張雅瑞 侯慶明
[收稿日期]2022-05-23;? [修訂日期]2023-02-17
[基金項目]國家自然科學基金資助項目(8217051911)
[第一作者]張雅瑞(1997-),女,碩士研究生。
[通信作者]侯慶明(1969-),男,博士,教授,博士生導師。E-mail:qingminghou69@gmail.com。
[摘要]? 目的
探討右美托咪定(Dex)對皮質神經元氧糖剝奪/復氧(OGD/R)損傷的神經保護作用及其可能機制。
方法? 培養孕18 d的SD大鼠胎鼠皮質神經元細胞,隨機分為對照組(Sham組,加入有糖細胞外液置于正常培養箱中培養)、模型組(OGD/R組,加入無糖細胞外液,置于37 ℃厭氧箱中培養制備OGD/R細胞模型)、陽性藥物對照組(OGD/R+LW6組,OGD/R模型細胞加入1 mmol/L的LW6處理1 h)、OGD/R+低濃度Dex組(OGD/R模型細胞加入0.1 μmol/L Dex處理1 h)、OGD/R+高濃度Dex組(OGD/R模型細胞加入1.0 μmol/L Dex處理1 h)。應用CCK-8比色法、免疫熒光方法檢測各組細胞的存活率,Western blot方法檢測各組低氧誘導因子1α(HIF-1α)、激活轉錄因子-6(ATF-6)及下游靶點C/EBP同源蛋白(CHOP)的表達水平。
結果? CCK-8比色及免疫熒光染色結果顯示,各組神經元存活率差異有顯著性(F=63.46,P<0.05);兩兩比較顯示,OGD/R組神經元存活率較Sham組顯著降低(P<0.05),OGD/R+高濃度Dex組神經元存活率較OGD/R組顯著提高(P<0.05)。Western blot結果顯示,各組神經元HIF-1α、ATF-6、CHOP蛋白表達差異有顯著性(F=80.30~155.36,P<0.05);兩兩比較顯示,OGD/R組HIF-1α、ATF-6、CHOP蛋白表達較Sham組升高(P<0.05),OGD/R+高濃度Dex組HIF-1α、ATF-6、CHOP蛋白表達較OGD/R組降低(P<0.05)。
結論? Dex通過抑制HIF-1α表達對OGD/R損傷的神經元模型發揮保護作用。
[關鍵詞]? 右美托咪定;低氧誘導因子1α;氧糖剝奪/復氧損傷;激活轉錄因子6;神經保護
[中圖分類號]? R338.2
[文獻標志碼]? A
[文章編號]? 2096-5532(2024)01-0012-05
doi:10.11712/jms.2096-5532.2024.60.004
[開放科學(資源服務)標識碼(OSID)]
[網絡出版]? https://link.cnki.net/urlid/37.1517.R.20240228.1250.001;2024-03-01? 17:30:08
Protective effects of dexmedetomidine against neuronal oxygen-glucose deprivation/reoxygenation injury
\ ZHANG Yarui, HOU Qingming
\ (Qingdao University? Institute of Neurodegeneration And Neurorehabilitation, Qingdao 266071, China)
\; [Abstract]\ Objective\ To investigate the neuroprotective effects of dexmedetomidine (Dex) against oxygen-glucose deprivation/reoxygenation (OGD/R) injury of cortical neurons and its possible mechanism of action.
\ Methods\ The cortical neurons of fetal Sprague-Dawley rats (gestational age, 18 d) were cultured and then were randomly divided into sham group (cultured in a sugar-containing medium in normal incubator), OGD/R group (cultured in a sugar-free medium in an anaerobic incubator at 37 ℃ to prepare a neuronal OGD/R injury model), OGD/R+LW6 group (OGD/R neurons treated with 1 mmol/L LW6 for 1 h as a po-
sitive control), OGD/R+low-concentration Dex group (OGD/R neurons treated with 0.1 μmol/L Dex for 1 h), and OGD/R+high-concentration Dex group (OGD/R neurons treated with 1.0 μmol/L Dex for 1 h). The survival rate of cells was determined by co-
lorimetric assay with Cell Counting Kit-8 (CCK-8) and immunofluorescence assay. The expression levels of hypoxia-inducible factor-1α (HIF-1α), activating transcription factor 6 (ATF-6), and the downstream target C/EBP homologous protein (CHOP) were mea-
sured by Western blot.
\ Results\ According to CCK-8 and immunofluorescence assay results, there was a significant diffe-
rence in the survival rate of neurons between the groups (F=63.46,P<0.05). Pairwise comparison showed that the survival rate in the OGD/R group was significantly lower than that in the sham group (P<0.05); and the survival rate of the OGD/R+high-concentration Dex group was significantly increased compared with that of the OGD/R group (P<0.05). Western blot results showed significant differences in the expression of HIF-1α, ATF-6, and CHOP proteins (F=80.30-155.36,P<0.05). Pairwise comparison showed that the expression of HIF-1α, ATF-6, and CHOP was significantly higher in the OGD/R group than in the sham group (P<0.05); and the OGD/R+high-concentration Dex group showed significantly lower expression of HIF-1α, ATF-6, and CHOP compared with the OGD/R group, the differences are statistically significant (P<0.05).
\ Conclusion\ Dex inhibits HIF-1α expression to exert protective effects in the neuronal model of OGD/R injury.
[Key words]\ dexmedetomidine; hypoxia-inducible factor-1alpha; oxygen glucose deprivation/reoxygenation injury; activating transcription factor 6; neuroprotection
腦卒中是一種全球發病率高、致殘率高、死亡率高的腦血管疾病[1],其中缺血性腦卒中占85%左右[2]。缺血性腦卒中發生時腦組織供血供氧突然中斷,形成以神經元壞死為主的核心區及缺血半暗帶[3-4]。氧供應中斷和糖原消耗可引起神經功能的永久性缺陷[5],同時也會使相應部位周圍的神經元形成低氧狀態。低氧誘導因子1α(HIF-1α)是細胞在低氧狀態下的一種轉錄因子,HIF-1α通過對其下游靶基因的調控,在血管再生、炎癥、細胞增殖分化及腫瘤生長等方面均起到重要的調節用[6]。HIF-1α的過度激活(持續高表達)可通過促凋亡途徑導致細胞死亡,抑制HIF-1α的表達可能會減輕氧糖剝奪/復氧(OGD/R)損傷[7]。右美托咪定(Dex)是近年來應用于臨床麻醉和鎮靜的新型、高選擇性α2腎上腺素受體激動劑,具有鎮靜、鎮痛、減輕炎癥反應和應激反應保護器官等作用[8]。已有研究表明,Dex通過抑制HIF-1α的活性在心肌疾病中起著保護作用[9],但在神經元損傷中的作用及其機制尚不明確。本研究探討Dex能否通過抑制HIF-1α的表達降低內質網應激從而減輕OGD/R損傷所導致的皮質神經元損傷,為開發有效的OGD/R損傷治療策略提供依據。
1? 材料與方法
1.1? 實驗材料
SPF級、孕18 d的健康SD大鼠購自濟南朋悅實驗動物繁育有限公司,飼養于青島大學醫學部實驗動物中心。主要試劑:Dex購自青島大學附屬醫院,用9 g/L氯化鈉溶液配制低濃度(0.1 μmol/L)和高濃度(1.0 μmol/L)的Dex溶液,置于4 ℃冰箱保存備用。細胞培養試劑neurobasal medium、B-27 Supplement、DMEM-H-Glucose、青霉素-鏈霉素(100×)、Trypsin-EDTA、HEPES-Buffer、glutaMax 100×均購自Gibco公司;胎牛血清購自四季青公司;CCK-8試劑盒購自北京Bioss生物技術有限公司;激活轉錄因子-6(ATF-6)及C/EBP同源蛋白(CHOP)購自Affinity抗體公司;β-actin購自武漢三鷹生物技術公司;HRP標記的兔來源的二抗購自北京索萊寶科技有限公司;苯甲基磺酰氟(PMSF)、抗熒光淬滅封片劑(含DAPI)、蛋白磷酸酶抑制劑(All-inone,100×)購自索萊寶(北京)科技有限公司;兔來源抗HIF-1α多克隆抗體、兔來源抗Map2多克隆抗體、多聚賴氨酸均購自美國CST公司;LW6、RIPA裂解液購自上海碧云天生物技術有限公司。
1.2? 實驗方法
1.2.1? 原代神經元培養? 取孕18 d的健康SD大鼠,脫頸處死后取出胎鼠,用體積分數0.75的乙醇消毒后置于冰上。在光學顯微鏡下剝離顱骨、腦膜,機械分離大腦皮質,暫時放在DMEM培養液中。以900 r/min離心5 min,棄掉上清,加入0.5 g/L胰蛋白酶消化20 min,加入胎牛血清培養液終止消化;以900 r/min離心5 min,棄掉上清,再加入無血清培養液(neurobasal medium 50 mL、B-27 Supplement 1 mL、gluta Max 100× 0.5 mL、青霉素-鏈霉素(100×)0.5 mL),反復緩慢吹打,濾布過濾;將細胞以1.2×105/cm2的密度接種于多聚賴氨酸包被過的培養皿和孔板中,24 h后全換液,此后每3 d半換液培養。
1.2.2? OGD/R細胞模型制備及實驗分組? 神經元培養7 d后,以磷酸鹽緩沖液(PBS)輕輕沖洗2次,隨機分為Sham組(A組)、OGD/R組(B組)、OGD/R+LW6組(C組)、OGD/R+低濃度Dex組(D組)、OGD/R+高濃度Dex組(E組)。Sham組加入有糖細胞外液,置于正常培養箱中培養;ODG/R組加入無糖細胞外液,置于37 ℃厭氧箱(內含體積分數0.95的N2和體積分數0.05的CO2)中低氧處理制備OGD/R細胞模型,1 h后將培養液換為無血清培養液;OGD/R+LW6組:OGD/R模型細胞加入1 mmol/L的LW6處理1 h,加入等體積無血清DMEM培養液;OGD/R+低濃度Dex組:OGD/R模型細胞加入0.1 μmol/L Dex處理1 h后,棄去原培養液,加入等體積的無血清DMEM培養液;OGD/R+高濃度Dex組:OGD/R模型細胞加入1.0 μmol/L Dex處理1 h后,棄去原培養液,加入等體積無血清DMEM培養液。
1.2.3? CCK-8比色法檢測神經元的存活率? 棄掉96孔板中的培養液,用PBS清洗細胞,每孔加入含體積分數0.10 CCK-8的細胞培養液,避光孵育4 h。使用酶標儀檢測各孔波長450 nm處的吸光度,計算細胞存活率。
1.2.4? 免疫熒光染色法檢測神經元的生長狀態
原代神經元接種于裝有蓋玻片的24孔培養板中培養7 d后,取出爬片,用PBS洗3次,每次5 min;每孔加入1 mL組織固定液固定20 min;再用PBS洗3次,每次10 min;以含體積分數0.002 5 Triton-100 溶液破膜10 min,以含體積分數0.05羊血清清蛋白封閉液封閉1 h,加入一抗MAP-2抗體(1∶1 000),4 ℃孵育過夜;然后加二抗山羊抗體IgG抗體(1∶1 000)室溫避光孵育1 h。用含DAPI染料的抗熒光衰減封片劑進行封片后,熒光顯微鏡下采集圖像,觀察原代神經元的形態。
1.2.5? Western blot方法檢測相關蛋白表達? 參照相關文獻[10],應用Western blot方法檢測皮質神經元內HIF-1α、ATF-6和CHOP蛋白表達水平,使用100 g/L SDS PAGE分析神經元樣品。應用一抗(HIF-1α、ATF-6和CHOP 為1∶1 000,β-actin 1∶4 000)和相應二抗(1∶20 000)孵育膜,ECL 顯影成像。應用Image J軟件對數據進行量化。實驗重復3次,取平均值。
1.3? 統計學分析
使用Graph Pad Prism 8.0軟件進行統計學分析。計量資料結果以±s表示,兩組比較采用t檢驗;多組比較采用單因素方差分析,組間兩兩比較采用LSD-t檢驗。以P<0.05為差異有統計學意義。
2? 結? 果
2.1? Dex處理對OGD/R損傷后神經元存活影響
CCK-8比色法檢測顯示,各組神經元存活率差異有顯著性(F=63.46,P<0.05);兩兩比較,B組細胞存活率較A組降低(P<0.05), C組和E組的神經元存活率較B組顯著提高(P<0.05)。見表1。免疫熒光染色觀察顯示,與Sham組相比,OGD/R處理組神經元數目明顯減少;與OGD/R處理組相比,OGD/R+高濃度Dex處理組神經元數目明顯增加,OGD/R+低濃度Dex處理組神經元數目沒有變化。免疫熒光結果顯示,加入高濃度Dex培養后神經元的存活數目增加(圖1)。
2.2? 各組HIF-1α、ATF-6和CHOP蛋白表達比較
Western blot結果顯示,各組HIF-1α、ATF-6、CHOP蛋白表達差異有統計學意義(F=80.30~155.36,P<0.05)。兩兩比較顯示,OGD/R處理組HIF-1α、ATF-6、CHOP蛋白表達水平均較Sham組升高,差異有統計學意義(P<0.05),OGD/R+高濃度Dex處理組HIF-1α、ATF-6、CHOP蛋白水平較OGD/R處理組降低(P<0.05)。見圖2、表1。
3? 討? 論
腦卒中是世界范圍內死亡率高、致殘率高的疾病,其發病后可能給家庭及社會帶來沉重負擔。本
研究通過大鼠神經元體外模擬腦缺血再灌注損傷,探討Dex對神經損傷的保護作用及其可能的機制,從而為缺血性腦損傷治療提供新的方向。
有研究表明,Dex通過抑制HIF-1α的表達發揮神經保護作用[11]。還有研究表明,神經元OGD/R損傷后HIF-1α蛋白表達水平顯著提高[12-13]。因此本文檢測了OGD/R損傷后的神經元內HIF-1α的表達。為了進一步確定HIF-1α的下游ATF-6、CHOP的蛋白變化,本文通過對OGD/R損傷后神經元模型給予Dex 1.0 μmol/L藥物處理來觀察HIF-1α下游通路ATF-6、CHOP的蛋白變化,結果表明,Dex促進了OGD/R損傷神經元的存活并且降低了損傷后原代神經元中HIF-1α、ATF-6和CHOP蛋白的表達,表明Dex在OGD/R損傷中通過調節HIF-1α的表達發揮神經保護作用。本文研究結果還顯示,低濃度的Dex對OGD/R損傷神經元存活不具有保護作用,而高濃度的Dex提高了OGD/R損傷神經元的存活,發揮了保護作用。
HIF-1由HIF-1α和HIF-1β亞單位組成。每個亞單位都包含基本bHLH-PAS結構域,該結構域介導異源二聚和DNA結合。許多研究已經通過其轉錄活性確定了HIF-1α在細胞功能和功能障礙中的重要作用。
HIF-1α是具有轉錄活性的核蛋白,具有廣泛的靶基因譜,通過對其下游靶基因的調控,在低氧適應、炎癥發展及腫瘤生長等方面均起到重要的調節作用[14]。在OGD/R損傷下HIF-1α表達升高可導致細胞死亡[15],抑制HIF-1α的表達則可能會減輕細胞低氧復氧損傷[16]。研究顯示,LW6是HIF-1α的抑制劑[17],其對神經元存活可起到保護作用。因此,本實驗將OGD/R損傷+LW6組作為OGD/R的陽性藥物對照組進行研究,結果顯示LW6對正常培養的神經元存活率和HIF-1α蛋白表達沒有明顯影響,但高濃度Dex提高了OGD/R損傷神經元的存活率,也顯著降低了HIF-1α表達。
DAPI:免疫熒光染色為藍色,標記各組神經元的細胞核;Map2:一抗為羊抗兔,二抗為兔來源,免疫熒光染色為紅色,標記各組神經元形態;Merge:將DAPI和Map2合并在一起,顯示細胞存活率的變化。
ATF-6是HIF-1α的下游因子。已有研究結果顯示,腦卒中后的小鼠內質網應激(ERs)顯著增強[18]。越來越多的證據表明,ERs在神經元存活過程中起重要作用。在ERs狀態下,ATF-6可易位至細胞核并誘導下游信號蛋白CHOP的表達[19]。研究表明,ERs在神經元存活過程中起重要作用[20],ERs信號通路包括ATF-6、IRE1α和PERK通路。藥物作用于ATF-6能夠顯著減輕細胞凋亡,降低凋亡相關的細胞因子如Caspase3、Caspase6等的表達[21]。CHOP是ERs反應共同下游信號分子,正常生理狀態下其表達量低,在ERs狀態下大量表達并促進細胞凋亡[22]。腦卒中后神經元可以通過CHOP發出信號并最終導致細胞凋亡發生。本研究結果顯示,OGD/R損傷后神經元HIF-1α蛋白表達顯著升高,LW6及高濃度Dex作用后HIF-1α、ATF-6及CHOP蛋白的表達水平顯著降低,提示抑制HIF-1α的表達可能通過抑制ERs通路減輕OGD/R損傷的神經元凋亡,發揮神經保護作用。
綜上所述,Dex對OGD/R損傷的神經元細胞具有保護作用,其機制可能通過下調HIF-1α蛋白表達抑制ATF-6、CHOP信號通路發揮神經保護作用。本文結果可以為開發有效的腦卒中治療策略提供依據。但ATF-6如何通過下游信號通路發揮神經保護作用尚不清楚,有待后續進一步研究。
[參考文獻]
[1]BOURSIN P, PATERNOTTE S, DERCY B, et al. Semantics, epidemiology and semiology of stroke[J]. Soins; La Revue De Reference Infirmiere, 2018,63(828):24-27.
[2]MARKUS H S, BRAININ M, FISHER M. Tracking the global burden of stoke and dementia: world Stroke Day 2020[J]. International Journal of Stroke, 2020,15(8):817-818.
[3]GU J F, CHEN J, YANG N, et al. Combination of Ligusti-
cum chuanxiong and Radix Paeoniae ameliorate focal cerebral ischemic in MCAO rats via endoplasmic reticulum stress-dependent apoptotic signaling pathway[J]. Journal of Ethnopharmacology, 2016,187:313-324.
[4]MENDELSON S J, PRABHAKARAN S. Diagnosis and ma-
nagement of transient ischemic attack and acute ischemic stroke: a review[J]. JAMA, 2021,325(11):1088-1098.
[5]PRENTICE H, GHARIBANI P M, MA Z Y, et al. Neuroprotective functions through inhibition of ER stress by taurine or taurine combination treatments in a rat stroke model[J]. Advances in Experimental Medicine and Biology, 2017,975 Pt 1:193-205.
[6]JIANG Q, GENG X K, WARREN J, et al. Hypoxia inducible factor-1α (HIF-1α) mediates NLRP3 inflammasome-depen-
dent-pyroptotic and apoptotic cell death following ischemic stroke[J]. Neuroscience, 2020,448:126-139.
[7]LI H S, ZHOU Y N, LI L, et al. HIF-1α protects against oxidative stress by directly targeting mitochondria[J]. Redox Biology, 2019,25:101-109.
[8]CHEN H A, LI G, TAN G, et al. Dexmedetomidine enhances hypoxia-induced cancer cell progression[J]. Experimental and Therapeutic Medicine, 2019,18(6):4820-4828.
[9]HE Z B, SU H J, WU H T, et al. Dexmedetomidine treatment prevents cerebral ischemic reperfusion injury through HIF-1α/Beclin1-mediated autophagy[J]. Brain Injury, 2023,37(8):706-713.
[10]CUI Y, ZHANG Y, ZHAO X L, et al. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation[J]. Brain, Behavior, and Immunity, 2021,93:312-321.
[11]SHI J, YU T X, SONG K, et al. Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway[J]. Redox Biology, 2021,41:101954.
[12]HU X W, LI L, GONG Y Y, et al. Buyang Huanwu Decoction promotes angiogenesis of rat brain microvascular endothelial cells after oxygen-glucose deprivation reperfusion injury via activation of PI3K-AKT signaling pathway[J]. Journal of Zhejiang University (Medical Sciences), 2022,51(5):544-551.
[13]WEI R H, SONG L J, MIAO Z Y, et al. Hydroxysafflor yellow A exerts neuroprotective effects via HIF-1α/BNIP3 pathway to activate neuronal autophagy after OGD/R[J]. Cells, 2022,11(23):3726.
[14]TIRPE A A, GULEI D A, CIORTEA S M, et al. Hypoxia: overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes[J]. International Journal of Molecular Sciences, 2019,20(24):6140.
[15]NI H Z, LI J X, ZHENG J Y, et al. Cardamonin attenuates cerebral ischemia/reperfusion injury by activating the HIF-1α/VEGFA pathway[J]. Phytotherapy Research: PTR, 2022,36(4):1736-1747.
[16]RUAN J X, WANG L, DAI J H, et al. Hydroxysafflor yellow a promotes angiogenesis in rat brain microvascular endothelial cells injured by oxygen-glucose deprivation/reoxygenation(OGD/R) through SIRT1-HIF-1α-VEGFA signaling pathway[J]. Current Neurovascular Research, 2021 18(4):415-426.
[17]XU H R, CHEN Y Q, LI Z C, et al. The hypoxia-inducible factor 1 inhibitor LW6 mediates the HIF-1α/PD-L1 axis and suppresses tumor growth of hepatocellular carcinoma in vitro and in vivo[J]. European Journal of Pharmacology, 2022,930:175154.
[18]YIN Y, SUN G, LI E, et al. ER stress and impaired autopha-
gy flux in neuronal degeneration and brain injury[J]. Ageing Research Reviews, 2017,34:3-14.
[19]XIA T, LIAO Y Q, LI L, et al. 4-PBA attenuates fat accumulation in cultured spotted seabass fed high-fat-diet via regulating endoplasmic reticulum stress[J]. Metabolites, 2022,12(12):1197.
[20]REN J, BI Y G, SOWERS J R, et al. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases[J]. Nature Reviews Cardiology, 2021,18(7):499-521.
[21]WANG X H, ZHAO J, GUO H M, et al. CFLAR is a critical regulator of cerebral ischaemia-reperfusion injury through re-
gulating inflammation and endoplasmic reticulum (ER) stress[J]. Biomedecine & Pharmacotherapie, 2019,117:109155.
[22]YANG H, NIEMEIJER M, VAN DE WATER B, et al. ATF6 is a critical determinant of CHOP dynamics during the unfolded protein response[J]. iScience, 2020,23(2):100860.
(本文編輯? 黃建鄉)