via IGF signaling[J]. J Bone Miner Res,2015,30(11):2137. DOI:10.1002/jbmr.2714.

KARNER C M,ESEN E,OKUNADE A L,et al. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling[J]. J Clin Invest,2015,125(2):551-562. DOI:10.1172/JCI78470.

CHEN N X,O'NEILL K,CHEN X M,et al. Transglutaminase 2 accelerates vascular calcification in chronic kidney disease[J]. Am J Nephrol,2013,37(3):191-198. DOI:10.1159/000347031.

LUCAS S,OMATA Y,HOFMANN J,et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss[J]. Nat Commun,2018,9(1):55. DOI:10.1038/s41467-017-02490-4.

FENG J Q,WARD L M,LIU S G,et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism[J]. Nat Genet,2006,38(11):1310-1315. DOI:10.1038/ng1905.

LIMA F,MONIER-FAUGERE M C,MAWAD H,et al. FGF-23 and sclerostin in serum and bone of CKD patients[J]. Clin Nephrol,2023,99(5):209-218. DOI:10.5414/CN111111.

LEE W C,GUNTUR A R,LONG F X,et al. Energy metabolism of the osteoblast:implications for osteoporosis[J]. Endocr Rev,2017,38(3):255-266. DOI:10.1210/er.2017-00064.

SHYU J F,LIU W C,ZHENG C M,et al. Toxic effects of indoxyl sulfate on osteoclastogenesis and osteoblastogenesis[J]. Int J Mol Sci,2021,22(20):11265. DOI:10.3390/ijms222011265.

LIU W C,TOMINO Y,LU K C. Impacts of indoxyl sulfate and p-cresol sulfate on chronic kidney disease and mitigating effects of AST-120[J]. Toxins,2018,10(9):367. DOI:10.3390/toxins10090367.

ITO S,OHNO Y,TANAKA T,et al. Neutrophil/lymphocyte ratio elevation in renal dysfunction is caused by distortion of leukocyte hematopoiesis in bone marrow[J]. Ren Fail,2019,41(1):284-293. DOI:10.1080/0886022X.2019.1597736.

RAPHAEL K L. Metabolic acidosis and subclinical metabolic acidosis in CKD[J]. J Am Soc Nephrol,2018,29(2):376-382. DOI:10.1681/ASN.2017040422.

KRIEGER N S,BUSHINSKY D A. Stimulation of fibroblast growth factor 23 by metabolic acidosis requires osteoblastic intracellular calcium signaling and prostaglandin synthesis[J]. Am J Physiol Renal Physiol,2017,313(4):F882-886. DOI:10.1152/ajprenal.00522.2016.

SEBASTIAN A,HUM N R,MURUGESH D K,et al. Wnt co-receptors Lrp5 and Lrp6 differentially mediate Wnt3a signaling in osteoblasts[J]. PLoS One,2017,12(11):e0188264. DOI:10.1371/journal.pone.0188264.

KIM S P,FREY J L,LI Z,et al. Lack of Lrp5 signaling in osteoblasts sensitizes male mice to diet-induced disturbances in glucose metabolism[J]. Endocrinology,2017,158(11):3805-3816. DOI:10.1210/en.2017-00657.

TU X L,DELGADO-CALLE J,CONDON K W,et al. Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone[J]. Proc Natl Acad Sci U S A,2015,112(5):E478-486. DOI:10.1073/pnas.1409857112.

JIAO Z X,CHAI H,WANG S D,et al. SOST gene suppression stimulates osteocyte Wnt/β-catenin signaling to prevent bone resorption and attenuates particle-induced osteolysis[J]. J Mol Med,2023,101(5):607-620. DOI:10.1007/s00109-023-02319-2.

BISSON S K,UNG R V,MAC-WAY F. Role of the Wnt/β-catenin pathway in renal osteodystrophy[J]. Int J Endocrinol,2018,2018:5893514. DOI:10.1155/2018/5893514.

METZGER C E,NEWMAN C L,TIPPEN S P,et al. Cortical porosity occurs at varying degrees throughout the skeleton in rats with chronic kidney disease[J]. Bone Rep,2022,17:101612. DOI:10.1016/j.bonr.2022.101612.

FORSTER C M,WHITE C A,TURNER M E,et al. Circulating levels of dickkopf-related protein 1 decrease as measured GFR declines and are associated with PTH levels[J]. Am J Nephrol,2020,51(11):871-880. DOI:10.1159/000511658.

RHEE Y,BIVI N,FARROW E,et al. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo[J]. Bone,2011,49(4):636-643. DOI:10.1016/j.bone.2011.06.025.

FAN Y,CUI C,ROSEN C J,et al. Klotho in Osx+-mesenchymal progenitors exerts pro-osteogenic and anti-inflammatory effects during mandibular alveolar bone formation and repair[J]. Signal Transduct Target Ther,2022,7(1):155. DOI:10.1038/s41392-022-00957-5.

KOMABA H,KALUDJEROVIC J,HU D Z,et al. Klotho expression in osteocytes regulates bone metabolism and controls bone formation[J]. Kidney Int,2017,92(3):599-611. DOI:10.1016/j.kint.2017.02.014.

DAI B,DAVID V,MARTIN A,et al. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model[J]. PLoS One,2012,7(9):e44161. DOI:10.1371/journal.pone.0044161.

KOMABA H,LANSKE B. Role of Klotho in bone and implication for CKD[J]. Curr Opin Nephrol Hypertens,2018,27(4):298-304. DOI:10.1097/MNH.0000000000000423.

PU X,CHAI Y H,GUAN L C,et al. Astragalus improve aging bone marrow mesenchymal stem cells(BMSCs)vitality and osteogenesis through VD-FGF23-Klotho axis[J]. Int J Clin Exp Pathol,2020,13(4):721-729.

XIAO L P,HOMER-BOUTHIETTE C,HURLEY M M. FGF23 neutralizing antibody partially improves bone mineralization defect of HMWFGF2 isoforms in transgenic female mice[J]. J Bone Miner Res,2018,33(7):1347-1361. DOI:10.1002/jbmr.3417.

MINAMIZAKI T,KONISHI Y,SAKURAI K,et al. Soluble Klotho causes hypomineralization in Klotho-deficient mice[J]. J Endocrinol,2018,237(3):285-300. DOI:10.1530/JOE-17-0683.

(收稿日期:2023-10-16;修回日期:2023-12-22)

(本文編輯:鄒琳)

基金項目:國家自然科學基金資助項目(81873618)

引用本文:王左鈺,周陽,熊明霞,等. 成骨細胞代謝重編程與早期腎性骨病發生發展的研究進展[J]. 中國全科醫學,2024,27(15):1904-1910. DOI:10.12114/j.issn.1007-9572.2023.0799. [www.chinagp.net]

WANG Z Y,ZHOU Y,XIONG M X,et al. Advances in metabolic reprogramming of osteoblasts with the development of early renal bone disease[J]. Chinese General Practice,2024,27(15):1904-1910.

? Chinese General Practice Publishing House Co.,Ltd. This is an open access article under the CC BY-NC-ND 4.0 license.

*通信作者:楊俊偉,教授/博士生導師;E-mail:jwyang@njmu.edu.cn

主站蜘蛛池模板: 无遮挡一级毛片呦女视频| 日韩专区欧美| 2020国产免费久久精品99| 欧美伦理一区| 国产成人AV男人的天堂| 最新日本中文字幕| 黑色丝袜高跟国产在线91| 欧美激情首页| 久久国产av麻豆| 国产一区亚洲一区| 亚洲欧美成人在线视频| 欧美一区二区自偷自拍视频| www.亚洲一区| 18禁不卡免费网站| 日韩大乳视频中文字幕| 日韩最新中文字幕| 超级碰免费视频91| 久久精品视频一| 欧美日韩国产高清一区二区三区| 毛片在线看网站| 国内熟女少妇一线天| 韩国福利一区| 99热这里只有免费国产精品| 国产亚洲视频中文字幕视频| 精品一区二区久久久久网站| 四虎国产永久在线观看| 99热国产这里只有精品9九 | 动漫精品中文字幕无码| 色噜噜狠狠狠综合曰曰曰| 亚洲欧洲综合| 国产激情影院| 久久亚洲国产最新网站| 国产一级二级三级毛片| 日韩在线视频网站| 污网站在线观看视频| 国产区成人精品视频| 欧美日韩久久综合| 国产真实乱子伦视频播放| 亚洲免费福利视频| 一本大道东京热无码av| 91小视频在线播放| 97se亚洲| 99久久亚洲综合精品TS| 亚洲天堂自拍| 天堂岛国av无码免费无禁网站| 国产91全国探花系列在线播放| 色九九视频| 亚洲欧美精品在线| 97青草最新免费精品视频| 久久青青草原亚洲av无码| 无码福利日韩神码福利片| 亚洲精品卡2卡3卡4卡5卡区| 国产乱肥老妇精品视频| 伊人久久婷婷| 亚洲精品视频免费| 乱人伦中文视频在线观看免费| 狠狠干欧美| 啊嗯不日本网站| 久久成人国产精品免费软件| 亚洲国产精品日韩专区AV| 国产精品免费p区| 中文字幕久久波多野结衣| 亚洲精品天堂在线观看| 欧美午夜视频| 综合网天天| 永久免费av网站可以直接看的 | 国产午夜一级淫片| 国产福利小视频高清在线观看| 首页亚洲国产丝袜长腿综合| 日本尹人综合香蕉在线观看| 免费aa毛片| 久久福利片| 又爽又黄又无遮挡网站| 精品无码一区二区三区在线视频| 黑人巨大精品欧美一区二区区| 欧美精品成人一区二区视频一| 亚洲中文无码h在线观看| 久久一本日韩精品中文字幕屁孩| 伊人大杳蕉中文无码| 精品国产免费观看| 在线一级毛片| 国产福利一区视频|