王茜鈺然 高靖辰 葛承延 王倚天 萬芪
[收稿日期]2022-11-20;? [修訂日期]2023-03-17
[基金項(xiàng)目]國家自然科學(xué)基金資助項(xiàng)目(82071385)
[第一作者]王茜鈺然(1995-),女,碩士研究生。
[通信作者]萬芪(1962-),男,博士,教授,博士生導(dǎo)師。E-mail:qiwan1@hotmail.com。
[摘要]? 目的
研究丙氨酸(Ala)在缺血性腦損傷中的神經(jīng)保護(hù)作用以及Ala對M2型丙酮酸激酶(PKM2)表達(dá)水平的調(diào)節(jié)。
方法? 體外培養(yǎng)原代神經(jīng)元并構(gòu)建氧-糖剝奪/再灌注(OGD/R)模型,將神經(jīng)元隨機(jī)分為對照組、OGD/R模型組以及OGD/R后Ala干預(yù)組(OGD/R+Ala),應(yīng)用CCK-8方法檢測Ala干預(yù)對神經(jīng)元存活率的影響,Western blot方法檢測Ala對OGD/R模型神經(jīng)元內(nèi)PKM2蛋白表達(dá)水平的影響。構(gòu)建大鼠大腦中動脈栓塞(MCAO)模型,隨機(jī)將36只SD大鼠分為假手術(shù)組、MCAO組以及MCAO后Ala干預(yù)組(MCAO+Ala),每組12只,采用免疫熒光方法檢測腦缺血/再灌注損傷后神經(jīng)元內(nèi)Ala含量的變化,2,3,5-氯化三苯基四氮唑(TTC)染色觀察各組腦梗死面積,Western blot方法檢測Ala干預(yù)對缺血損傷腦組織中PKM2蛋白表達(dá)水平的影響。
結(jié)果
CCK-8與Western blot檢測結(jié)果顯示,各組神經(jīng)元存活率及PKM2蛋白表達(dá)差異有顯著性(F=86.88、20.83,P<0.05),OGD/R組細(xì)胞存活率較對照組顯著降低,PKM2蛋白表達(dá)較對照組升高(tLSD=4.65、10.95,P<0.05);OGD/R+Ala組細(xì)胞存活率較OGD/R組顯著增加,PKM2蛋白表達(dá)較OGD/R組明顯下降(tLSD=4.98、4.69,P<0.05)。免疫熒光染色結(jié)果顯示,MCAO組大鼠受損神經(jīng)元內(nèi)Ala含量較假手術(shù)組明顯降低。TTC結(jié)果顯示,Ala干預(yù)使MCAO模型大鼠缺血面積減少(F=83.90,tLSD=3.41,P<0.05)。Western blot結(jié)果顯示,MCAO模型組大鼠腦組織中PKM2表達(dá)水平增高,與假手術(shù)組相比差異有顯著性(F=3.60,tLSD=5.10,P<0.05),Ala干預(yù)后腦組織中PKM2表達(dá)水平明顯下降(tLSD=6.20,P<0.05)。
結(jié)論? Ala可能通過抑制PKM2蛋白表達(dá)減輕腦缺血/再灌注損傷從而發(fā)揮神經(jīng)保護(hù)作用。
[關(guān)鍵詞]? 缺氧缺血,腦;丙氨酸;丙酮酸激酶;神經(jīng)保護(hù)藥
[中圖分類號]? R338.2;R743
[文獻(xiàn)標(biāo)志碼]? A
[文章編號]? 2096-5532(2024)01-0001-05
doi:10.11712/jms.2096-5532.2024.60.036
[開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]
[網(wǎng)絡(luò)出版]? https://link.cnki.net/urlid/37.1517.R.20240329.0927.001;2024-04-01? 12:06:17
Alanine exerts neuroprotective effects in cerebral ischemia/reperfusion injury through inhibition of PKM2
\ WANG Xiyuran, GAO Jingchen, Ge Chengyan, Wang Yitian, WAN Qi
\ (Institute of Neurodegeneration And Neurorehabilitation, Qingdao University,? Qingdao 266071, China)
\; [Abstract]\ Objective\ To investigate the neuroprotective role of alanine (Ala) in ischemic brain injury and the regulation of M2-type pyruvate kinase (PKM2) expression levels by Ala.
\ Methods\ Primary neurons were cultured in vitro and an oxygen-glucose deprivation/reperfusion (OGD/R) model was constructed. Neurons were randomly divided into the sham-operated group (Sham), oxygen-glucose deprivation/reperfusion-treated group (OGD/R), and post-OGD/R Ala intervention group (OGD/R+Ala). CCK-8 method was used to detect the effect of Ala intervention on neuronal survival rate. Western blot was used to detect the effect of Ala on PKM2 protein expression level in neurons of the OGD/R model. A middle cerebral artery embolization (MCAO) model was constructed in rats, and 36 SD rats were randomly divided into the sham-operated group (Sham), middle cerebral artery embolization group (MCAO), and post-MCAO Ala intervention group (MCAO+Ala), with 12 rats in each group. Immunofluorescence assay was used to detect the changes of Ala content in OGD/R injured neurons. The changes in the cerebral infarct area were observed after 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Western blot was used to detect the effect of Ala intervention on the expression level of PKM2 protein in ischemically injured brain tissues.
\ Results\ CCK-8 and Western blot showed significant differences in neuronal survival rate and PKM2 expression (F=86.88,20.83;P<0.05). Cell survival was significantly lower and PKM2 expression was higher in the OGD/R group compared with the Sham group (tLSD=4.65,10.95;P<0.05). Compared with OGD/R, OGD/R+Ala significantly increased neuronal survival and reduced PKM2 expression (tLSD=4.98,4.69;P<0.05). Immunofluorescence staining showed that Ala content in damaged neurons was significantly lower in the MCAO group compared with the Sham group. TTC showed that Ala intervention reduced the ischemic area in MCAO model rats (F=83.90,tLSD=3.41,P<0.05). Western blot showed that PKM2 expression levels were significantly increased in the brain tissue of the MCAO model rats compared with the sham-operated group (F=3.60,tLSD=5.10,P<0.05). PKM2 expression levels in brain tissue decreased significantly after Ala intervention (tLSD=6.20,P<0.05).
\ Conclusion\ Ala can reduce cerebral ischemia/reperfusion injury and thus exert neuroprotective effects by inhibiting PKM2 protein expression.
[Key words]\ hypoxia-ischemia, brain; alanine; pyruvate kinase; neuroprotective agents
缺血性腦卒中是一種高死亡率及高致殘率的疾病[1-2],主要由動脈栓塞、微血管病變或大血管病變引起,缺血性腦卒中引起的腦損傷導(dǎo)致腦內(nèi)低氧和葡萄糖缺乏,最終引起神經(jīng)功能障礙[3-5]。丙氨酸(Ala)是一種非必需氨基酸,對許多生物分子的合成至關(guān)重要。研究發(fā)現(xiàn),Ala 具有神經(jīng)保護(hù)作用[6],Ala 在腦卒中病人血清中含量降低[7],推測其在神經(jīng)元內(nèi)含量也可能降低并且與神經(jīng)元的死亡密切相關(guān)。丙酮酸激酶(PK)為糖酵解的關(guān)鍵酶之一,有4種不同的亞型[8],M2型PK(PKM2)是其中一種。研究表明,PKM2分布于腦組織中,PKM2敲除或抑制可保護(hù)缺血組織,因此推測其可能作為腦卒中后 Ala 發(fā)揮神經(jīng)保護(hù)作用的下游信號[9-14]。目前, Ala 在缺血性腦損傷中對 PKM2的作用及其機(jī)制尚不明確。本研究旨在探討 Ala 對缺血性腦損傷后神經(jīng)元的保護(hù)作用及其對 PKM2表達(dá)水平的調(diào)節(jié)作用,從而為缺血性腦卒中的治療提供新的思路。現(xiàn)將結(jié)果報(bào)告如下。
1? 材料與方法
1.1? 實(shí)驗(yàn)材料
1.1.1? 實(shí)驗(yàn)動物? SPF級,出生24 h內(nèi)SD胎鼠以及體質(zhì)量250 g健康成年雄性SD大鼠36只,均購自濟(jì)南朋悅實(shí)驗(yàn)動物繁育有限公司,飼養(yǎng)于青島大學(xué)醫(yī)學(xué)部實(shí)驗(yàn)動物中心。
1.1.2? 主要試劑? 抗PKM2兔單克隆抗體、抗β-actin鼠單克隆抗體、抗MAP2小鼠單克隆抗體均購自Cell Signaling Technology公司,抗Ala兔單克隆抗體(Abcam),L-丙氨酸(Solarbio),增強(qiáng)型CCK-8試劑盒(Bioss),原代神經(jīng)元培養(yǎng)相關(guān)試劑(Gibico),胎牛血清(四季青),2,3,5-氯化三苯基四氮唑(TTC)染料(Solarbio),Western blot相關(guān)試劑(Solarbio)。
1.2? 實(shí)驗(yàn)方法
1.2.1? 原代神經(jīng)元培養(yǎng)? 取出生24 h的SD胎鼠,用體積分?jǐn)?shù)0.75乙醇消毒后,將胎鼠頭剪下置于冰水混合的Hanks平衡液中,在立體顯微鏡下剝離胎鼠顱骨和腦膜,分離大腦皮質(zhì)并將其暫存于無血清DMEM培養(yǎng)液中,1 000 r/min離心5 min后棄上清,加入5 g/L胰酶于37 ℃下消化25 min,加入含血清的DMEM完全培養(yǎng)液終止消化,1 000 r/min離心5 min后棄上清,加入無血清Neurobasal Medium培養(yǎng)液(含體積分?jǐn)?shù)0.02 B-27 Supplement、0.01 gluta Max 100×、10 g/L青霉素-鏈霉素100×),將細(xì)胞重懸后細(xì)胞篩過濾,以3×108個/L密度接種于多聚賴氨酸包被的孔板中,次日全換液,此后每3 d半換液。
1.2.2? 氧-糖剝奪/再灌注(OGD/R)細(xì)胞模型制備及分組? 原代神經(jīng)元培養(yǎng)10 d后,將其隨機(jī)分為對照組(Sham組)、OGD/R處理組(OGD/R組)以及OGD/R后Ala干預(yù)組(OGD/R+Ala組)。用PBS輕輕沖洗3次后,OGD/R與OGD/R+Ala組加入無糖細(xì)胞外液置于37 ℃厭氧箱(內(nèi)含體積分?jǐn)?shù)0.01 O2+體積分?jǐn)?shù)0.94 N2+體積分?jǐn)?shù)0.05 CO2)中,Sham組則加入有糖細(xì)胞外液置于正常培養(yǎng)箱中。1.5 h后取出神經(jīng)元,Sham組和OGD/R組更換為無血清神經(jīng)元培養(yǎng)液,OGD/R+Ala組則更換為含10 μmol/L Ala的等體積無血清神經(jīng)元培養(yǎng)液。
1.2.3? CCK-8比色法檢測細(xì)胞存活率? 神經(jīng)元復(fù)氧24 h后每孔加入等量含體積分?jǐn)?shù)0.10 CCK-8溶液的無血清培養(yǎng)液,置于37 ℃培養(yǎng)箱中孵育3 h。用酶標(biāo)儀測定450 nm波長處的吸光度,計(jì)算細(xì)胞存活率。細(xì)胞存活率(%)=(實(shí)驗(yàn)孔吸光度-空白孔吸光度)/(對照孔吸光度-空白孔吸光度)×100%。
1.2.4? 免疫熒光染色? 用無菌PBS漂洗細(xì)胞爬片3次,40 g/L多聚甲醛固定10 min,再次用無菌PBS漂洗3次,每孔加入體積分?jǐn)?shù)0.03血清封閉液(含體積分?jǐn)?shù)0.025 Triton X-100)200 μL室溫封閉破膜1.5 h,加入一抗(1∶300)4 ℃孵育過夜,PBS漂洗3次后加入二抗(1∶1 000)室溫孵育2 h,再次用PBS漂洗3次,使用抗熒光猝滅封片劑封片后共聚焦顯微鏡下觀察。
1.2.5? 大鼠大腦中動脈栓塞(MCAO)模型制備及分組? 采用線栓法建立大鼠MCAO模型。大鼠在異氟烷氣體麻醉下仰臥位固定在手術(shù)臺上,備皮后常規(guī)消毒頸部皮膚,取頸部正中切口,暴露分離動脈
血管。結(jié)扎頸總動脈近心端和頸外動脈,將線栓經(jīng)頸外動脈切口處插入頸內(nèi)動脈至堵塞大腦中動脈開口處,扎緊動脈殘端,90 min后拔除線栓并縫合皮膚。24 h后觀察大鼠肢體活動,Longa評分1~3分者選為實(shí)驗(yàn)對象。采用隨機(jī)數(shù)字表法將SD大鼠分為假手術(shù)組(Sham組)、MCAO組以及MCAO后Ala干預(yù)組(MCAO+Ala組),每組6只。其中Sham組大鼠僅于頸外動脈處開口不進(jìn)行梗阻,MCAO+Ala組在拔栓時(shí)給予10 mg/kg的Ala靜脈注射,其余兩組注射等量生理鹽水。
1.2.6? TTC染色檢測梗死面積? MCAO 24 h后,大鼠經(jīng)異氟烷氣體麻醉,用生理鹽水進(jìn)行心臟灌注,分離腦組織切成2 mm厚切片。將腦片置于200 g/L TTC溶液中37 ℃避光孵育30 min,每隔10 min晃動1次。染色后正常腦組織呈紅色,梗死腦組織呈白色。用組織固定液浸泡24 h后按解剖結(jié)構(gòu)從前向后擺放腦片,用掃描儀采集圖像,Image J軟件定量檢測各組梗死面積。
1.2.7? Western blot檢測PKM2表達(dá)水平? 收集各組半暗帶區(qū)腦組織,制備神經(jīng)元樣本,經(jīng)裂解、研磨、離心后取上清,BCA 法檢測蛋白濃度,行SDS-PAGE 凝膠電泳,每孔蛋白上樣量10 μg。經(jīng)電泳(80 V)、轉(zhuǎn)膜(220 mA,90 min)后,50 g/L脫脂奶粉室溫封閉1.5 h,加入抗PKM2兔單克隆抗體(1∶2 000),4 ℃孵育過夜;加入二抗(1∶10 000)室溫孵育1 h,用 ECL 發(fā)光劑顯影,洗脫條帶后加入抗β-actin鼠單克隆抗體(1∶8 000),用上述方法孵育二抗及顯影。采用 Image J 軟件對條帶進(jìn)行半定量分析。
1.3? 統(tǒng)計(jì)學(xué)分析
應(yīng)用GraphPad Prism 9.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量資料以±s表示,兩組數(shù)據(jù)比較采用t檢驗(yàn);多組數(shù)據(jù)比較采用單因素方差分析(ANOVA),組間兩兩比較采用LSD-t檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2? 結(jié)? 果
2.1? Ala 處理對OGD/R后受損神經(jīng)元作用
CCK-8結(jié)果顯示,各組神經(jīng)元存活率比較差異有顯著性(F=86.88,P<0.05)。兩兩比較顯示,與Sham組相比,OGD/R組神經(jīng)元存活率降低(tLSD=10.95,P<0.05);與OGD/R組相比,OGD/R+Ala組神經(jīng)元存活率顯著增加(tLSD=4.98,P<0.05)。見表1。
2.2? Ala對OGD/R 損傷神經(jīng)元內(nèi)PKM2蛋白表達(dá)影響
Western blot 檢測顯示,各組神經(jīng)元 PKM2蛋白表達(dá)水平差異具有統(tǒng)計(jì)學(xué)意義(F=20.83,P<0.05)。兩兩比較顯示,OGD/R組PKM2蛋白表達(dá)較Sham組升高,OGD/R+Ala組PKM2蛋白表達(dá)較OGD/R組明顯下降,差異有顯著性(tLSD=4.65、4.69,P<0.05)。見圖1、表1。
2.3? 缺血性腦損傷后受損神經(jīng)元內(nèi)Ala含量變化
免疫熒光染色結(jié)果顯示,MCAO組大鼠受損神經(jīng)元內(nèi) Ala 含量較對照組明顯降低(圖2)。
2.4? Ala對MCAO大鼠腦梗死面積影響
TTC染色結(jié)果顯示,各組大鼠腦梗死面積比較差異有統(tǒng)計(jì)學(xué)意義(F=83.90,P<0.05)。兩兩比較顯示,MCAO組大鼠腦梗死面積較Sham組增加(tLSD=10.90,P<0.01),MCAO+Ala組大鼠腦梗死面積較MCAO組則明顯減小(tLSD=3.41,P<0.05)。見圖3。
2.5? Ala對缺血損傷腦組織中PKM2蛋白表達(dá)的影響
Western blot檢測結(jié)果顯示,各組腦組織缺血半暗帶組織PKM2蛋白表達(dá)比較差異有統(tǒng)計(jì)學(xué)意義(F=3.60,P<0.05),兩兩比較顯示,MCAO組PKM2蛋白表達(dá)水平較Sham組升高,MCAO+Ala組PKM2蛋白表達(dá)水平較MCAO組明顯下降,各組比較差異均有統(tǒng)計(jì)學(xué)意義(tLSD=5.10、6.20,P<0.05)。見圖4、表2。
神經(jīng)元標(biāo)記物Neun染色呈紅色,Ala呈綠色,DAPI呈藍(lán)色。
3? 討? 論
腦卒中是殘疾的主要原因,也是全球第二大死亡原因。其發(fā)病機(jī)制極其復(fù)雜,是細(xì)胞凋亡、興奮性毒性、氧化應(yīng)激和炎癥等病理生理過程相互作用的
結(jié)果[5,15]。Ala是一種非必需氨基酸,在神經(jīng)系統(tǒng)
中主要通過糖酵解途徑及其他代謝途徑產(chǎn)生。代謝
組學(xué)研究顯示,Ala在卒中病人血清中含量降低[6]。由于氨基酸具有多種生物學(xué)功能,因此,它們的變化可能反映了缺血性腦損傷的一些關(guān)鍵病理生理通路。近年來的研究表明,Ala可以通過增加神經(jīng)系統(tǒng)中腦源性神經(jīng)營養(yǎng)因子、神經(jīng)肽Y的表達(dá)并減少炎癥反應(yīng)從而發(fā)揮神經(jīng)保護(hù)作用[16-17]。但Ala在缺血性腦損傷中的作用及機(jī)制尚不清楚。本研究從在體實(shí)驗(yàn)及離體實(shí)驗(yàn)兩方面證實(shí)了Ala對缺血損傷腦組織的保護(hù)作用及其靶點(diǎn)。免疫熒光結(jié)果顯示,缺血性腦損傷發(fā)生后,受損神經(jīng)元中Ala含量顯著降低。本文應(yīng)用CCK-8方法檢測補(bǔ)充Ala是否具有神經(jīng)保護(hù)作用,結(jié)果顯示,在原代培養(yǎng)的神經(jīng)元內(nèi)補(bǔ)充Ala可以減少OGD/R導(dǎo)致的神經(jīng)元死亡。在體實(shí)驗(yàn)同樣支持上述結(jié)論,TTC染色結(jié)果表明,補(bǔ)充Ala可以減少M(fèi)CAO大鼠的腦梗死面積。
PKM2是一種在糖酵解中將磷酸烯醇式丙酮酸去磷酸化為丙酮酸的酶。最近的一項(xiàng)研究表明,PKM2敲除小鼠在胚胎和出生后階段沒有表現(xiàn)出任何明顯的發(fā)育異常[10],PKM2基因敲除小鼠失
去PKM2可以通過維持線粒體生物生成來保護(hù)缺
血組織[11]。有研究表明,Ala是PKM2四聚體的變
構(gòu)激活劑[12-13];然而另有研究指出,PKM2的PK酶活性可被Ala抑制[14]。目前尚不清楚在腦缺血/再灌注損傷模型中Ala是否以及如何對PKM2進(jìn)行調(diào)控。為了進(jìn)一步探究Ala發(fā)揮神經(jīng)保護(hù)作用的分子機(jī)制,本文采用Western blot方法檢測了各組大鼠神經(jīng)元以及腦組織中PKM2的表達(dá)水平,結(jié)果顯示,缺血性腦損傷發(fā)生后,神經(jīng)元內(nèi)PKM2的表達(dá)水平顯著升高,導(dǎo)致腦缺血面積增大、原代神經(jīng)元存活率下降等一系列損傷;Ala干預(yù)使缺血面積減少,PKM2表達(dá)水平明顯下降,細(xì)胞存活率顯著增加。提示Ala處理可以通過抑制PKM2的表達(dá)水平發(fā)揮神經(jīng)保護(hù)作用,但其下游的具體作用機(jī)制還需進(jìn)一步研究。
綜上所述,Ala可通過抑制PKM2蛋白表達(dá)減少M(fèi)CAO模型大鼠的腦梗死面積以及OGD/R損傷神經(jīng)元的死亡,發(fā)揮神經(jīng)保護(hù)作用。
[參考文獻(xiàn)]
[1]DONKOR E S. Stroke in the 21st century: a snapshot of the burden, epidemiology, and quality of life[J].? Stroke Research and Treatment, 2018,2018:3238165.
[2]任近陽,姚旭進(jìn),孫江東,等. PTEN抑制劑Bpv(HOpic)對大鼠缺血腦損傷的作用及機(jī)制[J]. 青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2022,58(5):633-638.
[3]HAN Z Y, LI L, WANG L, et al. Alpha-7 nicotinic acetylcholine receptor agonist treatment reduces neuroinflammation, oxidative stress, and brain injury in mice with ischemic stroke and bone fracture[J].? Journal of Neurochemistry, 2014,131(4):498-508.
[4]MALIK R, DICHGANS M. Challenges and opportunities in stroke genetics[J].? Cardiovascular Research, 2018,114(9):1226-1240.
[5]GLKE E, GELDERBLOM M, MAGNUS T. Danger signals in stroke and their role on microglia activation after ischemia[J].? Therapeutic Advances in Neurological Disorders, 2018,11:1756286418774254.
[6]FURST T, MASSARO A, MILLER C, et al. β-Alanine supplementation increased physical performance and improved executive function following endurance exercise in middle aged individuals[J].? Journal of the International Society of Sports Nutrition, 2018,15(1):32.
[7]WANG D, KONG J, WU J Y, et al. GC-MS-based metabolomics identifies an amino acid signature of acute ischemic stroke[J].? Neuroscience Letters, 2017,642:7-13.
[8]CHRISTOFK H R, VANDER HEIDEN M G, WU N, et al. Pyruvate kinase M2 is a phosphotyrosine-binding protein[J].? Nature, 2008,452(7184):181-186.
[9]ISRAELSEN W J, DAYTON T L, DAVIDSON S M, et al. PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells[J].? Cell, 2013,155(2):397-409.
[10]STANLEY-HASNAIN S, HAUCK L, GROTHE D, et al. p53 and Mdm2 act synergistically to maintain cardiac homeostasis and mediate cardiomyocyte cell cycle arrest through a network of microRNAs[J].? Cell Cycle, 2017,16(17):1585-1600.
[11]HAUCK L, DADSON K, CHAUHAN S, et al. Inhibiting the Pkm2/b-catenin axis drives in vivo replication of adult cardiomyocytes following experimental MI[J].? Cell Death and Differentiation, 2021,28(4):1398-1417.
[12]VANDER HEIDEN M G, CANTLEY L C, THOMPSON C B. Understanding the Warburg effect: the metabolic requirements of cell proliferation[J].? Science, 2009,324(5930):1029-1033.
[13]AKHTAR K, GUPTA V, KOUL A, et al. Differential behavior of missense mutations in the intersubunit contact domain of the human pyruvate kinase M2 isozyme[J].? The Journal of Biological Chemistry, 2009,284(18):11971-11981.
[14]ZHANG Z, DENG X Y, LIU Y D, et al. PKM2, function and expression and regulation[J].? Cell & Bioscience, 2019,9:52.
[15]GRANGER D N, KVIETYS P R. Reperfusion injury and reactive oxygen species: the evolution of a concept[J].? Redox Bio-
logy, 2015,6:524-551.
[16]BRENCHER L, VERHAEGH R, KIRSCH M. Attenuation of intestinal ischemia-reperfusion- injury by beta-alanine: a potentially glycine-receptor mediated effect [J].? Journal of Surgical Research, 2017,211:233-41.
[17]HOFFMAN J R, ZUCKERMAN A, RAM O, et al. Beha-
vioral and inflammatory response in animals exposed to a low-pressure blast wave and supplemented with β-alanine [J].? Amino Acids, 2017,49(5):871-86.
(本文編輯? 黃建鄉(xiāng))