999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

食用菌多糖結構與功能研究進展

2024-06-03 00:00:00馮翠萍喬瑤瑤李佳欣梁國棟云少君曹謹玲程艷芬程菲兒常明昌孟俊龍劉靖宇
山西農業科學 2024年2期
關鍵詞:小鼠

摘 要:食用菌具有較高的營養價值和功能價值,多糖作為食用菌最主要的活性成分之一,不僅能夠為機體供給 能量,而且可以參與生物合成反應及細胞的各項生命活動。大多數食用菌多糖是 α-葡聚糖、β-葡聚糖、混合 α, β-葡聚糖,以及由果糖、半乳糖、甘露糖等多種單糖組成的雜多糖,其中,β-葡聚糖是食用菌中最具生物活性的多 糖。食用菌多糖具有多種生物活性。為了為食用菌多糖在功能性食品中的應用提供理論基礎,綜述了食用菌多 糖的結構及其抗氧化、抗衰老、調節免疫、抗炎、抗腫瘤、降血糖、降血脂、抗病毒、抗輻射、抗突變、抑菌、抗疲勞、 抗凝血等方面的功能及機理,并對其進行了展望。

關 鍵 詞 :食用菌;多糖;結構;生理功能

中 圖 分 類 號 :S646 文 獻 標 識 碼 :A 文 章 編 號 :1002?2481(2024)02?0128?17

食用菌是可供食用的大型真菌,通稱為蘑菇, 多屬擔子菌亞門,少數屬子囊菌亞門,具有獨特的 香氣和口感,是被公認的功能性食品。我國是最早 栽培和利用食用菌的國家,食用菌資源十分豐富[1] , 有很多關于食用菌的記載,如《呂氏春秋·本味篇》 中將香菇的美味描述為“味之美者,越駱之菌”;《齊 民要術》、《唐本草注》、《種芝經》、《四時纂要》中均 記載了一些食用菌的栽培方法;《菌譜》、《廣菌譜》、 《吳蕈譜》、《神農本草經》記述了許多種食用菌的形 態及其生長特征。

多糖被認為是地球上形成的第一種生物聚合 物,由糖苷鍵聚合而成,結構復雜且分子量龐大,來 源于植物、微生物細胞壁和動物細胞膜,在生物體 中發揮著信號傳導、免疫調控和物質運輸等作用, 影響機體物質代謝和能量代謝,維持人體健康[2] 。 食用菌中含有豐富的多糖,可從子實體、菌絲體、菌 糠或發酵液中分離,由醛基和酮基通過糖苷鍵連 接,是具有天然生物活性的高分子聚合物[3] 。常見 的食用菌多糖有香菇多糖、靈芝多糖、杏鮑菇多糖、 姬松茸多糖、金針菇多糖、猴頭菇多糖、蛹蟲草多糖等,國內外學者通過大量研究,發現食用菌多糖具 有抗氧化[4] 、抗腫瘤[5] 、抗病毒[6] 、抗菌[7] 、抗炎[8] 、調節 免疫[9] 、降血糖[10] 、降血脂[11] 等生理功能。不同食用 菌來源的多糖結構和組成不同[12] ,作為一種生物反 應調節劑,食用菌多糖的生物活性與其結構密切相 關,如單糖組成、糖苷鍵類型、分子質量不同,生物 活性和作用機制會有一定的差異。

現代社會,人們對功能性食品更加關注,食用 菌多糖作為原料,有其不可取代的價值。筆者對常 見的食用菌多糖的結構、功能及其作用機理進行綜 述 ,旨 在 為 其 在 功 能 性 食 品 中 的 應 用 提 供 理 論 基礎。

1 食用菌多糖的結構特征

大多數食用菌多糖是 α-葡聚糖、β-葡聚糖或者 混合 α,β-葡聚糖,以及由果糖、半乳糖、甘露糖等多 種單糖組成的雜多糖。目前已報道的葡聚糖主要 是(1→3)-β-D-葡聚糖、(1→6)-β-D-葡聚糖、混合 (1→3)-α-D-葡聚糖和(1→6)-β-D-葡聚糖,其中, β-葡聚糖是食用菌中最廣泛存在的功能多糖,其結 構多為具有分支的 β-(1→3)-D-葡聚糖。不同食 用菌多糖結構不完全相同,不同栽培方法和提取方 法也會影響食用菌多糖的結構,目前關于食用菌多 糖的結構特征見表 1。

2 食用菌多糖功能及其作用機理

2.1 食用菌多糖的抗氧化及抗衰老活性

氧化與衰老是人體新陳代謝的結果,隨著年齡 的增長,人體內累積大量自由基,導致炎癥介質產 生,從而引發機體衰老、自身免疫性疾病、心血管疾 病和神經退行性疾病等與氧化應激相關的疾病。 機 體 的 抗 氧 化 防 御 系 統 主 要 是 提 高 過 氧 化 氫 酶 (CAT)、谷胱甘肽過氧化物酶(GSH-Px)和超氧化 物歧化酶(SOD)活性,進而改善機體氧化應激反 應。因此,尋找有效清除自由基和提高抗氧化酶的 活性物質來抵抗與氧化應激相關的疾病是食品研究的趨勢之一。天然抗氧化劑主要從植物和菌物 源材料中獲得,其中食用菌多糖被視為天然抗氧化 劑,因其表面具有豐富的抗氧化活性基團,可通過 清除自由基和提高抗氧化酶活性來發揮抗氧化功 能,以延緩機體內的各種生物膜被氧化,保護細胞 免受氧化損傷,達到抗衰老和阻止脂質過氧化反應 發生的作用[51] 。不同來源多糖由于其組成、摩爾質 量比以及分子質量等不同對抗氧化活力產生的影 響也不同。相關研究表明,銀耳多糖具有清除超氧 陰 離 子 自 由 基(O2 - ·)和 羥 基 自 由 基(HO·)的 作 用[52] ;蛹蟲草多糖對 HO·、O2 - ·、ABTS+ ·和 DPPH· 均 有 良 好 的 清 除 作 用[53] ;金 針 菇 多 糖 具 有 清 除 DPPH·、HO·和 O2 - ·的能力[54] 。本課題組前期研究 發現,繡球菌多糖對 DPPH·、HO·和 O2 - ·的清除率 可達 85.63%、85.36% 和 40.86%,并且具備一定的 還 原 力[55] 。 靈 芝 多 糖 GLPL1(5.2 ku)和 GLPL2 (15.4 ku)對 HO·的 清 除 率 分 別 為 78.3% 和 53.6%,GLPL1 清除自由基和螯合 Fe2+ 的能力更 強,認為低分子量多糖可能會提供更多的活性羥 基[56] 。平菇多糖對 DPPH·和 ABTS+ ·清除率得到 類似結論,低分子量多糖 POPH-2(398 ku)比高分 子量多糖 POPH-1(512 ku)清除率高 20.6%[57] 。但 并不是所有的結論都是如此,比如阿魏菇多糖由 2 種多糖組分 PFLP1 和 PFLP2 構成,分子質量分 別為 9.9、10.3 ku,組成為 L-鼠李糖、D-半乳糖、D- 葡萄糖和 D-甘露糖(1∶3.64∶18.6∶1.54)和 L-鼠李 糖、D-葡萄糖、D-半乳糖、D-木糖和 D-甘露糖(1∶ 6.76∶4.28∶1.08∶0.65)。PFLP1 具有比較高的清除 DPPH·和 O2 - ·的活性,螯合 Fe2+ 的能力則較低;而 PFLP2對HO·、DPPH·和ABTS+ ·清除活性較強[58] 。

羊肚菌子實體雜多糖對 HO·、DPPH·和 O2 - ·均 有清除作用,并且可以降低丙二醛含量,提高 SOD、 CAT 和 GSH-Px 水平,保護斑馬魚胚胎免受氧化 損傷[59] ;香菇多糖可提高脂多糖(LPS)誘導的牛乳 腺上皮細胞 SOD和總抗氧化能力(T-AOC)活性[60] ; 杏鮑菇多糖可有效提高血液中 SOD、GSH-Px 和 CAT3 種主要抗氧化酶的活性[61] ,提高腦、肝、腎組 織中 GSH-Px、SOD 和 T-AOC 酶活性,降低 MDA 含量[62] ;黑木耳多糖可降低小鼠血清 MDA 水平,提 高 肝 臟 和 海 馬 的 SOD、CAT、GSH-Px 以 及 TAOC 能 力[63] ;樺 褐 孔 菌 多 糖 可 顯 著 降 低 MDA 含 量,抑制脂質過氧化[64] ;靈芝多糖作用于胃癌大鼠, 血清和胃組織 SOD、CAT、GSH-Px 水平均呈劑量 依賴性提高[65] 。

另有報道,復合多糖的抗氧化活性比單一多糖 更好。如大球蓋菇、金針菇、香菇多糖復配后,清除 DPPH·和 HO·的能力和還原力均優于單一品種的 多糖[66] 。猴頭菇、杏鮑菇、香菇、平菇 4 種菌絲多糖 復配后,清除 DPPH·能力和還原力均高于活性最 強的猴頭菇多糖,且復配比例不同活性不同[67] 。香 菇、黑木耳、灰樹花、姬松茸和蛹蟲草等 5 種食用菌 多糖復合對 O2 - ·和 HO·的清除率比 5 種單一多糖 均高,認為復配后產生了協同增效的作用[68] 。

JING 等[69] 從茶樹菇菌絲體中提取了 2 種多糖, 并對半乳糖(D-Gal)誘導衰老小鼠的抗氧化活性 和抗衰老活性進行研究,表明茶樹菇多糖能較好地 提高肝臟 SOD、CAT、GSH-Px 和 T-AOC 活性,抑 制肝臟過氧化脂(LPO)和 MDA 含量,改善低密度 脂 蛋 白 膽 固 醇(LDL-C)、高 密 度 脂 蛋 白 膽 固 醇 (HDL-C)、LDL-C/HDL-C、甘油三酯(TG)和總 膽固醇(TC)水平。此外,羥脯氨酸(HYP)檢測結 果表明,經茶樹菇多糖干預后,衰老小鼠的皮膚膠 原蛋白可以得到一定維持。LI 等[70] 研究表明,雙孢 蘑菇子實體多糖可通過提高血清酶活性、生化水 平 、脂 質 含 量 和 抗 氧 化 活 性 保 護 肝 臟 和 腎 臟 。

DING 等[71] 研究認為,雙孢菇多糖可提高人胚胎肺 成 纖 維 細 胞(HELF)的 細 胞 活 力 ,減 少 活 性 氧 (ROS)的產生,抑制叔丁基過氧化氫(t-BHP)誘導 的氧化損傷,提高小鼠肝臟和血清 SOD 和 CAT 活 性,可作為一種有效的膳食補充劑,用于減緩衰老 和預防與年齡相關的疾病。

2.2 食用菌多糖的免疫調節及抗炎活性

免疫調控是機體免疫系統在免疫應答過程中 所做出的生理性反饋,通過調控免疫細胞與受體分 子之間的協同或拮抗作用,使免疫細胞處于活化或 抑制狀態,或者調控免疫系統與其他系統之間的相 互作用,保證機體免疫功能的穩定。炎癥是機體組 織受損時所發生的一系列保護性應答,是機體穩態 維持的調控手段之一,適度的炎癥對機體有益,但 有時候炎癥也會影響機體的正常代謝過程,對人體 自身組織進行攻擊,發生組織炎癥,導致免疫系統 異常,人體免疫力下降[72] 。當機體免疫功能低下 時,會使機體反復感染病原微生物,導致腫瘤細胞 大量繁殖,癌癥發病率升高。

近年來,食用菌多糖的免疫調節活性受到了廣 泛關注,其免疫調節及抗炎機制詳見表 2。猴頭菇 多糖、香菇多糖、杏鮑菇多糖等均可以通過多個途 徑作用于免疫系統,如改善臟器指數,刺激機體各種免疫活性細胞的分化和增殖、促進各種受體分子 的 表 達 及 抗 體 形 成 等 ,通 過 TLR4/JNK 和 Akt/ NF-κB、NKG2D 及其下游 DAP10/PI3K/ERK 等信 號通路提高或促進 NK 細胞和巨噬細胞活性。免 疫器官和組織作為機體免疫細胞分化、發育并發揮 免疫作用的區域,在機體免疫過程中居首要地位。 免疫細胞主要組成有淋巴細胞、造血干細胞和抗原 提呈細胞等,它們相互協調作用,共同參與機體的 固有免疫和適應性免疫。活化的 NK 細胞通過分 泌 IFN-γ、TNF-α 等細胞因子發揮免疫調節作用。 巨噬細胞能夠通過細胞因子的分泌發揮免疫調節 功能,參與機體炎癥反應,殺傷清除病原體,有效防 御由內源性或外源性病原體侵害而引起的組織炎 癥反應和損傷,成為機體防御病原微生物感染的第 一道防線。食用菌多糖的抗炎作用主要是通過抑 制趨化因子與粘附因子的表達、抑制關鍵酶的活性 和調節細胞因子的產生來實現,還可以通過刺激 T 細胞增殖、激活巨噬細胞來提高免疫功能和抗感染 能力。

2.3 食用菌多糖的抗腫瘤活性

隨著我國老齡化人口逐漸增加,工業化和城鎮 化進程不斷加快,以及慢性感染、不健康生活方式 等危險因素的累加,我國惡性腫瘤發病、死亡人數 持續上升。人體內都有原癌基因與抑癌基因,其中 原癌基因促進細胞分裂增殖,抑癌基因能抑制細胞 生長增殖,并且控制細胞分化,相互制約,維持細胞 分裂增殖的動態平衡。當抑癌基因因某些誘因,發 生突變、缺失或失活時,可引起細胞惡性轉化,導致 癌細胞的產生。目前,許多食用菌多糖已被證實具 有抗癌作用[111] 。研究發現,香菇多糖對鼠肝癌細胞 H22、鼠 肉 瘤 細 胞 S180、人 肝 癌 細 胞 HepG2 和 SMMC-7721、人胃癌細胞 MKN45、人紅白血病細 胞 K562、人 乳 腺 癌 細 胞 MCF-7 和 人 結 腸 癌 細 胞 HT-29 具有明顯體外抑制增殖作用,表明香菇多糖 發揮了非免疫途徑的體外直接抗腫瘤活性[112] 。食 用菌多糖可黏附在細胞表面,通過受體激活 T 淋巴 細胞、B 淋巴細胞、巨噬細胞(MΦ)、自然殺傷細胞 (NK)和樹突狀細胞(DC)等免疫細胞,還可以促進 白細胞介素-1(IL-1)、白細胞介素-2(IL-2)、腫瘤 壞死因子(TNF-α)和干擾素-γ(IFN-γ)等細胞因 子的表達。食用菌多糖的抗腫瘤機制見表 3,可通 過抑制癌細胞增殖、調節細胞因子水平、減緩腫瘤 細胞入侵、黏附和轉移以及調控細胞凋亡等多種途 徑抑制腫瘤[113] 。蛹蟲草多糖、靈芝多糖、平菇多糖 等均可以抑制部分癌細胞的增殖,降低癌細胞遷 移速率。香菇多糖可調節 p53、p-ERK1/2、MDM2 和 TERT 表達;蛹蟲草多糖可改善 SMMC-7721、 BGC-823 和 MCF-7 表達等。此外,食用菌多糖通 過抑制細胞周期蛋白的產生,調節死亡受體以及促 凋亡因子與抗凋亡因子比值,導致細胞周期停滯, 誘導細胞凋亡。

2.4 食用菌多糖的降血糖活性

目前,糖尿病以高患病率和低治療率已經成為 人類三大致死疾病之一,其死亡率僅次于心腦血管 疾病和癌癥。目前,常用降糖藥普遍具有血糖降低 受控性差,長期服用易引發低血糖、嘔吐和腹瀉等不 良反應,因此,其應用也受到限制。食用菌多糖表現 出優異的降血糖活性,可以通過調節相關酶活性,減 輕氧化應激反應,改善腸道菌群代謝,促進胰島素分 泌或釋放,增加胰島素敏感性,改善胰島素抵抗及糖 代謝等來達到降血糖的目的。

梭柄松苞菇多糖能夠抑制 α-葡糖苷酶活性,減 緩葡萄糖的轉化和吸收,降低餐后血糖水平[128] 。LI 等[129] 從紅菇中提取的 2 種水溶性多糖可抑制 α-葡 萄糖苷酶和 α-淀粉酶活性,顯著增強其抗糖活性。 靈芝雜多糖可顯著降低高脂飲食(HFD)和鏈脲佐 菌素(STZ)誘導的糖尿病小鼠的血糖,修復胰島細 胞,增加胰島素分泌,促進肝糖原的合成和儲存,提 高抗氧化酶活性和胰島素抵抗,降低糖尿病小鼠血 清胰島素抵抗指數(HOMA-IR),同時可以改善腸 道 菌 群 比 例 ,減 少 內 毒 素 進 入 腸 道 ,緩 解 炎 癥 反 應[130] 。CHEN 等[131] 從灰樹花子實體中獲得了具有 降血糖活性的灰樹花多糖,主要是通過提高小鼠肝 臟中胰島素受體的蛋白水平,促進機體對葡萄糖的 吸收,修復胰島素信號傳導途經,從而修復受損的 胰島細胞,緩解胰島素抵抗。PI3K/Akt 胰島素信 號通路在胰島素抵抗的發生發展中起關鍵作用,與 糖代謝有關[132] 。AKT 調節葡萄糖和脂質代謝,主 要在胰島素響應組織中表達活化的 AKT2,促進葡 萄糖轉運蛋白 4(GLUT4)的翻譯。黃菇多糖能夠 有效抑制 α-葡萄糖苷酶,并通過 PI3K/Akt 通路調 控 HepG2-IR 細胞的胰島素抵抗[133] 。樺褐孔菌多 糖可通過提高高脂飲食和 STZ 誘導的 2 型糖尿病 小 鼠 肝 臟 的 抗 氧 化 活 性 ,顯 著 上 調 PI3K-p85、pAkt(ser473)、GLUT4 蛋白表達,從而降低空腹血糖,改善胰島素抵抗[134] 。

2.5 食用菌多糖的降血脂活性

高脂血癥是由于脂肪的代謝異常,血漿中脂質 含量過高引起的,主要表現為高密度脂蛋白水平過 低、甘油三酯(TG)水平和血清膽固醇(TC)過高 等。高脂血癥作為一種慢性疾病,能直接導致動脈 粥樣硬化、冠狀動脈粥樣硬化等疾病,嚴重威脅人 類的健康。食用菌中的 β-葡聚糖可發酵性和在人 體腸道中形成黏性溶液的特性使其在降血脂方面起 著至關重要的作用[135] 。食用菌多糖通過調整低密 度脂蛋白膽固醇(LDL-C)和高密度脂蛋白膽固醇 (HDL-C)比例、抑制內源性膽固醇的合成、促進膽 固醇逆向轉運、提高磷脂膽固醇酞基轉移酶的活性、 促進 TG 分解、調控脂代謝相關因子、調節腸道菌群 以及減輕氧化應激等多種機制發揮降血脂作用[136] 。

杏鮑菇多糖可顯著改善 STZ 誘導的糖尿病小 鼠 TC、TG、LDL-C 和極低密度脂蛋白(VLDL-C) 的升高和 HDL-C 的降低[137] ,改變高脂模型小鼠腸 道中微生物群落結構,增加膽汁酸的分泌和脂類的 排泄,達到抗肥胖和降低膽固醇的作用[138] 。羧甲基 化羊肚菌多糖可通過下調高膽固醇血癥大鼠的肝 臟 3-羥基-3-甲基戊二酰輔酶 α 還原酶,上調膽固 醇-7α-羥基化酶發揮其降膽固醇能力[139] 。蛹蟲草 多糖可降低血脂和肝臟脂肪水平,恢復高脂乳劑引 起的脂代謝紊亂[140] 。此外,蛹蟲草多糖還可以逆轉 高脂飲食所致的腸道微生物群失調,改變代謝物水 平,可作為一種潛在的益生元制劑[141] 。山西農業大 學食品科學與工程學院食用菌科技創新團隊前期 對姬松茸多糖、猴頭菌多糖和廣葉繡球菌多糖的降 膽固醇機制進行了研究,結果表明,姬松茸多糖可 通過降低小鼠血清 TG 和 TC 含量,增加 GLUT4、 PI3K、AKT1 和 AKT2 基因表達量,緩解脂代謝紊 亂[142] ;珊瑚狀猴頭菌多糖可降低大鼠 TC 和 LDLC 水平,增加 HDL-C 水平,降低 HMG-CoA 還原酶 基因表達量,增加 LDL 受體(LDL-R)、膽汁酸合成 限速酶(CYP7α-1)基因表達量,調節高膽固醇大鼠 的血脂水平[143] ;廣葉繡球菌多糖能改善大鼠腸道形 態 結 構 和 生 理 指 標 ,降 低 HMGCR、NPC1L1、 ACAT2、MTP、ASBT 和 IBABP mRNA 或蛋白表 達,增加 ABCG8 mRNA 表達,提高有益菌群相對 豐度和短鏈脂肪酸濃度,調節腸道膽固醇代謝[144] 。 此外,GC-MS 代謝組學技術分析結果顯示,大鼠血 清中氨基酸類代謝物質發生明顯改變,繡球菌多糖 可回調部分氨基酸水平,降低葡萄糖和膽固醇水 平,進一步推測可能是通過調節谷氨酸與谷氨酰胺 代謝起到降血脂作用[145] 。

2.6 食用菌多糖的抗病毒活性

食用菌多糖及其衍生物對病原菌和病毒表現 出很強的抗生素特性,臨床試驗研究證明,真菌多 糖對流感病毒、肝炎病毒、單純孢疹病毒等多種病 毒有一定的抵抗和抑制作用[146] 。食用菌多糖的抗 病毒作用主要是通過激活或提高網狀內皮細胞、巨 噬細胞的吞噬能力,以及通過免疫機制調節提高宿 主的免疫功能,從而發揮抗病毒作用[147] 。

香菇多糖對大腸桿菌、枯草芽孢桿菌有明顯的 抑制作用[148] ,可以抑制乙肝病毒 DNA 的復制和病 毒受體細胞的增殖,降低抗凋亡相關蛋白(STAT 3, p-STAT 3 and survivin)的表達[149] 。ZHANG 等[150] 從金針菇中提取了一種新的水溶性多糖 FVP1,分 子 質 量 為 54.78 ku,由 甘 露 糖(7.74%)、葡 萄 糖 (70.41%)和半乳糖(16.38%)組成,通過降低乙型 肝炎表面抗原(HBsAg)、乙型肝炎 e 抗原(HBeAg) 和乙型肝炎病毒(HBV)DNA 復制的表達,表現出 顯著的乙型肝炎表面抗體活性。猴頭菇多糖可調 節番鴨呼腸孤病毒(MDRV)感染誘導 RAW 264.7 細胞 TLR3 信號轉導通路活化,抑制 TLR3 信號轉 導通路下游產物白細胞介素-1β(IL-1β)、白細胞介 素-10(IL-10)、IL-6 和 TNF-α 的過度表達,上調干 擾素-β(IFN-β)的表達,從而抑制 MDRV 在 RAW 264.7 細胞中的復制[151] 。樺樹茸多糖、木質素衍生 物及提取物具有較強的抗病毒作用,可以抑制貓杯 狀病毒、貓皰疹病毒 1、貓流感病毒、貓傳染性腹膜 炎病毒和貓泛白細胞減少癥病毒的增殖[152] 。

2.7 食用菌多糖的抗輻射抗突變活性

如果身體長期暴露在電離輻射下,可能會對正 常組織器官及人體各系統造成嚴重損害,如造血系 統、神經系統、肺組織等,從而導致疾病的發生[153] 。 食用菌多糖具有潛在的輻射防護活性,主要是通過 清除自由基,增強免疫力,發揮免疫調節作用,減少 輻射對造血系統的損傷,增強 DNA 損傷修復能力, 抑制細胞凋亡來實現的。

靈芝多糖可上調白細胞(WBC)、血小板(PLT) 等,血清代謝組學結果表明,磷脂酰膽堿、次黃嘌 呤、牛磺酸、L-肉堿、鞘氨醇、磷酸和膽酸等 18 個潛 在生物標志物發生顯著變化,與甘油磷脂代謝、牛 磺酸和次牛磺酸代謝、鞘脂代謝、花生四烯酸代謝、 亞油酸代謝等通路有關,推測靈芝多糖可以通過對 多 種 代 謝 靶 點 的 干 預 來 緩 解 電 離 輻 射 造 成 的 損傷[154] 。 黑 木 耳 子 實 體 多 糖 可 通 過 調 節 肝 臟 中 的 JNK 通路以及胰腺中 PDX1/GLUT2 通路,恢復氧 化還原平衡及血糖耐受能力,改善輻射誘導的糖代 謝紊亂[155] 。XU 等[156] 從銀耳中分離純化出的水溶 性均質多糖可恢復血紅蛋白、白細胞計數和紅細胞 計數,有效阻止輻射對小鼠染色體的遺傳毒性作用。 蛹蟲草多糖可以改善微波輻射導致的精子相對數量 減少,畸形率增加,SOD、GSH-Px 水平降低,MDA 水平升高,緩減輻射對雄性小鼠生殖系統的影響[157] 。

此外,蛹蟲草多糖可降低環磷酰胺誘導小鼠骨髓嗜 多染紅細胞微核率及染色體畸變率,具有抗突變活 性[158] 。黃靈菇多糖能顯著提高小鼠血漿 GSH-Px 活性及 GSH 含量,提高骨髓 DNA 數量,降低小鼠 骨髓染色體畸變率和微核率,抑制 Bax 蛋白的表 達,促進 Bcl-2 蛋白的表達,抑制細胞色素 c 的釋放 和 Caspase-3 的表達,從而阻斷 60Co-γ 輻射誘導小 鼠脾細胞線粒體凋亡通路,發揮輻射保護作用[159] 。

2.8 食用菌多糖的抑菌活性

具有抑菌活性的食用菌多糖主要通過破壞細 菌的細胞壁和細胞膜、調控細菌內酶活性和離子水 平、調控能量代謝、影響基因等方面達到抑菌效果。

姬菇精多糖對大腸桿菌的生長有較好的抑制 效果,當質量濃度為 4.00 mg/mL 時,大腸桿菌被完 全抑制,且純度越高,抑菌能力越強[160] 。靈芝硫酸 多糖對大腸桿菌、銅綠假單胞菌、腸炎沙門氏菌、沙 門氏菌、單核細胞增生李斯特菌和金黃色葡萄球菌 等具有劑量依賴性的抗菌作用[161] 。微波提取香菇 多糖制備出的微膠囊對金黃色葡萄球菌、枯草芽孢 桿菌、大腸桿菌有較強的抑制作用[162] 。從繡球菌中 分離得到的多糖 SCPs 由海藻糖、葡萄糖和半乳糖 組 成 ,摩 爾 比 為 0.043:0.652:0.305。 抑 菌 試 驗 表 明,SCPs 對金黃色葡萄球菌的抑制作用較好,代謝 組學結果分析表明,SCPs 可使果糖 1,6-二磷酸、1, 3-二磷酸甘油酸、琥珀酸和草酰乙酸的變化顯著, 并伴隨細胞內 ATP 的降低,因此,認為 SCPs 抑制 作用機理主要是破壞了金黃色葡萄球菌的糖酵解 和三羧酸循環途徑的代謝[163] 。郝正祺等[164] 研究發 現,繡球菌多糖對單增李斯特菌、鼠傷寒沙門氏菌、 金黃色葡萄球菌、福氏志賀氏菌、大腸埃希氏桿菌 有一定抑制作用,其中對單增李斯特菌、鼠傷寒沙 門氏菌的抑制作用較強。蛹蟲草多糖對大腸桿菌、 金黃色葡萄球菌、枯草芽孢桿菌、副傷寒沙門氏菌 和銅綠假單胞菌均有較強的抑菌活性,對大腸桿菌 的 最 低 抑 菌 質 量 濃 度 為 0.10 mg/mL,此 外 ,導 電 性、堿性磷酸酶(AKP)和 β-半乳糖苷酶活性均有 所提高,生長曲線、真菌蛋白、膜蛋白均發生變化, 表明蛹蟲草多糖可通過破壞細菌細胞壁和細胞膜 來發揮殺菌活性,增加細胞通透性,使其結構損傷, 細胞成分釋放,從而導致細胞死亡[165] 。

2.9 食用菌多糖的抗疲勞活性

疲勞是機體的一種常見亞健康狀態,是由機體 的活動造成的各種器官中的營養大量消耗,從而引 起的暫時性身體機能降低的現象,主要表現為肌肉 力量下降和儲存能量降低,并經常伴隨著中樞神經 緊繃和免疫力下降的現象,嚴重者更會出現精神不 濟、意識不清、免疫力下降等狀況。諸多研究表明, 疲勞的產生與體內積累過量的自由基,導致氧化和 抗氧化系統失衡密切相關[166] 。

杏鮑菇多糖能明顯延長小鼠爬桿和游泳時間, 提高 SOD 活性、降低乳酸含量,提高肝糖原和肌糖 原含量[167] 。木耳胞外多糖能改善小鼠的身體疲勞, 提高肝糖原含量,降低血清尿素氮和乳酸水平,增強 抗氧化酶的活性,降低脂質過氧化,延長力疲小鼠游 泳時間[168] 。猴頭菌多糖可降低血乳酸(BLA)、血清 尿素氮(SUN)和丙二醛(MDA)含量,提高組織糖原 含量和抗氧化酶活性,發揮抗疲勞活性[169] 。在小鼠 的抗疲勞模型試驗中,CAI 等[170] 和 ZHANG 等[171] 均 研究發現,添加外源靈芝多糖和滑菇多糖能顯著提 高小鼠力竭游泳時間和體內抗氧化酶活性。

2.10 食用菌多糖的抗凝血活性

天然抗凝血物質常見的有糖類、黃酮類、生物 堿等,它們類別多樣、結構復雜。在糖類化合物中, 真菌類和藻類植物占有很大比例。

平菇多糖可通過內源性和外源性凝血途徑,有 效抑制血漿凝塊形成[172] 。黑木耳粗多糖能夠抑制 血小板聚集,延緩血液凝固[173] 。靈芝多糖可抑制凝 血系統的外源性途徑和凝血系統上纖維蛋白原向 纖維蛋白的轉化,發揮抗凝血活性[174] 。在體外凝血 試驗中,隨著烏金菇多糖濃度的升高,活化部分凝 血活酶時間(APTT)和血凝酶時間(TT)呈濃度依 賴性發展,阻礙內在的、外在的和凝血酶介導的纖 維蛋白產生抑制,達到抗凝血的目的[175] 。楊慶偉 等[176] 和 LI 等[177] 分別利用灰樹花硫酸酯化多糖和紅 菇多糖也得到了相似的結論。

3 展望

食用菌作為營養、美味、可口及對健康有益的 食物,是生物活性多糖的重要來源,近年來一直是食品領域的研究熱點之一。β-葡聚糖是食用菌中 最廣泛存在的功能多糖,結構多為(1→3)、(1→4)、 (1→6)等。食用菌多糖具有抗氧化、抗衰老、免疫 調節、抗炎、抗腫瘤、降血糖、降血脂、抗病毒、抗輻 射、抗突變、抑菌、抗疲勞、抗凝血等生物活性,其中 抗氧化和免疫調節是最主要的生物活性功能,其他 各種生物活性均以此為基礎進行研究。

食用菌多糖的組成、分子量及構象等均會影響 其生物活性,但食用菌多糖分子量大,結構復雜,多 糖的構效關系及機制仍需要進一步研究,為今后食 用菌及其多糖應用于功能性食品和免疫調節劑的 技術研究和產品開發奠定基礎。

參 考文獻:

[1] ZHANG Y R,WANG D W,CHEN Y T,et al. Healthy func? tion and high valued utilization of edible fungi[J]. Food Science and Human Wellness,2021,10(4):408-420.

[2] HAMZA A,GHANEKAR S,SANTHOSH KUMAR D. Cur? rent trends in health-promoting potential and biomaterial applica? tions of edible mushrooms for human wellness[J]. Food Biosci? ence,2023,51:102290.

[3] ZHENG Z P,XU Y,QIN C,et al. Characterization of antiprolif? erative activity constituents from Artocarpus heterophyllus[J]. Journal of Agricultural and Food Chemistry,2014,62(24):5519- 5527.

[4] SONG X L,LIU Z H,ZHANG J J,et al. Antioxidative and hepatoprotective effects of enzymatic and acidic-hydrolysis of Pleurotus geesteranus mycelium polysaccharides on alcoholic liver diseases[J]. Carbohydrate Polymers,2018,201:75-86.

[5] LóPEZ-LEGARDA X,ROSTRO-ALANIS M,PARRASALDIVAR R,et al. Submerged cultivation,characterization and in vitro antitumor activity of polysaccharides from Schizo? phyllum radiatum[J]. International Journal of Biological Macro? molecules,2021,186:919-932.

[6] MOUSSA A Y,FAYEZ S,XIAO H,et al. New insights into antimicrobial and antibiofilm effects of edible mushrooms[J]. Food Research International,2022,162:111982.

[7] KRISHNAMOORTHI R,SRINIVASH M,MAHALINGAM P U,et al. Dietary nutrients in edible mushroom,Agaricus bispo? rus and their radical scavenging,antibacterial,and antifungal ef? fects[J]. Process Biochemistry,2022,121:10-17.

[8] SONG X L,REN Z Z,WANG X X,et al. Antioxidant,antiinflammatory and renoprotective effects of acidic-hydrolytic poly? saccharides by spent mushroom compost(Lentinula edodes) on LPS-induced kidney injury[J]. International Journal of Biological Macromolecules,2020,151:1267-1276.

[9] LI J H,SHI H,LI H,et al. Structural elucidation and immuno? regulatory activity of a new polysaccharide obtained from the ed? ible part of Scapharca subcrenata[J]. Process Biochemistry, 2023,128:76-93.

[10] JIAO J Q,YONG T Q,HUANG L H,et al. A Ganoderma lu? cidum polysaccharide F31 alleviates hyperglycemia through kidney protection and adipocyte apoptosis[J]. International Jour? nal of Biological Macromolecules,2023,226:1178-1191.

[11] GE Y Z,QIU H M,ZHENG J X. Physicochemical characteris? tics and anti-hyperlipidemic effect of polysaccharide from Ba? Chu mushroom(Helvella leucopus)[J]. Food Chemistry:X, 2022,15:100443.

[12] 聶少平,王玉簫,殷軍藝 . 食用菌多糖結構相對有序性研究概 述[J]. 中國食品學報,2021,21(8):1-24.

NIE S P,WANG Y X,YIN J Y. Research progress on relative ordered structure of polysaccharides from edible fungi[J]. Jour? nal of Chinese Institute of Food Science and Technology, 2021,21(8):1-24.

[13] LIN Y Y,ZENG H Y,WANG K,et al. Microwave-assisted aqueous two-phase extraction of diverse polysaccharides from Lentinus edodes:process optimization,structure characteriza? tion and antioxidant activity[J]. International Journal of Biologi? cal Macromolecules,2019,136:305-315.

[14] TANG W,LIU C C,LIU J J,et al. Purification of polysaccha? ride from Lentinus edodes water extract by membrane separa? tion and its chemical composition and structure characterization [J]. Food Hydrocolloids,2020,105:105851.

[15] PATTANAYAK M,MAITY P,SAMANTA S,et al. Studies on structure and antioxidant properties of a heteroglycan isolated from wild edible mushroom Lentinus sajor-caju[J]. International Journal of Biological Macromolecules,2018,107:322-331.

[16] ZHANG Y,LI Q,SHU Y M,et al. Induction of apoptosis in S180 tumour bearing mice by polysaccharide from Lentinus edodes via mitochondria apoptotic pathway[J]. Journal of Func? tional Foods,2015,15:151-159.

[17] 馬高興,王晗,楊文建,等 . 不同提取工藝對杏鮑菇多糖結構 特征及免疫活性的影響[J]. 食品科學,2022,43(17):42-49.

MA G X,WANG H,YANG W J,et al. Effects of different ex? traction processess on structural characteristics and immuno? modulatory activity of Pleurocentum eryngii polysaccharide[J]. Food Science,2022,43(17):42-49.

[18] YANG Z Y,XU J,FU Q,et al. Antitumor activity of a poly? saccharide from Pleurotus eryngii on mice bearing renal cancer [J]. Carbohydrate Polymers,2013,95(2):615-620.

[19] MA G X,YANG W J,MARIGA A M,et al. Purification, characterization and antitumor activity of polysaccharides from Pleurotus eryngii residue[J]. Carbohydrate Polymers,2014,114: 297-305.

[20] YAN J M,MENG Y,ZHANG M S,et al. A 3-O-methylated heterogalactan from Pleurotus eryngii activates macrophages [J]. Carbohydrate Polymers,2019,206:706-715.

[21] XU D D,WANG H Y,ZHENG W,et al. Charaterization and immunomodulatory activities of polysaccharide isolated from Pleurotus eryngii[J]. International Journal of Biological Macro? molecules,2016,92:30-36.

[22] LIU Y Y,SUN Y,LI H L,et al. Optimization of ultrasonic ex? traction of polysaccharides from Flammulina velutipes residue and its protective effect against heavy metal toxicity[J]. Indus? trial Crops and Products,2022,187:115422.

[23] WU D M,DUAN W Q,LIU Y,et al. Anti-inflammatory ef? fect of the polysaccharides of Golden needle mushroom in burned rats[J]. International Journal of Biological Macromol? ecules,2010,46(1):100-103.

[24] WANG W H,ZHANG J S,FENG T,et al. Structural elucida? tion of a polysaccharide from Flammulina velutipes and its im? munomodulation activities on mouse B lymphocytes[J]. Scien? tific Reports,2018,8:3120.

[25] LIU G,YE J,LI W,et al. Extraction,structural characteriza? tion,and immunobiological activity of ABP Ia polysaccharide from Agaricus bisporus[J]. International Journal of Biological Macromolecules,2020,162:975-984.

[26] LI S S,LI J,ZHANG J J,et al. The antioxidative,antiaging, and hepatoprotective effects of alkali-extractable polysaccha? rides by Agaricus bisporus[J]. Evidence-Based Complementary and Alternative Medicine:ECAM,2017,2017:7298683.

[27] LIU Y,ZHENG D D,SU L,et al. Protective effect of polysac? charide from Agaricus bisporus in Tibet area of China against tetrachloride-induced acute liver injury in mice[J]. International Journal of Biological Macromolecules,2018,118(PtB):1488- 1493.

[28] ROMáN Y,IACOMINI M,SASSAKI G L,et al. Optimiza? tion of chemical sulfation,structural characterization and antico? agulant activity of Agaricus bisporus fucogalactan[J]. Carbohy? drate Polymers,2016,146:345-352.

[29] LI Y X,SHENG Y,LU X C,et al. Isolation and purification of acidic polysaccharides from Agaricus blazei Murill and evalua? tion of their lipid-lowering mechanism[J]. International Journal of Biological Macromolecules,2020,157:276-287.

[30] LIU J C,SUN Y X. Structural analysis of an alkali-extractable and water-soluble polysaccharide(ABP-AW1) from the fruit? ing bodies of Agaricus blazei Murill[J]. Carbohydrate Poly? mers,2011,86(2):429-432.

[31] ZHANG Y,ZENG Y,MEN Y,et al. Structural characterization and immunomodulatory activity of exopolysaccharides from sub? merged culture of Auricularia auricula-judae[J]. International Journal of Biological Macromolecules,2018,115:978-984.

[32] ZHANG Y W,LI X P,YANG Q H,et al. Antioxidation,antihyperlipidaemia and hepatoprotection of polysaccharides from Auricularia auricular residue[J]. Chemico-Biological Interac? tions,2021,333:109323.

[33] ZENG W C,ZHANG Z,GAO H,et al. Characterization of an? tioxidant polysaccharides from Auricularia auricular using microwave-assisted extraction[J]. Carbohydrate Polymers, 2012,89(2):694-700.

[34] CHEN S D,GUAN X Y,YONG T Q,et al. Structural charac? terization and hepatoprotective activity of an acidic polysaccha? ride from Ganoderma lucidum[J]. Food Chemistry:X,2022, 13:100204.

[35] LI J,GU F F,CAI C,et al. Purification,structural characteriza? tion,and immunomodulatory activity of the polysaccharides from Ganoderma lucidum[J]. International Journal of Biologi? cal Macromolecules,2020,143:806-813.

[36] MAO G H,YU P,ZHAO T,et al. Aqueous two-phase simul? taneous extraction and purification of a polysaccharide from Grifola frondosa:process optimization,structural characteris? tics and antioxidant activity[J]. Industrial Crops and Products, 2022,184:114962.

[37] ZHAO H K,WEI X Y,XIE Y M. Supercritical CO2 extrac? tion,structural analysis and bioactivity of polysaccharide from Grifola frondosa[J]. Journal of Food Composition and Analy? sis,2021,102:104067.

[38] CUI H,ZHU X Y,HUO Z Y,et al. A β -glucan from Grifola frondosa effectively delivers therapeutic oligonucleotide into cells via dectin-1 receptor and attenuates TNFα gene expres? sion[J]. International Journal of Biological Macromolecules, 2020,149:801-808.

[39] LIAO B W,HUANG H H. Structural characterization of a novel polysaccharide from Hericium erinaceus and its protec? tive effects against H2O2-induced injury in human gastric epithe? lium cells[J]. Journal of Functional Foods,2019,56:265-275. [40] QIN T,LIU X P,LUO Y,et al. Characterization of polysac? charides isolated from Hericium erinaceus and their protective effects on the DON-induced oxidative stress[J]. International Journal of Biological Macromolecules,2020,152:1265-1273. [41] LIU J Y,HOU X X,LI Z Y,et al. Isolation and structural char? acterization of a novel polysaccharide from Hericium erinaceus fruiting bodies and its arrest of cell cycle at S-phage in colon cancer cells[J]. International Journal of Biological Macromol? ecules,2020,157:288-295.

[42] 楊揚 . 猴頭菌多糖的結構分析及其改善腸道菌群和免疫調節 活性的機制研究[D]. 長春:吉林大學,2021. YANG Y. Study on structural characterization of Hericium eri? naceus polysaccharides and improving intestinal bacteria and their mechanisms of immunomodulatory activity[D]. Changc? hun:Jilin University,2021.

[43] WANG L Y,LI K,CUI Y D,et al. Preparation,structural characterization and neuroprotective effects to against H2O2-in? duced oxidative damage in PC12 cells of polysaccharides from Pleurotus ostreatus[J]. Food Research International,2023,163: 112146.

[44] YANG Q,HUANG B,LI H Y,et al. Gastroprotective activi? ties of a polysaccharide from the fruiting bodies of Pleurotus os? treatus in rats[J]. International Journal of Biological Macromol? ecules,2012,50(5):1224-1228.

[45] LUO X P,DUAN Y Q,YANG W Y,et al. Structural elucida? tion and immunostimulatory activity of polysaccharide isolated by subcritical water extraction from Cordyceps militaris[J]. Carbohydrate Polymers,2017,157:794-802.

[46] ZHU Z Y,GUO M Z,LIU F,et al. Preparation and inhibition on α -d-glucosidase of low molecular weight polysaccharide from Cordyceps militaris[J]. International Journal of Biological Macromolecules,2016,93(PtA):27-33.

[47] TENG S S,ZHANG Y F,JIN X H,et al. Structure and hepa? toprotective activity of Usp10/NF- κB/Nrf2 pathway-related Morchella esculenta polysaccharide[J]. Carbohydrate Polymers, 2023,303:120453.

[48] KUANG M T,XU J Y,LI J Y,et al. Purification,structural char? acterization and immunomodulatory activities of a polysaccha? ride from the fruiting body of Morchella sextelata[J]. Interna? tional Journal of Biological Macromolecules,2022,213:394-403.

[49] ZHANG W Y,HU B,HAN M,et al. Purification,structural characterization and neuroprotective effect of a neutral polysac? charide from Sparassis crispa[J]. International Journal of Bio? logical Macromolecules,2022,201:389-399.

[50] YUAN H J,DONG L,ZHANG Z Y,et al. Production,struc? ture,and bioactivity of polysaccharide isolated from Tremella fuciformis[J]. Food Science and Human Wellness,2022,11 (4):1010-1017.

[51] 林桂蘭,許學書,連文思 . 食用菇多糖提取物體外抗氧化性能 研究[J]. 華東理工大學學報(自然科學版),2006,32(3):278- 281,317.

LIN G L,XU X S,LIAN W S. Antioxidant activity of edible mushroom polysaccharide extracts in vitro[J]. Journal of East China University of Science and Technology(Natural Science Edition),2006,32(3):278-281,317.

[52] CHEN B. Optimization of extraction of Tremella fuciformis polysaccharides and its antioxidant and antitumour activities in vitro[J]. Carbohydrate Polymers,2010,81(2):420-424.

[53] 雷燕妮,張小斌,陳書存 . 蛹蟲草多糖的抗氧化活性研究[J]. 西北農林科技大學學報(自然科學版),2022,50(11):26-34.

LEI Y N,ZHANG X B,CHEN S C. Antioxidant activity of polysaccharides from Cordyceps militaris [J]. Journal of North? west Agriculture amp; Forestry University(Natural Science Edi? tion),2022,50(11):26-34.

[54] CHEN X,FANG D L,ZHAO R Q,et al. Effects of ultrasound-assisted extraction on antioxidant activity and bidi? rectional immunomodulatory activity of Flammulina velutipes polysaccharide[J]. International Journal of Biological Macro? molecules,2019,140:505-514.

[55] 楊亞茹,郝正祺,常明昌,等 . 繡球菌酸性多糖的分離純化、結構 鑒定及抗氧化活性研究[J]. 食用菌學報,2019,26(3):105-112.

YANG Y R,HAO Z Q,CHANG M C,et al. Isolation,purifi? cation,structural identification and antioxidant activity of acidic polysaccharide in Sparassis crispa[J]. Acta Edulis Fungi,2019, 26(3):105-112.

[56] LIU W,WANG H Y,PANG X B,et al. Characterization and antioxidant activity of two low-molecular-weight polysaccha? rides purified from the fruiting bodies of Ganoderma lucidum [J]. International Journal of Biological Macromolecules,2010, 46(4):451-457.

[57] 劉宇,賈滋坤,王天賜,等 . 破壁法提取平菇多糖的結構分析 及其抗氧化活性[J]. 菌物研究,2022,20(2):122-127.

LIU Y,JIA Z K,WANG T C,et al. Structural characterization and antioxidant activity of Pleurotus ostreatus polysaccharide extracted by wall-broken method[J]. Journal of Fungal re? search,2022,20(2):122-127.

[58] 陳帥 . 阿魏菇多糖的結構分析及其抗氧化活性研究[D]. 石河 子:石河子大學,2016.

CHEN S. Structural analysis and antioxidant activities of poly? saccharide isolated from Pleurotus ferulae lenzi[D]. Shihezi: Shihezi University,2016.

[59] CAI Z N,LI W,MEHMOOD S,et al. Structural characteriza? tion,in vitro and in vivo antioxidant activities of a heteropoly? saccharide from the fruiting bodies of Morchella esculenta[J]. Carbohydrate Polymers,2018,195:29-38.

[60] MENG M J,HUO R,WANG Y,et al. Lentinan inhibits oxida? tive stress and alleviates LPS-induced inflammation and apop? tosis of BMECs by activating the Nrf2 signaling pathway[J]. In? ternational Journal of Biological Macromolecules,2022,222: 2375-2391.

[61] 黨楊 . 杏鮑菇多糖對力竭運動中抗氧化酶活性的影響[J]. 中 國食用菌,2020,39(11):75-77,82.

DANG Y. Effect of Pleurotus eryngii polysaccharide on anti? oxidant enzyme activity during exhaustive exercise[J]. Edible Fungi of China,2020,39(11):75-77,82.

[62] ZHANG C,SONG X L,CUI W J,et al. Antioxidant and antiageing effects of enzymatic polysaccharide from Pleurotus eryn? gii residue[J]. International Journal of Biological Macromol? ecules,2021,173:341-350.

[63] WANG J,LIU B Y,QI Y,et al. Impact of Auricularia cornea var.Li polysaccharides on the physicochemical,textual,flavor, and antioxidant properties of set yogurt[J]. International Journal of Biological Macromolecules,2022,206:148-158.

[64] ZHANG N,CHEN H X,MA L S,et al. Physical modifica? tions of polysaccharide from Inonotus obliquus and the antioxi? dant properties[J]. International Journal of Biological Macro? molecules,2013,54:209-215.

[65] PAN K,JIANG Q G,LIU G Q,et al. Optimization extraction of Ganoderma lucidum polysaccharides and its immunity and antioxidant activities[J]. International Journal of Biological Macromolecules,2013,55:301-306.

[66] 張博華,張明,范祺,等 . 三種食用菌多糖及其復合多糖功能 性評價研究[J]. 中國果菜,2021,41(6):74-79.

ZHANG B H,ZHANG M,FAN Q,et al. Study on functional evaluation of three kinds of edible fungus polysaccharides and their compound polysaccharides[J]. China Fruit amp; Vegetable, 2021,41(6):74-79.

[67] 張志超,吳迷,田笑,等 . 四種食用菌復合多糖體外協同抗氧 化活性研究[J]. 湖北農業科學,2018,57(3):78-80.

ZHANG Z C,WU M,TIAN X,et al. Study on synergistic anti? oxidant activity of 4 kinds of edible fungi compound polysaccha? ride in vitro[J]. Hubei Agricultural Sciences,2018,57(3):78-80.

[68] 于沖,潘鈺,曲曉軍,等 . 五種真菌的復合多糖體外抗氧化作 用研究[J]. 黑龍江科學,2018,9(9):1-3.

YU C,PAN Y,QU X J,et al. Study on antioxidant effects of complex polysaccharides from five kinds of fungi in vitro[J]. Heilongjiang Science,2018,9(9):1-3.

[69] JING H J,LI J,ZHANG J J,et al. The antioxidative and antiaging effects of acidic- and alkalic-extractable mycelium poly? saccharides by Agrocybe aegerita(Brig.) Sing[J]. International Journal of Biological Macromolecules,2018,106:1270-1278.

[70] LI S S,LIU H,WANG W S,et al. Antioxidant and anti-aging effects of acidic-extractable polysaccharides by Agaricus bispo? rus[J]. International Journal of Biological Macromolecules, 2018,106:1297-1306.

[71] DING Q Y,YANG D,ZHANG W N,et al. Antioxidant and anti-aging activities of the polysaccharide TLH-3 from Tri? choloma lobayense[J]. International Journal of Biological Mac? romolecules,2016,85:133-140.

[72] CHENG J J,CHAO C H,CHANG P C,et al. Studies on antiinflammatory activity of sulfated polysaccharides from culti? vated fungi Antrodia cinnamomea[J]. Food Hydrocolloids,2016, 53:37-45.

[73] ZHANG C,LI J,HU C L,et al. Antihyperglycaemic and or? ganic protective effects on pancreas,liver and kidney by poly? saccharides from Hericium erinaceus SG-02 in streptozotocininduced diabetic mice[J]. Scientific Reports,2017,7:10847.

[74] REN Z,QIN T,QIU F A,et al. Immunomodulatory effects of hydroxyethylated Hericium erinaceus polysaccharide on macro? phages RAW264.7[J]. International Journal of Biological Macro? molecules,2017,105(Pt1):879-885.

[75] SHENG X T,YAN J M,MENG Y,et al. Immunomodulatory effects of Hericium erinaceus derived polysaccharides are medi? ated by intestinal immunology[J]. Food amp; Function,2017,8 (3):1020-1027.

[76] LIU X P,REN Z,YU R H,et al. Structural characterization of enzymatic modification of Hericium erinaceus polysaccharide and its immune-enhancement activity[J]. International Journal of Biological Macromolecules,2021,166:1396-1408.

[77] SHEU S C,LYU Y,LEE M S,et al. Immunomodulatory ef? fects of polysaccharides isolated from Hericium erinaceus on dendritic cells[J]. Process Biochemistry,2013,48(9):1402-1408.

[78] WANG Y,JIN H Y,YU J D,et al. Quality control and immu? nological activity of lentinan samples produced in China[J]. In? ternational Journal of Biological Macromolecules,2020,159: 129-136.

[79] 劉蘇,姜玥,羅建平,等 . 5 種食用菌多糖理化性質及免疫活性 的比較研究[J]. 食品科學,2015,36(13):252-256.

LIU S,JIANG Y,LUO J P,et al. Physicochemical properties and immunomodulating activities of polysaccharides from five species of edible mushrooms[J]. Food Science,2015,36(13): 252-256.

[80] CHEN S P,LIU C C,HUANG X J,et al. Comparison of im? munomodulatory effects of three polysaccharide fractions from Lentinula edodes water extracts[J]. Journal of Functional Foods,2020,66:103791.

[81] ZHANG C,FU Q,HUA Y,et al. Correlation of conforma? tional changes and immunomodulatory activity of lentinan un? der different subcritical water temperature[J]. Food Bioscience, 2022,50:102061.

[82] FANG L L,ZHANG Y Q,XIE J B,et al. Royal Sun medici? nal mushroom,Agaricus brasiliensis(Agaricomycetidae),de? rived polysaccharides exert immunomodulatory activities in vi? tro and in vivo[J]. International Journal of Medicinal Mush? rooms,2016,18(2):123-132.

[83] WANG X,QU Y H,WANG Y,et al. β-1,6-glucan from Pleu? rotus eryngii modulates the immunity and gut microbiota[J]. Frontiers in Immunology,2022,13:859923.

[84] 馬高興 . 杏鮑菇多糖對腸道免疫功能的影響及其作用機理 [D]. 南京:南京農業大學,2018.

MA G X. Effects and functioning mechanisms of Pleurotus er? yngii polysaccharide on gut immune function[D]. Nanjing:Nan? jing Agricultural University,2018.

[85] MA G X,KIMATU B M,YANG W J,et al. Preparation of newly identified polysaccharide from Pleurotus eryngii and its anti-inflammation activities potential[J]. Journal of Food Sci? ence,2020,85(9):2822-2831.

[86] YING M X,ZHENG B,YU Q,et al. Ganoderma atrum poly? saccharide ameliorates intestinal mucosal dysfunction associ? ated with autophagy in immunosuppressed mice[J]. Food and Chemical Toxicology,2020,138:111244.

[87] 許曉燕,羅霞,宋怡,等 . 靈芝多糖通過調節內皮細胞 ICAM-1 表 達 促 進 T 淋 巴 細 胞 腫 瘤 浸 潤 的 研 究 [J]. 中 國 中 藥 雜 志 , 2021,46(19):5072-5079.

XU X Y,LUO X,SONG Y,et al. Ganoderma lucidum poly? saccharides promote T lymphocyte infiltration into tumor by regulating expression of ICAM-1 in endothelial cells[J]. China Journal of Chinese Materia Medica,2021,46(19):5072-5079.

[88] YANG X,ZHANG R,YAO J,et al. Ganoderma lucidum polysaccharide enhanced the antitumor effects of 5-fluorouracil against gastric cancer through its upregulation of NKG2D/ MICA[J]. International Journal of Polymer Science,2019,2019: 4564213.

[89] YU Q,NIE S P,WANG J Q,et al. Chemoprotective effects of Ganoderma atrum polysaccharide in cyclophosphamide-induced mice[J]. International Journal of Biological Macromolecules, 2014,64:395-401.

[90] WEN L R,SHENG Z L,WANG J P,et al. Structure of watersoluble polysaccharides in spore of Ganoderma lucidum and their anti-inflammatory activity[J]. Food Chemistry,2022,373: 131374.

[91] CHEN Z,QIN W G,LIN H B,et al. Inhibitory effect of poly? saccharides extracted from Changbai Mountain Ganoderma lu? cidum on periodontal inflammation[J]. Heliyon,2023,9(2): e13205.

[92] ZHANG Q W,LIU M,LI L F,et al. Cordyceps polysaccha? ride marker CCP modulates immune responses via highly selec? tive TLR4/MyD88/p38 axis[J]. Carbohydrate Polymers,2021, 271:118443.

[93] YING M X,YU Q,ZHENG B,et al. Cultured Cordyceps si? nensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice[J]. Carbo? hydrate Polymers,2020,235:115957.

[94] CHENG F E,YAN X Y,ZHANG M Q,et al. Regulation of RAW 264.7 cell-mediated immunity by polysaccharides from Agaricus blazei Murill via the MAPK signal transduction path? way[J]. Food amp; Function,2017,8(4):1475-1480.

[95] 云 少 君 ,李 晨 光 ,馮 翠 萍 ,等 . 巴 氏 蘑 菇 多 糖 對 巨 噬 細 胞 RAW264.7 免疫活性的影響[J]. 中國食品學報,2015,15(8): 32-36.

YUN S J,LI C G,FENG C P,et al. The influence of different concentrations of Agaricus blazei murill polysaccharides on the immune activity of macrophage RAW264.7[J]. Journal of Chinese Institute of Food Science and Technology,2015,15(8):32-36.

[96] WEN Y,PENG D,LI C L,et al. A new polysaccharide iso? lated from Morchella importuna fruiting bodies and its immu? noregulatory mechanism[J]. International Journal of Biological Macromolecules,2019,137:8-19.

[97] LIANG Q X,ZHAO Q C,HAO X T,et al. The effect of Flammulina velutipes polysaccharide on immunization ana? lyzed by intestinal flora and proteomics[J]. Frontiers in Nutri? tion,2022,9:841230.

[98] 王慧敏,張勁松,馮婷,等 . 金針菇子實體多糖 FVPB1 對小鼠 B 細胞的免疫調節作用[J]. 食用菌學報,2021,28(2):69-76.

WANG H M,ZHANG J S,FENG T,et al. Immunomodula? tory effects of Flammulina Velutipes fruiting body polysaccha? ride FVPB1 on mouse B cells[J]. Journal of Edible Fungi, 2021,28(2):69-76.

[99] 劉肖肖,汪雯翰,馮婷,等 . 金針菇子實體多糖 FVPB1 對小鼠 T 細胞和巨噬細胞的免疫調節作用[J]. 食用菌學報,2019,26 (4):123-130.

LIU X X,WANG W H,FENG T,et al. Immunoregulatory Ef? fect of Homogeneous Polysaccharide FVPB1 from Fruiting Body of Flammulina velutipes on Mouse T cells and Macro? phages[J]. Acta Edulis Fungi,2019,26(4):123-130.

[100] 馬升,高青瑩,徐建雄 . 發酵金針菇多糖通過核轉錄因子-κBNOD 樣受體家族含 pyrin 結構域蛋白 3 信號通路抑制巨噬細 胞炎癥反應[J]. 動物營養學報,2022,34(2):1205-1216.

MA S,GAO Q Y,XU J X. Fermented Flammulina velutipes polysaccharide inhibits macrophage inflammatory response through nuclear factor- κB-Nod-Like receptor family pyrin domain-containing protein 3 signaling pathway[J]. Chinese Journal of Animal Nutrition,2022,34(2):1205-1216.

[101] LIU J Y,FENG C P,LI X,et al. Immunomodulatory and an? tioxidative activity of Cordyceps militaris polysaccharides in mice[J]. International Journal of Biological Macromolecules, 2016,86:594-598.

[102] QIAO Z N,ZHAO Y,WANG M H,et al. Effects of Sparas? sis latifolia neutral polysaccharide on immune activity via TLR4-mediated MyD88-dependent and independent signaling pathways in RAW264.7 macrophages[J]. Frontiers in Nutrition, 2022,9:994971.

[103] 魏欣,王萌皓,云少君,等 . 廣葉繡球菌中性多糖對巨噬細胞 RAW264.7 細胞因子及 TLR2 受體的影響[J]. 山西農業科 學,2022,50(4):447-454.

WEI X,WANG M H,YUN S J,et al. Effects of Sparassis latifolia neutral polysaccharides on cytokines and TLR2 re? ceptor of macrophage RAW 264.7[J]. Journal of Shanxi Agri? cultural Sciences,2022,50(4):447-454.

[104] 郝晨陽,程艷芬,徐麗婧,等. 廣葉繡球菌多糖對免疫低下小鼠腸 道免疫功能的調節作用[J]. 菌物學報,2020,39(7):1380-1390.

HAO C Y,CHENG Y F,XU L J,et al. Regulatory effects of Sparassis latifolia polysaccharide on intestinal immune func? tion in immunosuppressed mice[J]. Mycosystema,2020,39 (7):1380-1390.

[105] 王萌皓,郝正祺,常明昌,等 . 廣葉繡球菌 β-D-葡聚糖對巨噬 細胞 RAW 264.7 免疫調節作用受體 TLR4 和 TLR2 的影響 [J]. 菌物學報,2020,39(5):907-916.

WANG M H,HAO Z Q,CHANG M C,et al. Effects of Sparassis latifolia β -D-glucan on immune receptors TLR4 and TLR2 of RAW 264.7 macrophages[J]. Mycosystema, 2020,39(5):907-916.

[106] 趙越,程艷芬,郝晨陽,等 . 繡球菌多糖對免疫低下小鼠盲腸 短鏈脂肪酸、G 蛋白偶聯受體及免疫因子的調節[J]. 食品科 技,2022,47(4):231-238.

ZHAO Y,CHENG Y F,HAO C Y,et al. Regulation of Sparassis latifolia polysaccharide on short chains fatty acids, G protein-coupled receptors and immune factors in cecum of immunocompromised mice[J]. Food Science and Technology, 2022,47(4):231-238.

[107] 賀楷雄,謝添,云少君,等 . 廣葉繡球菌多糖對免疫低下小鼠大 腦皮質損傷的調節作用[J]. 食用菌學報,2022,29(1):55-65.

HE K X,XIE T,YUN S J,et al. Regulatory effects of Sparassis latifolia polysaccharide on cerebral cortex injury in immunocompromised mice[J]. Journal of Edible Fungi,2022, 29(1):55-65.

[108] 金明枝 . 大球蓋菇多糖的結構表征、化學修飾及生物活性研 究[D]. 合肥:合肥工業大學,2021.

JIN M Z. Structural characterization,chemical modification and biological activity of polysaccharide from Pleurotus ostrea? tus[D]. Hefei:Hefei University of Technology,2021.

[109] XIAO H Y,LI H L,WEN Y F,et al. Tremella fuciformis polysaccharides ameliorated ulcerative colitis via inhibiting in? flammation and enhancing intestinal epithelial barrier function [J]. International Journal of Biological Macromolecules,2021, 180:633-642.

[110] LIU X F,WANG X Q,XU X F,et al. Purification,antitumor and anti-inflammation activities of an alkali-soluble and car? boxymethyl polysaccharide CMP33 from Poria cocos[J]. In? ternational Journal of Biological Macromolecules,2019,127: 39-47.

[111] FOGLI S,PORTA C,DEL RE M,et al. Optimizing treat? ment of renal cell carcinoma with VEGFR-TKIs:a compari? son of clinical pharmacology and drug-drug interactions of anti-angiogenic drugs[J]. Cancer Treatment Reviews,2020, 84:101966.

[112] ZHANG Q L,DU Z S,ZHANG Y,et al. Apoptosis induc? tion activity of polysaccharide from Lentinus edodes in H22- bearing mice through ROS-mediated mitochondrial pathway and inhibition of tubulin polymerization[J]. Food amp; Nutrition Research,2020,64:64.

[113] 向瑞琪,謝鋒,李占彬 . 食用菌多糖提取、檢測、生物活性與 機制研究進展[J]. 黑龍江農業科學,2021(7):109-115.

XIANG R Q,XIE F,LI Z B. Research status on extraction, detection,biological activity and mechanism of polysaccha? rides from edible mushrooms[J]. Heilongjiang Agricultural Sciennces,2021(7):109-115.

[114] XU H,ZOU S W,XU X J. The β -glucan from Lentinus edodes suppresses cell proliferation and promotes apoptosis in estrogen receptor positive breast cancers[J]. Oncotarget,2017, 8(49):86693-86709.

[115] DENG S M,ZHANG G X,KUAI J J,et al. Lentinan inhibits tumor angiogenesis via interferon γ and in a T cell indepen? dent manner[J]. Journal of Experimental amp; Clinical Cancer Research:CR,2018,37(1):260.

[116] REN D Y,WANG N,GUO J J,et al. Chemical characteriza? tion of Pleurotus eryngii polysaccharide and its tumorinhibitory effects against human hepatoblastoma HepG-2 cells [J]. Carbohydrate Polymers,2016,138:123-133.

[117] XU H,HU Y,HU Q H,et al. Isolation,characterization and HepG-2 inhibition of a novel proteoglycan from Flammulina velutipes[J]. International Journal of Biological Macromol? ecules,2021,189:11-17.

[118] LIU X C,ZHU Z Y,LIU Y L,et al. Comparisons of the antitumor activity of polysaccharides from fermented mycelia and cultivated fruiting bodies of Cordyceps militaris in vitro[J]. In? ternational Journal of Biological Macromolecules,2019,130: 307-314.

[119] CHEN C,WANG M L,JIN C,et al. Cordyceps militaris poly? saccharide triggers apoptosis and G0/G1 cell arrest in cancer cells[J]. Journal of Asia-Pacific Entomology,2015,18(3): 433-438.

[120] XU J,TAN Z C,SHEN Z Y,et al. Cordyceps cicadae poly? saccharides inhibit human cervical cancer hela cells prolifera? tion via apoptosis and cell cycle arrest[J]. Food and Chemical Toxicology,2021,148:111971.

[121] 沈瑞,徐靜,王雷,等 . 靈芝多糖調控 PI3K/Akt信號通路抑制 肝癌細胞惡性表型[J]. 中國實驗方劑學雜志,2023,29(6): 88-94.

SHEN R,XU J,WANG L,et al. Ganoderma lucidum poly? saccharides inhibit malignant phenotype of hepatocellular car? cinoma cells by regulating PI3K/Akt signaling pathway[J]. Chinese Journal of Experimental Traditional Medical Formu? lae,2023,29(6):88-94.

[122] DE CAMARGO M R,FRAZON T F,INACIO K K,et al. Ganoderma lucidum polysaccharides inhibit in vitro tumori? genesis,cancer stem cell properties and epithelial-mesenchymal transition in oral squamous cell carcinoma[J]. Journal of Ethno? pharmacology,2022,286:114891.

[123] LIU X K,WANG L,ZHANG C M,et al. Structure charac? terization and antitumor activity of a polysaccharide from the alkaline extract of king oyster mushroom[J]. Carbohydrate Polymers,2015,118:101-106.

[124] WANG D,SUN S Q,WU W Z,et al. Characterization of a water-soluble polysaccharide from Boletus edulis and its anti? tumor and immunomodulatory activities on renal cancer in mice[J]. Carbohydrate Polymers,2014,105:127-134.

[125] SU S Y,DING X,HOU Y L,et al. Structure elucidation,im? munomodulatory activity,antitumor activity and its molecular mechanism of a novel polysaccharide from Boletus reticulatus Schaeff[J]. Food Science and Human Wellness,2023,12(2): 647-661.

[126] MAO G H,REN Y,FENG W W,et al. Antitumor and immuno? modulatory activity of a water-soluble polysaccharide from Gri? fola frondosa[J]. Carbohydrate Polymers,2015,134:406-412.

[127] WEI X,CHENG F E,LIU J Y,et al. Sparassis latifolia poly? saccharides inhibit colon cancer in mice by modulating gut mi? crobiota and metabolism[J]. International Journal of Biological Macromolecules,2023,232:123299.

[128] 劉韞滔,曾思琪,唐倩倩,等 . 兩種梭柄松苞菇富硒多糖的制 備及其降血糖和抗氧化活性研究[J]. 現代食品科技,2016, 32(10):60-65.

LIU Y T,ZENG S Q,TANG Q Q,et al. Preparation of Seenriched polysaccharides from Catathelasma ventricosum by two approaches and their antioxidant and antihyperglycemic activities[J]. Modern Food Science and Technology,2016,32 (10):60-65.

[129] LI Y M,ZHONG R F,CHEN J,et al. Structural characteriza? tion,anticancer,hypoglycemia and immune activities of poly? saccharides from Russula virescens[J]. International Journal of Biological Macromolecules,2021,184:380-392.

[130] SHAO W M,XIAO C,YONG T Q,et al. A polysaccharide isolated from Ganoderma lucidum ameliorates hyperglycemia through modulating gut microbiota in type 2 diabetic mice[J]. International Journal of Biological Macromolecules,2022, 197:23-38.

[131] CHEN Y Q,LIU D,WANG D Y,et al. Hypoglycemic activ? ity and gut microbiota regulation of a novel polysaccharide from Grifola frondosa in type 2 diabetic mice[J]. Food and Chemical Toxicology,2019,126:295-302.

[132] WANG Z F,WANG Y Y,HAN Y H,et al. Akt is a critical node of acute myocardial insulin resistance and cardiac dys? function after cardiopulmonary bypass[J]. Life Sciences,2019, 234:116734.

[133] HAO Y L,SUN H Q,ZHANG X J,et al. A novel polysac? charide from Pleurotus citrinopileatus mycelia:structural char? acterization,hypoglycemic activity and mechanism[J]. Food Bioscience,2020,37:100735.

[134] WANG J,WANG C,LI S Q,et al. Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway[J]. Biomedicine amp; Pharmacotherapy,2017, 95:1669-1677.

[135] EL KHOURY D,CUDA C,LUHOVYY B L,et al. Beta glucan:health benefits in obesity and metabolic syndrome[J]. Journal of Nutrition and Metabolism,2012,2012:851362.

[136] WANG X Y,YIN J Y,NIE S P,et al. Isolation,purification and physicochemical properties of polysaccharide from fruiting body of Hericium erinaceus and its effect on colonic health of mice[J]. International Journal of Biological Macromolecules, 2018,107:1310-1319.

[137] ZHANG C,ZHANG L,LIU H,et al. Antioxidation,antihyperglycaemia and renoprotective effects of extracellular polysaccharides from Pleurotus eryngii SI-04[J]. International Journal of Biological Macromolecules,2018,111:219-228.

[138] NAKAHARA D,NAN C,MORI K,et al. Effect of mush? room polysaccharides from Pleurotus eryngii on obesity and gut microbiota in mice fed a high-fat diet[J]. European Journal of Nutrition,2020,59(7):3231-3244.

[139] LI Y,YUAN Y,LEI L,et al. Carboxymethylation of polysac? charide from Morchella angusticepes Peck enhances its cholesterol-lowering activity in rats[J]. Carbohydrate Poly? mers,2017,172:85-92.

[140] WANG L Q,XU N,ZHANG J J,et al. Antihyperlipidemic and hepatoprotective activities of residue polysaccharide from Cordyceps militaris SU-12[J]. Carbohydrate Polymers,2015, 131:355-362.

[141] HUANG R,ZHU Z J,WU S J,et al. Polysaccharides from Cordyceps militaris prevent obesity in association with modu? lating gut microbiota and metabolites in high-fat diet-fed mice [J]. Food Research International,2022,157:111197.

[142] 歐陽玉倩,吳艷麗,馮翠萍,等 . 巴氏蘑菇多糖對糖尿病小鼠 脂代謝紊亂的干預作用[J]. 食用菌學報,2017,24(1):77-82.

OUYANG Y Q,WU Y L,FENG C P,et al. Effects of Agari? cus blazei polysaccharide onLipid-associated metabolic factors in diabetic mice[J]. Acta Edulis Fungi,2017,24(1):77-82.

[143] 程艷芬,韓愛麗,云少君,等 . 珊瑚狀猴頭菌多糖降血膽固醇 作用及機制[J]. 營養學報,2018,40(2):172-176.

CHENG Y F,HAN A L,YUN S J,et al. Cholesterollowering effect of h.coralloides polysaccharides and its mecha? nism[J]. Acta Nutrimenta Sinica,2018,40(2):172-176.

[144] 高淵 . 廣葉繡球菌多糖對高脂高膽固醇膳食大鼠腸道膽固 醇代謝的影響及作用機制[D]. 太原:山西農業大學,2021.

GAO Y. Effect and mechanisms of Sparassis latifolia polysac? charide on intestinal cholesterol metabolism in rats fed with high-fat and high-cholesterol diet[D]. Taiyuan:Shanxi Agri? cultural University,2021.

[145] 高淵,楊亞茹,常明昌,等. 基于代謝組學研究繡球菌多糖對高脂 血癥大鼠的降血脂作用[J]. 食品科學,2021,42(11):168-175.

GAO Y,YANG Y R,CHANG M C,et al. Metabonomic study on hypolipidemic effect of Sparassis crispa polysaccharides on hyperlipidemic rats[J]. Food Science,2021,42(11):168-175.

[146] CHEN L,HUANG G L. The antiviral activity of polysaccha? rides and their derivatives[J]. International Journal of Biologi? cal Macromolecules,2018,115:77-82.

[147] GUO Y X,CHEN X F,GONG P. Classification,structure and mechanism of antiviral polysaccharides derived from ed? ible and medicinal fungus[J]. International Journal of Biologi? cal Macromolecules,2021,183:1753-1773.

[148] 路志芳,蔣鵬飛 . 香菇多糖的抑菌效果試驗[J]. 上海蔬菜, 2017(4):85-87.

LU Z F,JIANG P F. Experiment on bacteriostatic effect of Lentinus edodes polysaccharide[J]. Shanghai Vegetables,2017 (4):85-87.

[149] JIAO F P,LI D,YANG S L,et al. Inhibition effects of poly? saccharides on HBV replication and cell proliferation from Lentinus edodes waste material[J]. Microbial Pathogenesis, 2018,123:461-466.

[150] ZHANG T T,YE J F,XUE C H,et al. Structural character? istics and bioactive properties of a novel polysaccharide from Flammulina velutipes[J]. Carbohydrate Polymers,2018,197: 147-156.

[151] 嚴萍,林紹青,李明慧,等 . 猴頭菇多糖對 MDRV 感染 RAW 264.7 細胞 TLR3/TRIF 誘導表達及病毒復制的影響[J]. 中 國畜牧獸醫,2021,48(9):3415-3422.

YAN P,LIN S Q,LI M H,et al. Effects of Hericium eri? naceus polysaccharide on TLR3/TRI3-induced expression and viral replication in MDRV-infected RAW 264.7 cells[J]. China Animal Husbandry amp; Veterinary Medicine,2021,48 (9):3415-3422.

[152] GLAMO?LIJA J,?IRI? A,NIKOLI? M,et al. Chemical characterization and biological activity of Chaga(Inonotus obliquus),a medicinal \"mushroom\"[J]. Journal of Ethnophar? macology,2015,162:323-332.

[153] MALYARENKO O S,USOLTSEVA R V,ZVYAGINTSEVA T N,et al. Laminaran from brown Alga Dictyota dicho? toma and its sulfated derivative as radioprotectors and radio? sensitizers in melanoma therapy[J]. Carbohydrate Polymers, 2019,206:539-547.

[154] YU C M,FU J Q,GUO L D,et al. UPLC-MS-based serum metabolomics reveals protective effect of Ganoderma lu? cidum polysaccharide on ionizing radiation injury[J]. Journal of Ethnopharmacology,2020,258:112814.

[155] CHEN Z Q,WANG J H,FAN Z L,et al. Effects of polysac? charide from the fruiting bodies of Auricularia auricular on glucose metabolism in 60Co- γ -radiated mice[J]. International Journal of Biological Macromolecules,2019,135:887-897.

[156] XU W Q,SHEN X,YANG F J,et al. Protective effect of polysaccharides isolated from Tremella fuciformis against radiation-induced damage in mice[J]. Journal of Radiation Re? search,2012,53(3):353-360.

[157] 高俊濤,馮憲敏,萬朋,等 . 蛹蟲草多糖對微波輻射損傷雄性 小鼠生殖功能的影響[J]. 中國獸醫雜志,2021,57(6):76-79.

GAO J T,FENG X M,WAN P,et al. Effect of Cordyceps militaris polysaccharide on male reproductive function in mi? crowave radiation injury mice[J]. Chinese Journal of Veteri? nary Medicine,2021,57(6):76-79.

[158] 郭麗新,馮哲,魏博洋,等 . 蛹蟲草子實體多糖抗突變作用 [J]. 食品工業科技,2013,34(11):350-352.

GUO L X,FENG Z,WEI B Y,et al. Study on the antimutagenic effect of Cordyceps militaris polysaccharide[J]. Sci? ence and Technology of Food Industry,2013,34(11):350-352.

[159] LI X Y,WANG L,WANG Z Y. Radioprotective activity of neutral polysaccharides isolated from the fruiting bodies of Ho? henbuehelia serotina[J]. Physica Medica,2015,31(4):352-359.

[160] 李春林 . 純化對姬菇多糖抗氧化與抑菌能力的影響[J]. 糧食 與油脂,2022,35(10):92-95,101.

LI C L. Effect of purification on antioxidation and bacteriosta? sis of Pleurotus cornucopiae polysaccharide[J]. Grain and Oil, 2022,35(10):92-95,101.

[161] WAN-MOHTAR W A,YOUNG L,ABBOTT G M,et al. Antimicrobial properties and cytotoxicity of sulfated(1,3)- β -D-glucan from the Mycelium of the mushroom Ganoderma lucidum[J]. Journal of Microbiology and Biotechnology,2016, 26(6):999-1010.

[162] 何皎,孫曉菲,潘琳,等 . 微波提取香菇多糖制備微膠囊的抑 菌抗氧化活性研究[J]. 中國調味品,2023,48(2):71-75.

HE J,SUN X F,PAN L,et al. Study on antibacterial and an? tioxidant activity of microcapsules prepared with lentinan by microwave extraction[J]. China Condiment,2023,48(2):71-75.

[163] LAN M J,WENG M F,LIN Z Y,et al. Metabolomic analy? sis of antimicrobial mechanism of polysaccharides from Sparassis crispa based on HPLC-Q-TOF/MS[J]. Carbohy? drate Research,2021,503:108299.

[164] 郝正祺,王榮榮,馮翠萍,等 . 繡球菌多糖及其功能研究[J]. 中國食用菌,2017,36(1):48-51.

HAO Z Q,WANG R R,FENG C P,et al. Research of Sparas? sis crispa polysaccharide and its function[J]. Edible Fungi of China,2017,36(1):48-51.

[165] ZHANG Y,WU Y T,ZHENG W,et al. The antibacterial ac? tivity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae[J]. Journal of Functional Foods,2017,38: 273-279.

[166] ZHOU S S,JIANG J G. Anti-fatigue effects of active ingredi? ents from traditional Chinese medicine:a review[J]. Current Medicinal Chemistry,2019,26(10):1833-1848.

[167] 馬曉寧,秦令祥,丁昱嬋,等 . 響應面優化超聲波輔助提取杏 鮑菇多糖的工藝及其抗疲勞活性測定研究[J]. 中國食品添 加劑,2023,34(3):273-279.

MA X N,QIN L X,DING Y C,et al. Optimization of ultra? sonic assisted extraction of Pleurotus eryngii polysaccharide by response surface methodology and its antifatigue activity [J]. China Food Additives,2023,34(3):273-279.

[168] SURHIO M M,WANG Y F,FANG S,et al. Anti-fatigue ac? tivity of a Lachnum polysaccharide and its carboxymethylated derivative in mice[J]. Bioorganic amp; Medicinal Chemistry Let? ters,2017,27(20):4777-4780.

[169] LIU J Q,DU C X,WANG Y F,et al. Anti-fatigue activities of polysaccharides extracted from Hericium erinaceus[J]. Ex? perimental and Therapeutic Medicine,2015,9(2):483-487.

[170] CAI M,XING H Y,TIAN B M,et al. Characteristics and an? tifatigue activity of graded polysaccharides from Ganoderma lucidum separated by cascade membrane technology[J]. Car? bohydrate Polymers,2021,269:118329.

[171] ZHANG S S,LIU B,YAN G Y,et al. Chemical properties and anti-fatigue effect of polysaccharide from Pholiota nameko [J]. Journal of Food Biochemistry,2022,46(1):e14015.

[172] RIZKYANA A D,HO T C,ROY V C,et al. Sulfation and characterization of polysaccharides from Oyster mushroom (Pleurotus ostreatus) extracted using subcritical water[J]. The Journal of Supercritical Fluids,2022,179:105412.

[173] YOON S J,YU M A,PYUN Y R,et al. The nontoxic mush? room Auricularia auricula contains a polysaccharide with an? ticoagulant activity mediated by antithrombin[J]. Thrombosis Research,2003,112(3):151-158.

[174] ZHANG Z,TANG Q J,WU D,et al. Regioselective sul? fation of β -glucan from Ganoderma lucidum and structureanticoagulant activity relationship of sulfated derivatives[J]. In? ternational Journal of Biological Macromolecules,2020,155: 470-478.

[175] THIMMARAJU A,GOVINDAN S. Novel studies of char? acterization,antioxidant,anticoagulant and anticancer activity of purified polysaccharide from Hypsizygus ulmarius mush? room[J]. Bioactive Carbohydrates and Dietary Fibre,2022, 27:100308.

[176] 楊慶偉,王芃,全迎萍 . 灰樹花子實體多糖硫酸酯化及抗凝 血活性研究[J]. 北京聯合大學學報,2022,36(2):52-56.

YANG Q W,WANG P,QUAN Y P. Study on suflation and anticoagulant activity of polysaccharide from fruiting body of Grifola frondosa[J]. Journal of Beijing Union University, 2022,36(2):52-56.

[177] LI H,WANG X,XIONG Q,et al. Sulfated modification, characterization,and potential bioactivities of polysaccharide from the fruiting bodies of Russula virescens[J]. International Journal of Biological Macromolecules,2020,154:1438-1447.

猜你喜歡
小鼠
愛搗蛋的風
晚安,大大鼠!
萌小鼠,捍衛人類健康的“大英雄”
科學大眾(2021年6期)2021-07-20 07:42:44
視神經節細胞再生令小鼠復明
科學(2020年3期)2020-11-26 08:18:30
小鼠大腦中的“冬眠開關”
今天不去幼兒園
清肝二十七味丸對酒精性肝損傷小鼠的保護作用
中成藥(2018年2期)2018-05-09 07:19:34
米小鼠和它的伙伴們
Avp-iCre轉基因小鼠的鑒定
加味四逆湯對Con A肝損傷小鼠細胞凋亡的保護作用
主站蜘蛛池模板: 欧美影院久久| 国内精品免费| 四虎成人在线视频| 激情无码字幕综合| 国产成人精品亚洲日本对白优播| 9啪在线视频| 一区二区三区高清视频国产女人| 亚洲看片网| 日韩第一页在线| 国产一级二级三级毛片| 九色视频一区| 国产精品女人呻吟在线观看| 日a本亚洲中文在线观看| 无码综合天天久久综合网| 久久亚洲中文字幕精品一区| 欧美亚洲综合免费精品高清在线观看| 久草美女视频| 国产精品成人久久| 亚洲AV无码乱码在线观看代蜜桃| 日韩精品高清自在线| 国产成人三级| 99久久精品国产综合婷婷| 国产成人a在线观看视频| 欧美中文一区| 青青久久91| 亚洲国产黄色| 日韩黄色大片免费看| 国产美女一级毛片| 青草精品视频| 最新国产午夜精品视频成人| 亚洲综合婷婷激情| 成人一区专区在线观看| 国产精品v欧美| 一本无码在线观看| 视频在线观看一区二区| 99免费在线观看视频| 亚洲国产在一区二区三区| 免费又爽又刺激高潮网址| 91免费国产高清观看| 欧美精品亚洲日韩a| 老司机精品一区在线视频| 国产精品片在线观看手机版| 无码专区在线观看| 国产精品欧美日本韩免费一区二区三区不卡 | 精品一区国产精品| 久久一级电影| 国产伦精品一区二区三区视频优播| 国产麻豆精品在线观看| 欧美在线视频不卡| 国产精品视频系列专区| 黄色成年视频| 国产精品一区二区在线播放| 一本色道久久88亚洲综合| 亚洲中文字幕在线精品一区| 欧美精品v欧洲精品| 狠狠亚洲五月天| 国产精品无码一区二区桃花视频| 青青热久免费精品视频6| 免费一级毛片| 国产精品尹人在线观看| 久久香蕉国产线看观| 日韩视频福利| 一本视频精品中文字幕| 国内嫩模私拍精品视频| 欧美色视频日本| 国产高清不卡视频| 一级做a爰片久久免费| 曰韩人妻一区二区三区| 在线a网站| 一本大道香蕉久中文在线播放| 国产自在自线午夜精品视频| 色窝窝免费一区二区三区| 久久96热在精品国产高清| 欧美成人看片一区二区三区| 成人日韩精品| 强奷白丝美女在线观看| 久久精品国产一区二区小说| 91成人免费观看| 亚洲—日韩aV在线| 亚洲国产精品一区二区第一页免| 91成人免费观看| 国产日韩欧美视频|