







摘要:針對實(shí)數(shù)型數(shù)據(jù)的信息量化問題,引人相對概念和絕對基數(shù)構(gòu)建了廣義多粒度雙量化鄰域粗糙集模型. 首先,通過1型和11型廣義多粒度上、下鄰域特征支撐函數(shù)構(gòu)建兩類廣義多粒度上、下鄰域近似算子并討論其 性質(zhì);其次,討論了兩種廣義多粒度鄰域粗糙集的關(guān)系;最后,通過傳染病案例實(shí)證分析了模型的實(shí)用性和有效 性.
關(guān)鍵詞:廣義多粒度粗糙集;雙量化;鄰域粗糙集;傳染病
中圖分類號:(0236
文獻(xiàn)標(biāo)志碼:A
Generalized Multi-granularity
Double-quantization Neighborhood Rough Set
SUN Wen-xin
(Chongqing Water Resources and Electric Engineering College, Yongchuan, Chongqing 402160, China)
Abstract: The generalized multi-granularity double-quantization neighborhood rough set model is constructed by introducing relative concept and absolute cardinality, aiming at the problem of information quantization of real data. Firstly, two kinds of generalized multi-granularity upper and lower neighborhood approximation operators are constructed by type I and type II generalized multi-granularity upper and lower neighborhood characteristic support functions, secondly, the relationship between two kinds of generalized multi-granularity neighborhood rough sets is discussed, finally, the practicability and validity of the model are analyzed by the case of infectious diseases.
Key words:generalized multi-granularity; double quantization; neighborhood rough set; infectious disease
隨著數(shù)字信息化中大數(shù)據(jù)時代的到來,高維、 動態(tài)、復(fù)雜數(shù)據(jù)出現(xiàn)得越來越頻繁,如何從這些復(fù) 雜、海量的數(shù)據(jù)中提取有效的信息是當(dāng)前智能社 會面臨的卡脖子問題之一.為了解決這個問題,已 有很多學(xué)者運(yùn)用粗糙集[1]、粒計算[2]等方法從各 個方面進(jìn)行了探究,并取得了顯著的成效.
隨著粗糙集和粒計算的發(fā)展,一些研究者提 出了多粒度的思想[3],隨后在多粒度的基礎(chǔ)上推 廣,提出了廣義多粒度粗糙集[4,這些研究不僅將粗糙集和粒計算進(jìn)行了有效結(jié)合,也拓寬了粗糙 集和粒計算的研究領(lǐng)域.
鑒于粗糙集在實(shí)際應(yīng)用中的需要,有些學(xué)者 提出了概率粗糙集[5]和程度粗糙集[6],又介于概 率粗糙集的相對量化和程度粗糙集的絕對量化不 公問題,提出了雙量化粗糙集[7],該模型從很大程 度上改善了量化的偏差問題.又因?qū)嶋H問題的需 要,2018年王和錢等[8]提出了局部鄰域多粒度粗 糙集,解決了實(shí)數(shù)型數(shù)據(jù)的知識獲取和不確定信息挖掘問題.此外,學(xué)者們針對不同類型數(shù)據(jù)信息 挖掘和量化問題,構(gòu)建了各種雙量化決策粗糙集 模型,解決了特殊性數(shù)據(jù)的信息提取問題[9-11].
本文針對實(shí)數(shù)型數(shù)據(jù)的量化問題,通過改進(jìn)特 征支撐函數(shù),構(gòu)建廣義多粒度雙量化鄰域粗糙集.
5結(jié)語
實(shí)數(shù)型數(shù)據(jù)的知識獲取和信息量化是當(dāng)前數(shù) 據(jù)處理的熱門問題之一.本文針對實(shí)數(shù)型數(shù)據(jù)的 量化問題,結(jié)合廣義多粒度和雙量化思想,用粗糙集數(shù)學(xué)工具構(gòu)建了兩種類型的廣義多粒度雙量化 鄰域粗糙集模型.模型的構(gòu)建從絕對量化和相對 量化兩個角度分析了實(shí)數(shù)型數(shù)據(jù)的量化處理問 題,為實(shí)數(shù)型數(shù)據(jù)的知識獲取提供了理論依據(jù).
參考文獻(xiàn):
[1] PAWLAK Z. Rough sets[J].Computing and Information Science,1982,11(5):341-356.
[2] ZADEH L A.Fuzzy Sets and Information Granularity[M]. Amsterdam: North-Holland Publishing, 1979: 433-448.
[3] QIAN Y H,LIANG J Y,YAO Y Y,et al. MGRS am-ulti-granulation rough set [J]. Information Sciences,2010,180(6):949-970.
[4] XU W H,ZHANG X T,WANG Q R. A generalized multi-granulation rough set approach [C]//Rough Sets and Knowledge Technology,LNCS 8171,Berlin: Springer-Verlag,2012:681-689.
[5] WONG S K M,ZIARKO W.Comparison of the probabilistic approximate classification and the fuzzy set model[J]. Fuzzy Sets and Systems,1987,21:357-362.
[6]張賢勇,謝壽才,莫智文.程度粗糙集[J].四川師范大學(xué)學(xué)報(自然科學(xué)版),2010,33(1):12-16.
[7] LI W T,XU W H. Double-quantitatice decision-theoretic rough set [J]. Information Sciences, 2015, 316: 54-67.
[8] WANG Q,QIAN Y,LIANG X,et al. Local neighborhood rough set[J]. Knowledge-Based Systems,2018,153:53-64.
[9]湯悅,李文濤,徐偉華,等.直覺模糊序信息系統(tǒng)中雙 量化粗糙集模型[J].模糊系統(tǒng)與數(shù)學(xué),2021,35(6):87-100.
[10]劉麗君.基于格值信息系統(tǒng)的雙量化決策粗糙集理 論[D].哈爾濱:哈爾濱工業(yè)大學(xué),2020.
[11] LI W T,LI Z,ZHU C L,et al. Neighborhood-based set-valued double-quantitative[J].Chinese Quarterly Journal of Mathenatics,2021,36(2):122-140.
[12] SUN L ,WANG L ,DING W,et al. Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets [J]. IEEE Transactions on Fuzzy Sys-tems,2021,29(1):19-33.
[13]郭艷婷.多粒度雙量化決策粗糙集及其屬性約簡研究[D].重慶:重慶理工大學(xué),2017.
[14]苑克花.模糊數(shù)據(jù)的特征選擇與動態(tài)知識更新方法 研究[D].重慶:西南大學(xué),2022.
蘭州文理學(xué)院學(xué)報(自然科學(xué)版)2024年3期