

[收稿日期]2023-04-28;" [修訂日期]2023-10-06
[基金項目]國家自然科學基金資助項目(81870485)
[第一作者]王鑫(1994-),男,碩士。
[通信作者]鞏永鳳(1976-),女,博士,教授。E-mail:ygong@bzmc.edu.cn。
[摘要]
長期使用順鉑會導致臨床病人慢性腎臟疾病(CKD)的發生。目前,迫切需要建立一種合適的動物模型來模擬臨床順鉑的實際應用。本文綜述了順鉑誘導CKD動物模型的研究進展及影響模型構建的主要因素,以期為優化模型用來研究順鉑誘導CKD的機制和治療方式提供理論依據。
[關鍵詞]" 順鉑;腎臟疾病;慢性病;纖維化;疾病模型,動物;綜述
[中圖分類號]" R692;R-332
[文獻標志碼]" A
[文章編號]" 2096-5532(2024)01-0151-04
doi:10.11712/jms.2096-5532.2024.60.009
[開放科學(資源服務)標識碼(OSID)]
[網絡出版]" https://link.cnki.net/urlid/37.1517.r.20240306.1553.005;2024-03-09" 19:19:57
Research advances in cisplatin-induced chronic kidney disease in rodents
\ WANG Xin, GONG Yongfeng
\ (Department of Pathology, Affiliated Center Hospital of Jiangnan University, Wuxi 214000, China)
\; [Abstract]\ Long-term use of cisplatin can lead to the development of chronic kidney disease (CKD) in clinical patients. An appropriate animal model is urgently needed to simulate the clinical application of cisplatin. This paper reviews the research advances in cisplatin-induced CKD in rodent models and the main factors affecting model construction. Hopefully, it will provide a theoretical basis for optimization of the model to study the mechanism and treatment of cisplatin-induced CKD.
[Key words]\ cisplatin; kidney disease; chronic disease; fibrosis; disease models, animal; review
慢性腎臟疾病(CKD)是一種臨床病理綜合征,以持續的腎臟結構和(或)功能發生改變為特征[1]。臨床上,順鉑作為一種強效的化療藥物,長期使用會導致CKD的發生[2]。為了更好地模擬臨床化療藥物對腎臟的影響,往往通過反復低劑量順鉑注射來誘導嚙齒類動物CKD[3]。目前順鉑注射構建CKD動物模型的方式并不統一,急需建立一種恰當的動物模型來研究順鉑誘導CKD的病理生理學以及發生機制。因此,本文對順鉑構建臨床相關CKD模型的方法及其影響因素作一綜述。
1" CKD動物模型
目前為止,構建CKD動物模型方式很多。腎單側缺血再灌注(UIRI)模型很早被建立并經常被使用[4]。UIRI模型是通過微型血管夾阻斷一側腎臟血流。在此模型中,由于對側腎臟結構和功能完好,小鼠得以長期存活,并逐步發展成CKD。此模型模擬了人類CKD的功能學改變(腎小球濾過率降低、肌酐清除率降低以及血尿素氮增加等)和病理學改變(腎小管擴張、腎小管間質纖維化以及腎小球硬化等)。
其他嚙齒類動物CKD模型包括雙側缺血再灌注損傷(BIRI)[5]、單側輸尿管梗阻(UUO)[6]、鏈脲佐菌素誘導糖尿病腎病[7]以及基因小鼠模型(db/db小鼠和ob/ob小鼠)[8]等。BIRI和UUO小鼠模型需要進行手術操作,存在手術操作失誤及感染導致小鼠死亡的風險;UUO小鼠模型常被用來研究腎小管間質纖維化的機制,但并不能展示CKD模型的所有特性。不同動物模型展示了CKD不同的病理生理學變化,例如,鏈脲佐菌素單獨使用或與其他藥物聯合使用,用于誘導1型或2型糖尿病[7]。
另外,反復低劑量順鉑注射作為研究慢性腎損傷模型的方式被廣泛接受,因為這種干預模式模擬了臨床腫瘤病人長期接受化療所引起的CKD中可見的大多數結構以及功能變化[9]。順鉑注射造成嚙齒類動物血中的尿素氮、肌酐含量升高,蛋白尿產生以及腎小管擴張和間質纖維化,這些功能學以及病理學變化和人類CKD的病理生理學變化一致[10]。雖然造模過程中避免了手術操作的繁瑣及感染后死亡的風險,但也存在局限性,反復順鉑注射會導致嚙齒類動物死亡,影響其成模效率[11]。
2" 優化順鉑構建的CKD模型
腫瘤病人接受順鉑治療逐步發展為CKD,目前尚缺乏合理的干預措施,主要原因之一在于缺乏合適的動物模型。在過去研究中,順鉑構建嚙齒類動物模型主要被用于研究急性腎毒性損傷[12-13],而在嚙齒類動物CKD中的研究較少。單次低劑量順鉑注射(小鼠:5~8 mg/kg;大鼠:1~3 mg/kg)僅引起腎臟輕微的損傷,在順鉑注射后4~5 d,小鼠腎臟組織形態學和功能學發生改變,分別表現為細胞核輕度嗜堿性以及出現少量壞死細胞和血糖升高及腎小球濾過率降低等[14-16]。重要的是,低劑量順鉑注射不會引起血尿素氮或血肌酐水平改變。而單次高劑量順鉑注射(小鼠:10~13 mg/kg;大鼠:3~8 mg/ kg)后1~2 d出現線粒體減少、局部腎小管刷狀緣丟失以及胞漿小泡增多;注射后3~4 d出現刷狀緣大量丟失以及壞死細胞脫落入腎小管管腔[17-18];而血尿素氮和血肌酐在注射后的3~7 d明顯降低,到第14天才恢復到基線[19]。顯而易見,順鉑注射量的提高會導致嚙齒類動物腎臟損傷嚴重,修復期也相應延長。當腎臟修復能力無法代償時,逐漸發展成CKD。早期,有學者試圖通過提高單次順鉑注射劑量來構建嚙齒類動物CKD模型。研究表明,單次高劑量順鉑注射(3~8 mg/kg)不僅引起大鼠急性腎毒性,還會對大鼠腎臟結構和功能產生長期影響[20-21]。在順鉑注射的第20天后,大鼠腎臟出現間質纖維化和腎小管擴張[21]。雖然這種單次高劑量順鉑造模的方式很簡單,但無法有效模擬臨床腫瘤病人長期接受順鉑治療引起的CKD,并且高劑量順鉑注射會大大增加嚙齒類動物的死亡率,導致成模率降低[3]。因此,反復低劑量順鉑注射成為CKD造模的更好方式。在過去數十年中,為了更好地模擬臨床病人順鉑化療的真實情境,造模過程中順鉑注射的劑量及次數不斷調整。DU等[22]構建了異種移植瘤和同基因腫瘤小鼠模型,并對這些荷瘤小鼠每周注射10 mg/kg順鉑,持續3~4周,小鼠出現明顯的CKD病理特征。2016年TORRES等[23]對C57BL/6小鼠注射15 mg/kg順鉑,間隔2周再次注射,在第9周和第16周時小鼠腎功能顯著降低和出現間質纖維化。與此同時,SHARP等[3]比較了單劑量(25 mg/kg,注射1次)和反復低劑量(7或9 mg/kg,每周1次,注射4次)順鉑注射后的造模效果。研究發現,反復低劑量順鉑注射后,炎癥性趨化因子及細胞因子表達顯著增加,纖維化標志物表達顯著升高。同時,與7 mg/kg順鉑的注射劑量相比較,9 mg/kg劑量順鉑注射導致約10% FVB/n小鼠死亡。同樣,有研究通過對C57BL/6小鼠在第0、1和3周腹腔注射10 mg/kg順鉑發現,此CKD模型小鼠在第3周出現小管擴張和中度腎臟間質纖維化,并在第4周加重。雖然注射次數從2次到7次均進行過嘗試,但大多數研究更加傾向于使用每周注射1次,連續注射4次的造模方式(圖1)[24]。
除了注射劑量及次數影響模型,嚙齒類動物種屬、性別和年齡等因素都會對造模結果產生影響。順鉑腎毒性的易感程度具有種屬特異性。據研究報道,相較于小鼠,大鼠對順鉑的腎毒性更加敏感[25]。另外,不同嚙齒類動物品系對順鉑誘導CKD動物模型具有影響。目前公認,C57BL/6小鼠對腎臟纖維化和CKD相關的腎小球改變以及對發展腎小管間質纖維化具有抵抗作用[26-27]。作者團隊構建了相對穩定的順鉑誘導CKD動物模型,研究發現,6~8周齡C57BL/6小鼠在順鉑注射的第42天,出現CKD相關的慢性炎癥以及輕度腎臟間質纖維化(纖維化面積占10%~30%),而在第24天時未出現明顯纖維化[11]。由于此品系對腎臟纖維化的抵抗作用,導致成模周期需要42 d。SHARP等[3]對8周齡FVB小鼠注射7 mg/kg順鉑,連續注射4次,發現小鼠腎臟出現腎小管間質纖維化,然而,小鼠血肌酐及血尿素氮并未有顯著性變化。
衰老已被認為是腎損傷加重的一個危險因素,而且老年病人腎臟結構發生改變,腎功能降低,對腎毒性更加敏感,發展為CKD的概率也更大[1,28]。研究發現,嚙齒類動物周齡的差異對順鉑腎毒性較為敏感,周齡大的大鼠比周齡小的大鼠更易發生腎臟順鉑堆積,且更易發生腎間質纖維化[29-30]。另外,有研究發現,周齡大的129Sv小鼠及SD大鼠對順鉑更加敏感,腎臟損傷更加嚴重[31],同樣的結果在C57BL/6小鼠上得到驗證[11]。然而,SHARP等[32]認為中度衰老并不會加重順鉑誘導的腎臟損傷及后期的纖維化程度。
此外,性別對順鉑構建嚙齒類動物CKD模型的影響值得關注。一些研究者發現雄性Wistar大鼠對順鉑腎毒性的易感性高于雌性Wistar大鼠;另一些研究者則并沒有發現性別在其中發揮的作用[33]。研究者同樣在小鼠上進行了實驗,結果顯示,雄性C57BL/6小鼠對順鉑腎毒性更敏感[34];另外一些研究則發現雌性C57BL/6J和129Sv小鼠更敏感[35]。因此,性別對構建CKD模型的影響仍有待考究。
既往研究顯示,要優化順鉑誘導的CKD動物模型,應重點關注嚙齒類動物順鉑注射劑量及次數,同時種屬、性別和年齡等因素也不可忽視。
3" 順鉑誘導的CKD模型在多種藥理學化合物臨床療效試驗中的應用
順鉑誘導的CKD動物模型,除了被用于闡明CKD的病理機制外,也被用于測試藥物、化學物質和天然化合物等的治療效果。表1列舉了一些以順鉑誘導的CKD動物模型為平臺的實驗。表中列出的化合物都處于臨床前階段,用于測試CKD的治療效果。
關于表1,在不考慮何種化學物質治療的情況下,所有的順鉑誘導CKD模型最終都可能以氧化損傷作為導致腎臟炎癥和纖維化的共同機制。因此,應用表1中抗氧化物質的復合物能夠有效治療順鉑誘導的慢性腎臟損傷。然而,探討化合物/化學物質對抗順鉑導致的慢性腎臟損傷的機制需要進行多次實驗驗證,這是由于各個實驗室的測試條件及實驗設計各不相同。另外,從表中可以發現多種物質的聯合使用或許能夠為CKD病人提供協同效益。
4" 總結與展望
長期以來,順鉑治療癌癥這一方式得到廣泛認可,順鉑被認為是一種高效的抗腫瘤藥物,但長期使用順鉑化療會導致臨床病人CKD的發生。目前對于順鉑引起的CKD的病理生理學變化及機制尚不清楚,需要進一步研究順鉑的作用途徑及信號通路來幫助了解順鉑誘導CKD的發病機制。新的治療或診斷方法的發現主要通過動物模型研究,因此,構建一個簡單易行、可復制和穩定的CKD實驗模型是必不可少的步驟。迄今為止,尚未有一個良好的模型來模擬臨床上順鉑誘導的CKD。本文闡述了順鉑構建CKD模型的影響因素,包括順鉑劑量及次數、小鼠性別、年齡和種屬差異等。因此,可以通過CKD動物模型來探索順鉑引起的慢性腎臟損傷的治療策略,為臨床病人減輕副作用。
[參考文獻]
[1]FERENBACH D A, BONVENTRE J V. Mechanisms of ma-
ladaptive repair after AKI leading to accelerated kidney ageing and CKD[J]. Nature Reviews Nephrology, 2015,11(5):264-276.
[2]DUAN Z Y, CAI G Y, LI J J, et al. Cisplatin-induced renal toxicity in elderly people[J]. Therapeutic Advances in Medical Oncology, 2020,12:1758835920923430.
[3]SHARP C N, DOLL M A, DUPRE T V, et al. Repeated administration of low-dose cisplatin in mice induces fibrosis[J]. American Journal of Physiology Renal Physiology, 2016,310(6):F560-F568.
[4]ZAGER R A, JOHNSON A C M, BECKER K. Acute unila-
teral ischemic renal injury induces progressive renal inflammation, lipid accumulation, histone modification, and end-stage kidney disease[J]. American Journal of Physiology Renal Physiology, 2011,301(6):F1334-F1345.
[5]LEE K, JANG H R, JEON J, et al. Repair phase modeling of ischemic acute kidney injury: recovery vs. transition to chronic kidney disease[J]. American Journal of Translational Research, 2022,14(1):554-571.
[6]CHEVALIER R L, FORBES M S, THORNHILL B A. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy[J]. Kidney International, 2009,75(11):1145-1152.
[7]TESCH G H, ALLEN T J. Rodent models of streptozotocin-induced diabetic nephropathy[J]. Nephrology, 2007,12(3):261-266.
[8]ALLEN T J, COOPER M E, LAN H Y. Use of genetic mouse models in the study of diabetic nephropathy[J]. Current Diabetes Reports, 2004,4(6):435-440.
[9]RAVICHANDRAN K, WANG Q, OZKOK A, et al. CD4 T cell knockout does not protect against kidney injury and wor-
sens cancer[J]. Journal of Molecular Medicine, 2016,94(4):443-455.
[10]PERE M, VEERI-HALER . Cisplatin-induced rodent model of kidney injury: characteristics and challenges[J]. BioMed Research International, 2018, 2018:1462802.
[11]王鑫,李慧,王向東,等.順鉑注射對C57BL/6小鼠腎臟功能和結構影響[J].青島大學學報(醫學版),2021,57(6):801-806.
[12]LI J Z, XU Z, JIANG L, et al. Rictor/mTORC2 protects against cisplatin-induced tubular cell death and acute kidney injury[J]. Kidney International, 2014,86(1):86-102.
[13]SOLANKI M H, CHATTERJEE P K, XUE X Y, et al. Magnesium protects against cisplatin-induced acute kidney injury without compromising cisplatin-mediated killing of an ovarian tumor xenograft in mice[J]. American Journal of Physiology Renal Physiology, 2015,309(1):F35-F47.
[14]WAINFORD R D, WEAVER R J, STEWART K N, et al. Cisplatin nephrotoxicity is mediated by gamma glutamyltranspeptidase, not via a C-S lyase governed biotransformation pathway[J]. Toxicology, 2008, 249(2-3):184-193.
[15]JODRELL D I, NEWELL D R, MORGAN S E, et al. The renal effects of N10-propargyl-5,8-dideazafolic acid (CB3717) and a non-nephrotoxic analogue ICI D1694, in mice[J]. British Journal of Cancer,1991,64(5):833-838.
[16]MCKEAGE M J, MORGAN S E, BOXALL F E, et al. Lack of nephrotoxicity of oral ammine/amine platinum (IV) dicarboxylate complexes in rodents[J]. British Journal of Cancer,1993,67(5):996-1000.
[17]DOBYAN D C, LEVI J, JACOBS C, et al. Mechanism of cis-platinum nephrotoxicity: II. morphologic observations[J]. The Journal of Pharmacology and Experimental Therapeutics,1980, 213(3):551-556.
[18]SINGH G. A possible cellular mechanism of cisplatin-induced nephrotoxicity[J]. Toxicology,1989,58(1):71-80.
[19]MIZUSHIMA Y, NAGAHAMA H, YOKOYAMA A, et al. Studies on nephrotoxicity following a single and repeated administration of cis-diamminedichloroplatinum (CDDP) in rats[J]. The Tohoku Journal of Experimental Medicine,1987,151(2):129-135.
[20]YAMATE J, MACHIDA Y, IDE M, et al. Cisplatin-induced renal interstitial fibrosis in neonatal rats, developing as solitary nephron unit lesions[J]. Toxicologic Pathology, 2005,33(2):207-217.
[21]BEHLING E B, SENDO M C, FRANCESCATO H D, et al. Comparative study of multiple dosage of quercetin against cisplatin-induced nephrotoxicity and oxidative stress in rat kidneys[J]. Pharmacological Reports, 2006,58(4):526-532.
[22]DU Y, ZHAO Y J, LI C, et al. Inhibition of PKCδ reduces amyloid-β levels and reverses Alzheimer disease phenotypes[J]. The Journal of Experimental Medicine, 2018, 215(6):1665-1677.
[23]TORRES R, VELAZQUEZ H, CHANG J J, et al. Three-dimensional morphology by multiphoton microscopy with clea-
ring in a model of cisplatin-induced CKD[J]. Journal of the American Society of Nephrology, 2016, 27(4):1102-1112.
[24]KATAGIRI D, HAMASAKI Y, DOI K, et al. Interstitial renal fibrosis due to multiple cisplatin treatments is ameliorated by semicarbazide-sensitive amine oxidase inhibition[J]. Kidney International, 2016,89(2):374-385.
[25]KATAYAMA R, NAGATA S, IIDA H, et al. Possible role of cysteine-S-conjugate β-lyase in species differences in cisplatin nephrotoxicity[J]. Food and Chemical Toxicology, 2011,49(9):2053-2059.
[26]WALKIN L, HERRICK S E, SUMMERS A, et al.
The role of mouse strain differences in the susceptibility to fibrosis: a
syste-
matic review[J]. Fibrogenesis amp; Tissue Repair, 2013,6(1):18.
[27]SUGIMOTO H, GRAHOVAC G, ZEISBERG M, et al. Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors[J]. Diabetes, 2007,56(7):1825-1833.
[28]SOBAMOWO H, PRABHAKAR S S. The kidney in aging: physiological changes and pathological implications[J]. Progress in Molecular Biology and Translational Science, 2017,146:303-340.
[29]APPENROTH D, WINNEFELD K, BRUNLICH H. Nephrotoxicity and pharmacokinetics of cisplatinum in young and adult rats[J]. Biomedica Biochimica Acta,1988,47(8):791-797.
[30]YAMATE J, TATSUMI M, NAKATSUJI S, et al. Immunohistochemical observations on the kinetics of macrophages and myofibroblasts in rat renal interstitial fibrosis induced by cis-diamminedichloroplatinum[J]. Journal of Comparative Patho-
logy, 1995,112(1):27-39.
[31]SHI M J, MCMILLAN K L, WU J X, et al. Cisplatin nephrotoxicity as a model of chronic kidney disease[J]. Laboratory Investigation, 2018,98(8):1105-1121.
[32]SHARP C N, DOLL M, DUPRE T V, et al. Moderate aging does not exacerbate cisplatin-induced kidney injury or fibrosis despite altered inflammatory cytokine expression and immune cell infiltration[J]. American Journal of Physiology Renal Physiology, 2019,316(1):F162-F172.
[33]ESHRAGHI-JAZI F, NEMATBAKHSH M. Sex Difference in Cisplatin-Induced Nephrotoxicity: Laboratory and Clinical Findings[J]. J Toxicol, 2022,2022:3507721.
[34]TOWNSEND D M, TEW K D, HE L, et al. Role of gluta-
thione S-transferase pi in cisplatin-induced nephrotoxicity[J]. Biomedecine amp; Pharmacotherapie, 2009,63(2):79-85.
[35]WEI Q Q, WANG M H, DONG Z. Differential gender diffe-
rences in ischemic and nephrotoxic acute renal failure[J]. American Journal of Nephrology, 2005, 25(5):491-499.
[36]LI C Z, XIE N, LI Y, et al. N-acetylcysteine ameliorates cisplatin-induced renal senescence and renal interstitial fibrosis through sirtuin1 activation and p53 deacetylation[J]. Free Radical Biology amp; Medicine, 2019,130:512-527.
[37]GUO X J, XU L Y, VELAZQUEZ H, et al. Kidney-targeted renalase agonist prevents cisplatin-induced chronic kidney di-
sease by inhibiting regulated necrosis and inflammation[J]. Journal of the American Society of Nephrology, 2022,33(2):342-356.
[38]LI C Z, SHEN Y T, HUANG L W, et al. Senolytic therapy ameliorates renal fibrosis postacute kidney injury by alleviating renal senescence[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2021,35(1):e21229.
[39]LI S Y, LIVINGSTON M J, MA Z W, et al. Tubular cell senescence promotes maladaptive kidney repair and chronic kidney disease after cisplatin nephrotoxicity[J]. JCI Insight, 2023,8(8):e166643.
[40]EL-WASEIF E G, SHARAWY M H, SUDDEK G M. The modulatory effect of sodium molybdate against cisplatin-induced CKD: role of TGF-β/Smad signaling pathway[J]. Life Sciences, 2022,306:120845.
[41]DEWAELES E, CARVALHO K, FELLAH S, et al. Istradefylline protects from cisplatin-induced nephrotoxicity and peripheral neuropathy while preserving cisplatin antitumor effects[J]. The Journal of Clinical Investigation, 2022,132(22):e152924.
[42]TSAI Y S, CHEN Y P, LIN S W, et al. Lactobacillus rhamnosus GKLC1 ameliorates cisplatin-induced chronic nephroto-
xicity by inhibiting cell inflammation and apoptosis[J]. Biomedecine amp; Pharmacotherapie, 2022,147:112701.
[43]ADHIKARI A, MONDAL S, CHATTERJEE T, et al. Re-
dox nanomedicine ameliorates chronic kidney disease (CKD) by mitochondrial reconditioning in mice[J]. Communications Bio-
logy, 2021,4(1):1013.
[44]MAGHMOMEH A O, EL-GAYAR A M, EL-KAREF A, et al. Arsenic trioxide and curcumin attenuate cisplatin-induced renal fibrosis in rats through targeting Hedgehog signaling[J]. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2020,393(3):303-313.
(本文編輯" 劉寧)