劉亦 劉雁雁 劉元軍 趙曉明
摘? 要:為解決傳統(tǒng)阻燃劑引起的環(huán)境問題,提高產(chǎn)品的可持續(xù)性,研發(fā)綠色環(huán)保的阻燃劑具有重要意義。木質(zhì)素因含有豐富的芳環(huán)結(jié)構(gòu)、脂肪族和芳香族羥基等活性基團(tuán),廣泛應(yīng)用于制備多種生物基阻燃劑。文章首先分析了木質(zhì)素的分子結(jié)構(gòu),介紹了木質(zhì)素的阻燃機(jī)理及在阻燃領(lǐng)域的應(yīng)用進(jìn)展;然后總結(jié)了木質(zhì)素在高分子復(fù)合材料中發(fā)揮阻燃作用的兩種形式,即物理協(xié)同作用和化學(xué)改性作用;最后對未來木質(zhì)素基阻燃劑研究進(jìn)行了展望,分析了其發(fā)展趨勢和面臨挑戰(zhàn)。
關(guān)鍵詞:木質(zhì)素;物理協(xié)同;化學(xué)改性;生物基阻燃劑;綠色環(huán)保
中圖分類號:TS195.2
文獻(xiàn)標(biāo)志碼:A
文章編號:1009-265X(2024)06-0028-13
收稿日期:20231025
網(wǎng)絡(luò)出版日期:20240116
基金項(xiàng)目:中國工程院咨詢研究項(xiàng)目(2021DFZD1);天津市科技計劃項(xiàng)目創(chuàng)新平臺專項(xiàng)(17PTSYJC00150)
作者簡介:劉亦(2000—),女,湖南益陽人,碩士研究生,主要從事防護(hù)紡織品方面的研究。
通信作者:劉元軍,E-mail:liuyuanjunsd@163.com
隨著社會經(jīng)濟(jì)飛速發(fā)展,人類對能源和物質(zhì)的需求不斷增長,化石能源如煤炭、石油和天然氣等得到了廣泛開采和利用,同時也造成了嚴(yán)重的環(huán)境問題[1]。因此,可再生資源替代石油基原料成為當(dāng)前學(xué)術(shù)界關(guān)注的重要內(nèi)容之一[2]。木質(zhì)素是植物界第二大資源的生物質(zhì)材料,全球每年產(chǎn)量約5000萬噸[3]。木質(zhì)素主要存在于植物的韌皮部和薄壁組織中,也有一定數(shù)量存在于木材細(xì)胞內(nèi)。木質(zhì)素通過共價鍵和氫鍵與纖維素和半纖維素交聯(lián)在一起,是對香豆醇、松柏醇、芥子醇等3種醇單體形成的一種復(fù)雜酚類聚合物[4-5]。
阻燃劑的功能在于改變纖維燃燒的反應(yīng)路徑,促使纖維分解,產(chǎn)生不易燃燒的氣體,或者在纖維表面形成熔融物覆蓋,從而阻止燃燒持續(xù)進(jìn)行 [6-7]。傳統(tǒng)阻燃劑因添加量少而具有顯著的阻燃效果,但其存有潛在的毒性問題[8-9]。因此,具有高成炭能力、含有豐富羥基的木質(zhì)素的應(yīng)用逐步引起阻燃領(lǐng)域的關(guān)注[10-11]。
由于木質(zhì)素分子結(jié)構(gòu)的復(fù)雜性和其熱穩(wěn)定性相對較差,且不含磷、氮等阻燃元素,直接采用木質(zhì)素作為阻燃劑在提升材料阻燃性能方面效果不佳。通常采取將木質(zhì)素與其他阻燃劑進(jìn)行復(fù)配,或通過化學(xué)改性引入阻燃元素或基團(tuán)到木質(zhì)素的化學(xué)結(jié)構(gòu)中,從而獲得一系列性能優(yōu)越的木質(zhì)素基阻燃劑。文章從木質(zhì)素在高分子復(fù)合材料中發(fā)揮阻燃作用的兩種主要形式出發(fā),即物理協(xié)同和化學(xué)改性,對國內(nèi)外近期關(guān)于木質(zhì)素基阻燃劑的制備和性能研究進(jìn)展進(jìn)行了綜述;并展望了木質(zhì)素基阻燃劑的發(fā)展前景和面臨的挑戰(zhàn)。通過詳細(xì)介紹木質(zhì)素基阻燃劑的機(jī)理和研究進(jìn)展,為開發(fā)高效、環(huán)保的阻燃材料提供理論基礎(chǔ)。
1? 木質(zhì)素的阻燃機(jī)理及阻燃應(yīng)用
1.1? 阻燃機(jī)理
木質(zhì)素具有芳香環(huán)和含氧官能團(tuán)結(jié)構(gòu),可應(yīng)用于環(huán)保型阻燃劑中[12-13]。木質(zhì)素的阻燃機(jī)理可追溯到其在高溫環(huán)境下的炭化作用。曹俊等[14]利用熱重紅外聯(lián)合技術(shù)對木質(zhì)素?zé)峤膺^程中焦炭的形成進(jìn)行了研究,其高溫炭化的熱重分析(Thermog-ravimetric analysis,TG)和熱分解(Derivative thermog-ravimetry,DTG)曲線如圖1所示。從圖1可以看出,木質(zhì)素?zé)峤?炭化過程可劃分為4個階段:第一階段升溫過程中,木質(zhì)素中的自由水脫去,基本無氣體生成,此時木質(zhì)素中的特征官能團(tuán)沒有發(fā)生明顯變化。第二階段發(fā)生在200~500℃,木質(zhì)素發(fā)生熱解反應(yīng)且釋放大量二氧化碳,開始形成焦炭。其中,在300℃時,C—O鍵強(qiáng)度下降,斷裂生成二氧化碳,隨著溫度進(jìn)一步升高,O—H鍵、C—H鍵和C—C鍵振動峰值大幅度下降,導(dǎo)致碳?xì)浠锖投趸坚尫帕棵黠@增多,同時一氧化碳析出量也有所增加。第三階段發(fā)生在500~900℃,焦炭中C—C鍵和C—H鍵進(jìn)一步斷裂基本形成無定形焦炭,一氧化碳排放量迅速增加且在800℃時達(dá)到最大值。在800~900℃時大分子芳香族分子開始重排。第四階段發(fā)生在900~1400℃,溫度達(dá)到900℃后,DTG曲線
carbonization
出現(xiàn)一個較為緩慢的失重過程,主要是因?yàn)橛休^少的一氧化碳和甲烷等碳?xì)浠衔锏尼尫拧.?dāng)溫度進(jìn)一步升高至1200℃時,少量二氧化碳析出,直至1400℃官能團(tuán)特征峰幾乎消失。
木質(zhì)素阻燃機(jī)理也可歸因于高溫條件下形成的多孔炭材料。曾茂株等[15]研究了木質(zhì)素多孔炭的制備及應(yīng)用,木質(zhì)素可在高溫條件下直接熱解炭化制得多孔炭材料,該材料不僅可以吸附二氧化碳,還可以限制氧氣的進(jìn)入。由于燃燒過程中需要充足的氧氣[16],氧氣供應(yīng)的限制可有效降低火焰強(qiáng)度及火焰擴(kuò)散速度。這種多孔炭材料是木質(zhì)素阻燃機(jī)理的最重要原因之一。木質(zhì)素?zé)岱纸膺^程會釋放出一些無害氣體,如水蒸氣和二氧化碳[17],不僅有助于冷卻火源,稀釋燃燒產(chǎn)物,還可在一定程度上遏制火焰發(fā)展。綜上所述,木質(zhì)素可成為一種優(yōu)良的阻燃劑,并應(yīng)用于建筑材料、包裝材料和紡織品等領(lǐng)域。
1.2? 木質(zhì)素阻燃應(yīng)用
木質(zhì)素作為單一組分存在阻燃系統(tǒng)中時,木質(zhì)素本身會發(fā)揮出阻燃效果。Zhang等[18]通過將木質(zhì)素與氫化物官能化的有機(jī)硅混合制得彈性體和泡沫,木質(zhì)素與硅交聯(lián)網(wǎng)絡(luò)結(jié)構(gòu)如圖2所示。從圖2可以看出,木質(zhì)素與硅交聯(lián)網(wǎng)絡(luò)結(jié)構(gòu)賦予木質(zhì)素清除自由基的能力,提高了泡沫熱穩(wěn)定性和阻燃性。該阻燃劑通過釋放低能量自由基捕捉高能量自由基,阻止自由基繼續(xù)發(fā)生鏈?zhǔn)椒磻?yīng)而達(dá)到阻燃效果,屬于氣相阻燃機(jī)理。
原始木質(zhì)素在阻燃領(lǐng)域應(yīng)用有限,目前了解到木質(zhì)素磺酸鈉、堿性木質(zhì)素和酶解木質(zhì)素可單獨(dú)應(yīng)用于聚氨酯泡沫中,以提高聚氨酯泡沫的阻燃性和熱穩(wěn)定性。Zhang等[19]制備了涂有堿性木質(zhì)素或木質(zhì)素磺酸鈉的聚氨酯泡沫,研究結(jié)果顯示其極限氧指數(shù)可高達(dá)28.4%。涂層阻燃原理是通過生長出致密和膨脹的炭、捕獲自由基和釋放惰性氣體稀釋氧氣,凝聚相阻燃機(jī)理和氣相阻燃機(jī)理共同發(fā)揮作用,增強(qiáng)聚氨酯泡沫阻燃性。因此單獨(dú)使用木質(zhì)素可進(jìn)一步提高聚氨酯泡沫和棉織物的阻燃性能,無需任何磷酸化改性或與其他阻燃劑組合。Liu等[20]通過靜電相互作用將木質(zhì)素與三聚氰胺和氨基三甲基磷酸組裝在一起,制備了一種新型阻燃劑(LMA)。由于LMA中豐富的羥基與環(huán)氧樹脂開環(huán)反應(yīng),LMA與環(huán)氧樹脂表現(xiàn)出優(yōu)異的界面強(qiáng)度。環(huán)氧樹脂-LMA通過了垂直燃燒測試V-0等級(UL-94 V-0等級),極限氧指數(shù)值達(dá)到了30.2%。同時,在環(huán)氧樹脂方面,環(huán)氧樹脂-LMA的放熱率峰值和產(chǎn)煙率峰值分別下降了72.3%和77.5%,該結(jié)果表明:優(yōu)異的膨脹炭使環(huán)氧樹脂具有良好阻燃性。
雖然可通過引入阻燃添加劑增強(qiáng)阻燃性,但不同材料之間的界面相互作用不理想,這可能導(dǎo)致材料中阻燃劑分散不均勻,影響阻燃性。Cen等[21]引入木質(zhì)素作為結(jié)構(gòu)增強(qiáng)劑和成炭劑,制備了海藻酸鈉/木質(zhì)素磺酸鈉/植酸超疏水氣凝膠,該超疏水材料利用凝聚相阻燃機(jī)理實(shí)現(xiàn)阻燃:在受熱后不斷吸熱并迅速形成凝膠層,阻止燃燒物內(nèi)部揮發(fā)出可燃性氣體,進(jìn)一步遏制火焰形成和延展。Mandlekar等[22]將木質(zhì)素磺酸木質(zhì)素和牛皮紙木質(zhì)素用作聚酰胺11磷基阻燃劑的炭化劑。通過測試研究了木質(zhì)素對聚酰胺11結(jié)合次磷酸鹽添加劑(即次磷酸鋁和次磷酸鋅)的熱穩(wěn)定性和阻燃性的影響。該結(jié)果表明,含磺酸鹽木質(zhì)素的三元共混物具有致密炭層的炭渣,依靠凝聚相阻燃機(jī)理實(shí)現(xiàn)阻燃。在所有三元混合物中,任何木質(zhì)素的存在都會降低初始分解溫度,歸因于木質(zhì)素降解,木質(zhì)素降解從較低溫度開始并以非常緩慢的速度持續(xù),收集大量炭殘留物,依靠凝聚相阻燃機(jī)理實(shí)現(xiàn)阻燃目的。
2? 木質(zhì)素的物理協(xié)同阻燃
木質(zhì)素含有豐富的活性基團(tuán),如羥基、大量苯環(huán),使它能夠成為多種高分子材料的原材料,以代替一部分石油化工原料[23]。木質(zhì)素在阻燃體系中可作為優(yōu)良的成炭劑,制成性能優(yōu)異的生物質(zhì)基環(huán)保材料[24]。Yan等[25]采用木質(zhì)素磺酸鹽和氫氧化鎳(Ni(OH)2)為原料研發(fā)了一種功能化層狀雙氫氧化物(LDH-LS@Ni(OH)2)阻燃劑,結(jié)果表明:復(fù)合材料的峰值熱釋放率、總熱釋放量和總發(fā)煙量分別顯著降低了62.7%、29.5%和46.2%。LDH-LS@Ni(OH)2的阻燃機(jī)理主要是在凝聚相阻燃中依靠過渡金屬元素的催化炭化作用和水滑石的物理阻隔作用。Widsten等[26]將未改性和化學(xué)改性的工業(yè)木質(zhì)素的阻燃性能與聚丙烯基質(zhì)中的多磷酸銨/季戊四醇膨脹系統(tǒng)的阻燃性能進(jìn)行比較。其中聚丙烯具有易燃性,在空氣中燃燒時會產(chǎn)生大量煙霧和熔融液滴,限制了其進(jìn)一步應(yīng)用。該研究表明:與純聚丙烯以及大量的殘?zhí)肯啾龋郾?木質(zhì)素復(fù)合材料的熱量減少百分比降低了41%,總釋放熱降低了36%。在氣相阻燃機(jī)理中,基于相同參數(shù),使用改性木質(zhì)素制成的聚丙烯/木質(zhì)素復(fù)合材料阻燃性能更加優(yōu)異。
木質(zhì)素含量對阻燃效果具有一定的影響,但效果取決于具體的應(yīng)用情況和材料組合。Shi等[27]以不同含量的木質(zhì)素磺酸鈉水溶液為分散劑,合成木質(zhì)素基生物水性聚氨酯,研究不同木質(zhì)素磺酸鈉水溶液含量對聚氨酯薄膜熱力學(xué)性能和熱穩(wěn)定性的影響。隨著木質(zhì)素磺酸鈉水溶液含量的增加,木質(zhì)素基生物水性聚氨酯的極限氧指數(shù)可達(dá)24.7%,在凝聚相阻燃機(jī)理和氣相阻燃機(jī)理中表現(xiàn)出良好的阻燃效果。Liang等[28]探究了含有木質(zhì)素的阻燃劑含量對阻燃效果的影響。通過將聚磷酸銨、三聚氰胺和鋁木質(zhì)素進(jìn)行一步反應(yīng),制備了一種可再生、環(huán)保的木質(zhì)素基阻燃劑。該測試結(jié)果表明,當(dāng)加入20%的阻燃劑后,環(huán)氧樹脂的阻燃性能最優(yōu)。此外,其總產(chǎn)煙量為9.9 m2,總放熱率為53.1 MJ/m2。氣相阻燃機(jī)理表明,這種木質(zhì)素基阻燃劑具有優(yōu)異的滅火和抑煙性能。尚新宇等[29]將木質(zhì)素與焦磷酸哌嗪按質(zhì)量比1∶1復(fù)配制得一種復(fù)合膨脹型阻燃劑,并將其用于阻燃改性環(huán)氧樹脂。其熱釋放速率和總煙釋放量曲線如圖3所示。從圖3可以看出,通過一系列阻燃性能測試發(fā)現(xiàn)木質(zhì)素與焦磷酸哌嗪的引入使阻燃改性環(huán)氧樹脂限氧指數(shù)由22.2%提高至27.5%,最大熱釋放速率,總煙霧釋放量分別降低了60.11%、22.25%。該結(jié)果表明:復(fù)合膨脹型阻燃劑的添加明顯促進(jìn)了體系的成炭率,使得環(huán)氧樹脂阻燃材料燃燒后殘?zhí)繉痈又旅埽巯嘧枞紮C(jī)理和氣相阻燃機(jī)理共同作用提高了阻燃效果。
木質(zhì)素與硼酸、磷酸二氫銨、氫氧化鎂和聚磷酸銨等傳統(tǒng)阻燃劑構(gòu)成協(xié)同阻燃體系取代木質(zhì)素,具有更高效的阻燃效果。王佳楠等[30]將精制堿木質(zhì)素與聚磷酸銨按不同比例組成膨脹阻燃劑(IFR)并添加到聚氨酯泡沫中,制得堿木質(zhì)素/聚磷酸銨膨脹阻燃聚氨酯泡沫。該研究表明:當(dāng)堿木質(zhì)素與聚磷酸銨的復(fù)配比為1∶6、IFR添加量為30%時,堿木質(zhì)素/聚磷酸銨膨脹阻燃聚氨酯泡沫的限氧指數(shù)值達(dá)到26.3%。究其原因:IFR加入后在材料表面形成了連續(xù)致密的炭層,降低了材料的熱降解速率,提高了殘?zhí)柯剩谀巯嘧枞紮C(jī)理中實(shí)現(xiàn)阻燃效果。薛建英等[31]將改性木質(zhì)素磺酸鈉替代聚氨酯原料中的聚醚多元醇,并將納米二氧化硅和聚磷酸銨按不同比例加入到硬質(zhì)聚氨酯材料中,進(jìn)行協(xié)同阻燃,制得復(fù)合硬質(zhì)聚氨酯。該結(jié)果顯示:聚磷酸銨(25.0%)、納米二氧化硅(1.0%)、羥甲基木質(zhì)素磺酸鈉(4%)時,復(fù)合材料的極限氧指數(shù)最高可達(dá)27.2%,最高熱釋放量和總煙釋放量分別降低了51.5%和32.5%;殘?zhí)啃蚊踩鐖D4所示[31]。從圖4可以看出,與純聚氨酯相比,添加了協(xié)同阻燃劑的聚氨酯材料的殘?zhí)扛用軐?shí),孔洞更小,屬于凝聚相阻燃機(jī)理。
靳艷巧等[32]以木質(zhì)素為初始原料,通過羥甲基化改性和Mannich反應(yīng)將哌嗪分子接枝到木質(zhì)素分子上,采用反向共沉淀法制備哌嗪改性木質(zhì)素/氫氧化鎂雙重包覆紅磷阻燃劑。阻燃劑各組分間顯示良好的阻燃協(xié)同效應(yīng)。Li等[33]采用木質(zhì)素、聚硅氧烷和磷酸鹽反應(yīng)制備了聚硅氧烷包裹的含磷木質(zhì)素基阻燃劑。其阻燃機(jī)理:在凝聚相阻燃原理中木質(zhì)素、磷酸鹽和聚硅氧烷的協(xié)同作用,生成致密內(nèi)聚的炭層,作為物理屏障,限制熱量和氧氣的傳遞,阻止可燃?xì)怏w擴(kuò)散。Lu等[34]合成了一種包含鈷和磷/氮成分的金屬有機(jī)骨架(P-MOF)加入到阻燃劑中,由于滅火(磷有機(jī)組分)和煙霧抑制(鈷組分),添加P-MOF后熱量釋放和煙霧產(chǎn)生顯著降低。木質(zhì)素和P-MOF組分之間的協(xié)同作用抑制了凝聚相的燃燒,產(chǎn)生了較多具有更高石墨化程度的炭殘留物,利用氣相阻燃和凝聚相阻燃兩者共同作用實(shí)現(xiàn)阻燃效果。
3? 木質(zhì)素的化學(xué)改性阻燃
木質(zhì)素與其他物質(zhì)協(xié)同阻燃雖然環(huán)保,但持久性、穩(wěn)定性等方面存在不足。近年來,國內(nèi)外學(xué)者通過對木質(zhì)素進(jìn)行化學(xué)改性來進(jìn)一步改善相關(guān)性能。通過引入磷、氮、硅等元素或化合物,可以顯著改善木質(zhì)素的阻燃特性。木質(zhì)素的化學(xué)改性不僅能夠定制其阻燃特性以滿足特定需求,還可以提供諸如提高熱穩(wěn)定性和減少煙霧生成等額外優(yōu)勢,使其成為阻燃應(yīng)用中更受青睞的選擇。
3.1? 氮磷改性
阻燃劑中含有氮磷基團(tuán)時,阻燃劑具有較強(qiáng)的熱穩(wěn)定性,同時對材料產(chǎn)生的影響較小[35-36]。2018年時,Zhang等[37]通過木質(zhì)素、9,10-二氫-9-氧雜-10-磷-10-氧化物和六亞甲基二異氰酸酯之間的反應(yīng),成功研制出了新型木質(zhì)素基阻燃劑(LHD)。阻燃木質(zhì)素基聚氨酯炭殘留物表面有連續(xù)致密的外層碳層,內(nèi)部碳層有許多膨脹氣泡,在凝聚相阻燃中表現(xiàn)出優(yōu)異的阻燃性能。兩年后Hu等[38]合成了一種新型木質(zhì)素基含磷阻燃劑(LMD)作為組分,研制出了一種全降解阻燃木材/聚乳酸生物復(fù)合材料,結(jié)果表明阻燃性源于LMD中的磷元素和木質(zhì)素。Wang等[39]和Dai等[40]進(jìn)一步探究證實(shí)了LMD是復(fù)合材料的優(yōu)良阻燃劑和增強(qiáng)材料,研究發(fā)現(xiàn)含磷量較高的復(fù)合材料可實(shí)現(xiàn)最佳的阻燃性,達(dá)到UL-94測試的V-0等級。Lee等[41]將木質(zhì)素填料
通過磷酸化改性后摻入聚丙烯中,以增加聚丙烯基復(fù)合材料的阻燃性。該研究中燃燒測試后掃描電子顯微鏡圖像顯示,在凝聚相阻燃中磷酸化后的木質(zhì)素在復(fù)合材料上形成的固體炭充當(dāng)聚丙烯保護(hù)層,因此木質(zhì)素磷酸化可提高其阻燃性。
諸多研究表明:通過調(diào)整阻燃劑接枝率可以優(yōu)化木質(zhì)素阻燃劑性能。Hajj等[42]將多種含磷阻燃劑接枝到富含木質(zhì)素的桔梗纖維和貧木質(zhì)素的亞麻纖維上,探究了該阻燃劑接枝率與阻燃性的影響,結(jié)果顯示熱性能和阻燃性與磷的接枝率呈正相關(guān)。因功能化木質(zhì)素阻燃性不理想,Liu等[43]通過接枝聚合將多磷酰胺接枝到木質(zhì)素廢料的化學(xué)結(jié)構(gòu)中,研制了一種木質(zhì)素衍生的阻燃劑。該結(jié)果表明:所得阻燃劑達(dá)到令人滿意的UL-94 V-0等級,滿足工業(yè)對阻燃性的苛刻要求。張安棟等[44]將9,10-二氫-9-氧雜-10-磷酰基-10-氧化物接枝到木質(zhì)素上,所得復(fù)合材料也表現(xiàn)出優(yōu)異的阻燃性。
含氮改性木質(zhì)素阻燃劑具有較高的熱穩(wěn)定性和抗熱分解性。Zhou等[45]制備了含氮木質(zhì)素基阻燃劑,加入質(zhì)量分?jǐn)?shù)為7%的官能化木質(zhì)素,表征結(jié)果顯示,碳?xì)埩袅孔兊酶映砻埽細(xì)埩粑锏臄?shù)碼圖如圖5所示。
從圖5可以看出,在燃燒過程中氮元素釋放出氨稀釋氧氣并生產(chǎn)致密的焦炭層阻止空氣進(jìn)入,從氣相阻燃和凝聚相阻燃兩方面實(shí)現(xiàn)高效阻燃。接枝改性后磷系木質(zhì)素基阻燃劑性能優(yōu)異,但當(dāng)含量增加到臨界值時,單純依靠增加磷系阻燃劑的數(shù)量,材料的阻燃性能提升不再明顯[46]。然而,磷系阻燃劑與含氮化合物通常具有較好的PN協(xié)同作用[47-48]。Wang等[49]制備了聚乙烯亞胺化學(xué)接枝有聚磷酸的木質(zhì)素基阻燃劑,發(fā)現(xiàn)氮/磷改性的木質(zhì)素表現(xiàn)出較低的炭形成溫度和較強(qiáng)的熱穩(wěn)定性。該結(jié)果顯示:磷元素起到促進(jìn)復(fù)合物中炭形成的作用,使樹脂基質(zhì)具有致密炭層,為凝聚相阻燃。燃燒過程中,氮元素形成氨稀釋空氣并生成炭層阻止了空氣進(jìn)入,在氣相阻燃機(jī)理中達(dá)到高效阻燃目的,兩者起到較好的協(xié)助作用。Wei等[50]通過木質(zhì)素和六氯環(huán)三磷腈之間的一步親核取代反應(yīng)來開發(fā)生物基阻燃劑(Lig-HCCP),阻燃機(jī)理如圖6所示。從圖6可以看出,其阻燃機(jī)制歸因于 P-N 協(xié)同作用有助于形成膨脹且致密的炭層。
Weng等[51]制備了氮磷摻雜改性木質(zhì)素阻燃劑(NP-LMDL),探討了泡沫中氮和磷的阻燃機(jī)理。該結(jié)果表明,NP-LMDLPF x中氮和磷共同作用,促進(jìn)聚合物碳化,生成豐富的氮磷殘?zhí)繉樱鸬侥巯嘧枞甲饔谩i等[52]制備了一種創(chuàng)新的環(huán)保硅、磷、氮三重木質(zhì)素阻燃劑(Lig-K-DOPO),結(jié)果表明 Lig-K-DOPO中P-N元素協(xié)同作用,使其具有,優(yōu)良阻燃性和抑煙性。仲磊等[53]以硫酸鹽木質(zhì)素為原料,通過縮醛反應(yīng)從外部引入醛基,進(jìn)行氮磷改性制備反應(yīng)型木質(zhì)素基阻燃劑,用于替代苯酚制備改性酚醛泡沫。其中,當(dāng)替代率為10%時,改性酚醛泡沫具有較為優(yōu)異阻燃性能。這主要是因?yàn)椋环矫娓男苑尤┡菽紵a(chǎn)生了水蒸氣和不可燃?xì)怏w,另一方面改性木質(zhì)素受熱生成的磷酸鹽促進(jìn)了碳層的形成,使得該阻燃劑在氣相阻燃和凝聚相阻燃中發(fā)揮作用。
3.2? 含金屬離子的氮磷改性
鋁離子的引入不僅可以提高可燃物的炭化效率,還可以在高溫下吸收熱量并與氧氣反應(yīng),形成氧化鋁層隔絕可燃?xì)怏w,在氣相阻燃和凝聚相阻燃兩方面發(fā)揮作用。宋玉軍等[54]發(fā)明了一種木素鋁阻燃劑:以木質(zhì)素裂解產(chǎn)物為骨架,在其分子鏈上具有反應(yīng)活性官能團(tuán)部位接枝有三價鋁離子,還接枝各類阻燃性無機(jī)酸基團(tuán)/胺基。與傳統(tǒng)酚醛阻燃保溫材料相比,該阻燃劑使用大量低成本天然大分子木質(zhì)素,使其終端產(chǎn)品木素鋁阻燃劑及其制備的阻燃保溫材料具有很強(qiáng)的市場競爭力。
金屬銅離子能催化木質(zhì)素在高溫下的炭化過程,促使木質(zhì)素分解生產(chǎn)炭化物。Guo等[55]采用乙二胺處理制備胺化聚丙烯腈(A-PAN),木質(zhì)素磺酸鈉通過強(qiáng)離子鍵吸附在A-PAN的表面和內(nèi)部與銅離子螯合,得到Cu/SLS/A-PAN。該研究中熱重分析曲線表明Cu/SLS/A-PAN的熱降解無論在氮?dú)庵羞€是空氣中都容易形成大量的炭渣,作為有效的屏障阻礙聚丙烯腈基體分解。此外,作者采用熱重紅外光譜法(Thermogravimetry infrared spectroscopy,TG-IR)研究了聚丙烯腈和Cu/SLS/A-PAN的熱解產(chǎn)物,TG-IR光譜如圖7所示[55]。從圖7可以看出,與聚丙烯腈相比,Cu/SLS/A-PAN顯示出熱解產(chǎn)物的早期釋放和揮發(fā)產(chǎn)物強(qiáng)度的相對降低,揭示了聚丙烯腈和銅離子的摻入促進(jìn)纖維的早期降解,抑制聚丙烯腈有毒熱解產(chǎn)物逸出。釋放的二氧化碳量顯著減少,表明形成了更多焦炭殘留物,并且Cu/SLS/A-PAN的炭渣呈現(xiàn)出大量具有連續(xù)波狀炭層的膨脹泡。綜上所述,聚丙烯腈和銅離子協(xié)同作用在凝聚相阻燃中賦予Cu/SLS/A-PAN優(yōu)異的阻燃性和較高的成炭能力。
Liu等[56]通過磷,氮和鋅離子進(jìn)行化學(xué)修飾木質(zhì)素,將堿性木質(zhì)素作為聚丁二烯酯(PBS)的一種生物基添加劑。該結(jié)果表明:添加質(zhì)量分?jǐn)?shù)為10%的改性木質(zhì)素(PNZn-木質(zhì)素)使PBS峰值放熱速率和總放熱分別顯著降低50%和67%。此外,總煙霧產(chǎn)生量顯著降低了50%,添加PNZn-木質(zhì)素可形成致密、完整和厚實(shí)的炭層PNZn-木質(zhì)素在凝聚相阻燃機(jī)理中表現(xiàn)出優(yōu)異阻燃性。相較于傳統(tǒng)阻燃劑,金屬離子改性木質(zhì)素阻燃劑中的金屬離子通常具有較低毒性,減少了有害物質(zhì)在材料燃燒時釋放到環(huán)境中的可能性。
3.3? 有機(jī)硅改性
有機(jī)硅木質(zhì)素阻燃劑具有良好耐熱性、抗氧化性和抑煙性。然而,其因成本較高及合成過程復(fù)雜而較少應(yīng)用。馬松琪等[57]利用不同類型有機(jī)硅與木質(zhì)素相結(jié)合,對環(huán)氧樹脂進(jìn)行協(xié)同阻燃,開發(fā)了一種綠色環(huán)保的復(fù)合型阻燃材料。該研究深入分析木質(zhì)素與有機(jī)硅在協(xié)同阻燃中的作用機(jī)理,并為今后開發(fā)綜合性能卓越的木質(zhì)素/有機(jī)硅阻燃劑提供了參考。戴靜等[58]采用溶膠凝膠法制備硅改性木質(zhì)素(SiO2@Al)作為膨脹阻燃劑碳源,制備了膨脹阻燃聚丙烯復(fù)合材料。該研究結(jié)果表明:添加質(zhì)量分?jǐn)?shù)4% SiO2@Al的聚丙烯復(fù)合材料在UL-94阻燃測試中達(dá)到了V-0級,SiO2@AL的添加使聚丙烯形成了更加穩(wěn)定的蜂窩狀炭層,在凝聚相阻燃中達(dá)到阻燃效果。
路煥青等[59]以麥草堿木質(zhì)素為主要原料,利用γ-氨丙基三乙氧基硅烷對其進(jìn)行改性,制得了含N、Si木質(zhì)素基成炭劑。該成炭劑在500 ℃及800 ℃下的殘?zhí)柯史謩e達(dá)到31.5%和21.3%,明顯高于麥草堿木質(zhì)素的2.0%和1.9%。該研究表明該成炭劑具有良好的熱穩(wěn)定性及成炭能力,有助于減少碳排放。有機(jī)硅的引入可以改善木質(zhì)素的阻燃性能,并增強(qiáng)阻燃劑整體性能[60]。首先,有機(jī)硅在木質(zhì)素分子中的引入可以提高材料的隔熱性能。其次,有機(jī)硅的引入有助于生成均勻致密的炭層,炭層可以隔離材料表面與火焰之間的接觸有效延緩火勢蔓延[61]。最后,有機(jī)硅在一定程度上可以提高木質(zhì)素阻燃劑的生物降解性能,有助于減少對環(huán)境的持久影響[62]。
3.4? 納米改性
木質(zhì)素納米顆粒由于其納米級尺寸和較大比表面積,能夠在高溫下形成有效的熱屏障,減緩火焰?zhèn)鞑ズ蜔醾鲗?dǎo)。木質(zhì)素納米顆粒可通過化學(xué)改性接枝其他元素進(jìn)一步提高阻燃性,這種復(fù)合材料在微觀和納米級別上調(diào)控材料的阻燃性質(zhì)。Meng等[63]在木質(zhì)素上逐步接枝苯基二氯氧化磷和1, 4-二甲氧基乙炔,合成了多功能木質(zhì)素衍生物納米粒子(CP-Lignin),用于制備熱塑性聚氨酯復(fù)合材料。與對照熱塑性聚氨酯相比,樣品的熱釋放速率峰值和生煙速率分別降低了50.0%和53.8%。究其原因:熱塑性聚氨酯的降解溫度提高了,木質(zhì)素或CP-Lignin木質(zhì)素減緩了降解。CP-Lignin有利于形成均勻分布的碳層。CP-Lignin在凝聚相阻燃機(jī)理中有效提高了熱塑性聚氨酯(TPU)的阻燃效果。
納米材料相較于傳統(tǒng)材料,在熱力學(xué)方面表現(xiàn)出顯著的改善[64]。劉學(xué)等[65]詳細(xì)介紹了木質(zhì)素功能納米顆粒的制備方法,主要有自組裝法、機(jī)械法、聚合組裝法和凍干炭化法,為納米改性木質(zhì)素的研究提供了參考。Song等[66]通過邁爾棒法制備了具有高效阻燃性的木質(zhì)素改性碳納米管/石墨烯雜化涂層,研究結(jié)果顯示:涂層優(yōu)異的阻燃性來源于碳納米管/石墨烯與木質(zhì)素的協(xié)同效應(yīng)。Chollet等[67]通過溶解-沉淀過程制備木質(zhì)素納米顆粒并對其進(jìn)行功能化,研究其在聚乳酸中的阻燃效果。該研究結(jié)果表明:功能化后的木質(zhì)素納米顆粒具有更高的殘?zhí)苛浚⑶沂褂眉{米木質(zhì)素不僅可以減少添加量還可以在凝聚相阻燃中保持高效阻燃效果。李靜等[68]利用木質(zhì)素為原料,制備木質(zhì)素納米顆粒,將其與聚乙烯醇溶液、殼聚糖溶液混合,通過接枝改性制得木質(zhì)素納米顆粒/聚乙烯醇/殼聚糖三元復(fù)合材料。其極限氧指數(shù)為27%,達(dá)到難燃級別。郭亞軍[69]以正硅酸四乙酯、木質(zhì)素為原料,合成納米二氧化硅,并利用縮聚反應(yīng)和分子間作用力將納米二氧化硅引入到酚醛樹脂中并詳細(xì)探討了納米二氧化硅含量對木質(zhì)素酚醛泡沫阻燃性的影響。當(dāng)納米二氧化硅占木質(zhì)素酚醛泡沫質(zhì)量的0.5%時(LPF-0.5),其放熱速率19.14 kW/m2、有效燃燒熱為8.14 kJ/kg、總熱釋放量為4.2 kW/m2,阻燃性能均優(yōu)于其他納米二氧化硅含量的改性泡沫。該研究結(jié)果中納米二氧化硅和0.5%-木質(zhì)素酚醛泡沫的掃描電鏡如圖8所示[69]。從圖8可以看出,LPF-0.5的泡孔均勻度更好,排列更致密,開孔率更低,泡壁呈現(xiàn)規(guī)則的多邊形狀,使其殘?zhí)柯蚀蟠筇岣撸岣吡嗽撟枞紕┰谀巯嘧枞贾袑?shí)現(xiàn)阻燃效果。
4? 結(jié)論與展望
文章簡要分析了木質(zhì)素的分子結(jié)構(gòu),詳細(xì)闡述了木質(zhì)素自身具有阻燃性能的原因及在阻燃領(lǐng)域的應(yīng)用。其次,分別論述了木質(zhì)素與其他物質(zhì)協(xié)同作用和化學(xué)改性作用兩方面在高分子復(fù)合材料中發(fā)揮的阻燃效果。化學(xué)改性作用主要介紹了磷氮改性、含金屬離子的氮磷改性、有機(jī)硅改性和納米改性。通過深入了解木質(zhì)素基阻燃劑的研究進(jìn)展,為開發(fā)高效、環(huán)保的阻燃材料提供理論基礎(chǔ)。目前,木質(zhì)素基阻燃劑在應(yīng)用中存在兩個主要挑戰(zhàn):
a)絕大多數(shù)木質(zhì)素具有較高的極性,與聚合物材料的分散性和相容性問題仍是一大問題。
b)如何在使用高含量的木質(zhì)素衍生阻燃劑的同時保持原材料的機(jī)械力學(xué)性能,仍需進(jìn)一步研究。
阻燃劑市場競爭激烈,盡管面臨一些挑戰(zhàn),如性能平衡、可持續(xù)性和經(jīng)濟(jì)可行性等,但通過持續(xù)的研究和創(chuàng)新,木質(zhì)素阻燃劑在未來將會呈現(xiàn)出更廣闊的發(fā)展前景,為實(shí)現(xiàn)高效、環(huán)保和可持續(xù)的阻燃解決方案做出貢獻(xiàn)。雙碳計劃旨在減少溫室氣體排放,減緩全球氣候變暖。木質(zhì)素基阻燃劑不僅可有效抑制并減少一氧化碳和二氧化碳的生成與釋放,減少對有限化石燃料的依賴;還可以提高建筑材料的阻燃性能,有利于推動綠色建筑和可持續(xù)設(shè)計,與雙碳計劃和可持續(xù)發(fā)展的目標(biāo)高度契合。但木質(zhì)素基阻燃劑相關(guān)研究仍需要進(jìn)一步深入探究和改進(jìn)。木質(zhì)素基阻燃劑未來發(fā)展趨勢有以下兩個方面:
a)多功能性。木質(zhì)素阻燃劑不僅需要具備高效阻燃性,還需具備導(dǎo)電性、抗菌性等,研制出具有多種功能和高附加值的木質(zhì)素基阻燃劑是未來研究方向。
b)可持續(xù)性和環(huán)保性。關(guān)注木質(zhì)素阻燃劑的可持續(xù)性發(fā)展是未來的重點(diǎn)。在原料方面探索更多來源于可再生資源的木質(zhì)素,在技術(shù)方面不斷創(chuàng)新技術(shù),從制備工藝源頭減少污染,開發(fā)環(huán)境友好型的合成方法,減少對有限資源的依賴,促進(jìn)阻燃材料產(chǎn)業(yè)的可持續(xù)發(fā)展。
參考文獻(xiàn):
[1]周明燦,劉偉.碳減排與生物質(zhì)資源利用[J].化工設(shè)計,2022,32(5):11-14.
ZHOU Mingcan, LIU Wei. Carbon emission reduction and utilization of biomass resources[J]. Chemical Engineering Design, 2022,32(5):11-14.
[2]李卓,張娜,胡立紅,等.木質(zhì)素基阻燃劑的研究進(jìn)展[J].纖維素科學(xué)與技術(shù),2021,29(1):59-68.
LI Zhuo, ZHANG Na, HU Lihong, et al.Research progress of lignin-based flame retardants[J]. Journal of Cellulose Science and Technology, 2021, 29(1):59-68.
[3]UPTON B M,KASKO A M.Strategies for the conversion of lignin to high-value polymeric materials:Review and perspective[J].Chemical Reviews,2016,116(4):2275-2306.
[4]周益同,張小麗,張力平.木質(zhì)素的結(jié)構(gòu)及其改性現(xiàn)狀[J].現(xiàn)代化工,2010,30(S2):63-66.
ZHOU Yitong,ZHANG Xiaoli,ZHANG Liping.The structure of lignin and its modification status[J].Modern Chemical Industry,2010,30(S2):63-66.
[5]李忠正.可再生生物質(zhì)資源:木質(zhì)素的研究[J].南京林業(yè)大學(xué)學(xué)報(自然科學(xué)版),2012,36(1):1-7.
LI Zhongzheng. Research on renewable biomass resource:Lignin[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2012,36(1):1-7.
[6]周穎,裘愉發(fā),李淳,等.阻燃織物的現(xiàn)狀和發(fā)展[J].絲綢,2006,43(11):70-73.
ZHOU Ying,QIU Yufa,LI Chun,et al.Present situation and development of flame retardant fabrics[J].Journal of Silk,2006,43(11):70-73.
[7]李典英,呂青林,章輝,等.紡織與服裝產(chǎn)品燃燒性能和禁/限用阻燃劑含量安全風(fēng)險分析[J].現(xiàn)代紡織技術(shù),2014,22(2):45-48.
LI Dianying,L Qinglin,ZHANG Hui,et al.Analysis on combustion performance of textile and apparel products and safety risk of banned/limited flame retardant content[J].Advanced Textile Technology,2014,22(2):45-48.
[8]鄭志榮,鐘鉉.綠色環(huán)保阻燃劑的研究現(xiàn)狀[J].浙江紡織服裝職業(yè)技術(shù)學(xué)院學(xué)報,2007,6(4):10-14.
ZHENG Zhirong,ZHONG Xuan.On the study of green environment-friendly flame retardants[J].Journal of Zhejiang Fashion Institute of Technology,2007,6(4):10-14.
[9]劉曉云,吉婉麗,王曉芳,等.DPAP阻燃整理滌綸織物性能研究[J].現(xiàn)代紡織技術(shù),2021,29(3):89-94.
LIU Xiaoyun,JI Wanli,WANG Xiaofang,et al.Study on properties of polyester fabrics with DPAP flame retardant finishing[J].Advanced Textile Technology,2021,29(3):89-94.
[10]CORREA C R, STOLLOVSKY M, HEHR T,et al.Influence of the carbonization process on activated carbon properties from lignin and lignin-rich biomasses[J].ACS Sustainable Chemistry & Engineering,2017,5(9):8222-8233.
[11]THAKUR V K,THAKUR M K,RAGHAVAN P,et al.Progress in green polymer composites from lignin for multifunctional applications: A review[J].ACS Sustainable Chemistry & Engineering,2014,2(5):1072-1092.
[12]朱云燕,郭榮輝.阻燃劑阻燃機(jī)理的研究進(jìn)展[J].紡織科學(xué)與工程學(xué)報,2023,40(4):115-122.
ZHU Yunyan,GUO Ronghui.Research progress of retarding mechanism of flame retardants[J].Journal of Textile Science and Engineering,2023,40(4):115-122.
[13]路瑤,魏賢勇,宗志敏,等.木質(zhì)素的結(jié)構(gòu)研究與應(yīng)用[J].化學(xué)進(jìn)展,2013,25(5):838-858.
LU Yao,WEI Xianyong,ZONG Zhimin,et al.Structural investigation and application of lignins[J].Progress in Chemistry,2013,25(5):838-858.
[14]曹俊,肖剛,許嘯,等.木質(zhì)素?zé)峤?炭化官能團(tuán)演變與焦炭形成[J].東南大學(xué)學(xué)報(自然科學(xué)版),2012,42(1):83-87.
CAO Jun,XIAO Gang,XU Xiao,et al.Functional groups evolvement and charcoal formation during lignin pyrolysis/ carbonization[J].Journal of Southeast University(Natural Science Edition) ,2012,42(1):83-87.
[15]曾茂株,佘煜琪,胡玉彬,等.木質(zhì)素多孔炭的制備及應(yīng)用研究進(jìn)展[J].化工進(jìn)展,2021,40(8):4573-4586.
ZENG Maozhu,SHE Yuqi,HU Yubin,et al.Progress in preparation and application of lignin porous carbon[J].Chemical Industry and Engineering Progress,2021,40(8):4573-4586.
[16]陳浩然,李曉丹.阻燃劑的研究發(fā)展現(xiàn)狀[J].纖維復(fù)合材料,2012,29(1):18-21.
CHEN Haoran,LI Xiaodan.The recent progress of flame-retardants[J].Fiber Composites,2012,29(1):18-21.
[17]付尹宣.木質(zhì)素?zé)崃呀夥绞郊捌洚a(chǎn)物研究[D].北京:北京化工大學(xué),2013:1-9.
FU Yinxuan.Study on Pyrolysis Mode of Lignin and Its Products[D].Beijing:Beijing University of Chemical Technology,2013:1-9.
[18]ZHANG J F,F(xiàn)LEURY E,CHEN Y,et al.Flame retardant lignin-based silicone composites[J].RSC Advances,2015,5(126):103907-103914.
[19]ZHANG D Q,ZENG J,LIU W F,et al.Pristine lignin as a flame retardant in flexible PU foam[J].Green Chemistry,2021,23(16):5972-5980.
[20]LIU Y H,LIU B J,SUN Z Y,et al.Bioinspired mono-component lignin endowing epoxy resin with simultaneously improving flame retardancy and mechanical properties[J].Composites Communications,2022,35:101306.
[21]CEN Q L,CHEN S L,YANG D F,et al.Full bio-based aerogel incorporating lignin for excellent flame retardancy, mechanical resistance, and thermal insulation[J].ACS Sustainable Chemistry & Engineering,2023,11(11):4473-4484.
[22]MANDLEKAR N,CAYLA A,RAULT F, et al.Valorization of industrial lignin as biobased carbon source in fire retardant system for polyamide 11 blends[J].Polymers,2019,11(1):180.
[23]朱晨杰,張會巖,肖睿,等.木質(zhì)纖維素高值化利用的研究進(jìn)展[J].中國科學(xué):化學(xué),2015,45(5):454-478.
ZHU Chenjie, ZHANG Huiyan,XIAO Rui,et al.Research progress in catalytic valorization of lignocellulose[J].Scientia Sinica(Chimica),2015,45(5):454-478.
[24]劉碧瑩.木質(zhì)素基阻燃劑在復(fù)合材料中的應(yīng)用研究[D].長春:長春工業(yè)大學(xué),2021:13-23.
LIU Biying. Application of Lignin-based Flame Retardant in Composite Materials[D].Changchun: Changchun University of Technology,2021:13-23.
[25]YAN W J,XU S,TIAN X Y,et al.Novel bio-based lignosulfonate and Ni(OH)2 nanosheets dual modified layered double hydroxide as an eco-friendly flame retardant for polypropylene[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,655:130195.
[26]WIDSTEN P,TAMMINEN T,PAAJANEN A,et al.Modified and unmodified technical lignins as flame retardants for polypropylene[J].Holzforschung,2021,75(6):584-590.
[27]SHI M Q,WANG X W,YANG J.Development of lignin-based waterborne polyurethane materials for flame retardant leather application[J].Polymer Bulletin,2023,80(5):5553-5571.
[28]LIANG D X,ZHU X J,DAI P,et al.Preparation of a novel lignin-based flame retardant for epoxy resin[J].Materials Chemistry and Physics,2021,259:124101.
[29]尚欣宇,畢曉柯,譚海彥,等.木質(zhì)素和焦磷酸哌嗪復(fù)合膨脹型阻燃劑對環(huán)氧樹脂材料阻燃性能的影響[J].東北林業(yè)大學(xué)學(xué)報,2023,51(6):140-145.
SHANG Xinyu,BI Xiaoke,TAN Haiyan,et al.Effect of lignin compounded with pyrophosphoric acid piperazine intumescent flame retardant on flame retardant properties of epoxy resin[J].Journal of Northeast Forestry University,2023,51(6):140-145.
[30]王佳楠,邊勇軍,羿穎,等.堿木質(zhì)素/聚磷酸銨膨脹阻燃聚氨酯泡沫的制備及性能研究[J].塑料科技,2019,47(7):42-45.
WANG Jianan,BIAN Yongjun,YI Ying,et al.Study on preparation and properties of PUF intumescent flame retarded by alkali lignin/APP[J].Plastics Science and Technology,2019,47(7):42-45.
[31]薛建英,徐開玉,孟繁敏,等.磷硅協(xié)同提高木質(zhì)素基聚氨酯材料的阻燃性能[J].塑料,2022,51(6):19-23.
XUAN Jianying,XU Kaiyu,MENG Fanmin,et al.Phosphorus and silicon synergistically improve the flame retardant performance of lignin-based polyurethane materials[J].Plastics,2022,51(6):19-23.
[32]靳艷巧,鐘柔潮,熊雷,等.一種哌嗪改性木質(zhì)素/氫氧化鎂雙重包覆紅磷阻燃劑及其在ABS中的應(yīng)用:CN108912401B[P].2020-04-10.
JIN Yanqiao,ZHONG Rouchao,XIONG Lei,et al.The synthesis of a pyrazine-modified lignin/magnesium hydroxide double-coated red phosphorus flame retardant and its application in ABS:CN108912401B[P].2020-04-10.
[33]LI C H,WANG B K,ZHOU L J,et al.Effects of lignin-based flame retardants on flame-retardancy and insulation performances of epoxy resin composites[J].Iranian Polymer Journal,2022,31(8):949-962.
[34]LU X,LEE A F,GU X L.Improving the flame retardancy of sustainable lignin-based epoxy resins using phosphorus/nitrogen treated cobalt metal-organic frameworks[J].Materials Today Chemistry,2022,26:101184.
[35]胡偉豐,閆啟東,李從撐,等.氮磷系阻燃劑的應(yīng)用研究進(jìn)展[J].化工時刊,2019,33(7):31-37.
HU Weifeng,YAN Qidong,LI Congcheng,et al.Progress of research on application of nitrogen and phosphorus flame retardants[J].Chemical Industry Times,2019,33(7):31-37.
[36]黃晴,沈一峰,王紫穎.乙烯基含磷阻燃劑對真絲織物的接枝阻燃整理工藝研究[J].絲綢,2013,50(12):29-34.
HUANG Qing,SHEN Yifeng,WANG Ziying.The study of flame retardancy progress for grafted silk fabric with vinyl phosphorus flame retardant[J].Journal of Silk,2013,50(12):29-34.
[37]ZHANG Y M,ZHAO Q,LI L,et al.Synthesis of a lignin-based phosphorus-containing flame retardant and its application in polyurethane[J].RSC Advances,2018,8(56):32252-32261.
[38]HU W,ZHANG Y M,QI Y X,et al.Improved mechanical properties and flame retardancy of wood/PLA all-degradable biocomposites with novel lignin-based flame retardant and TGIC[J].Macromolecular Materials and Engineering,2020,305(5):1900840.
[39]WANG Y L,ZHANG Y M,LIU B Y,et al.A novel phosphorus-containing lignin-based flame retardant and its application in polyurethane[J].Composites Communications,2020,21:100382.
[40]DAI P,LIANG M K,MA X F,et al.Highly efficient, environmentally friendly lignin-based flame retardant used in epoxy resin.[J].ACS Omega,2020,5(49):32084-32093.
[41]LEE J H,JANG D,YANG I,et al.Effect of phosphorylated lignin on flame retardancy of polypropylene-based composites[J].Journal of Applied Polymer Science,2022,139(28):e52519.
[42]HAJJ R,HAGE R E,SONNIER R,et al.Influence of lignocellulosic substrate and phosphorus flame retardant type on grafting yield and flame retardancy[J].Reactive and Functional Polymers,2020,153:104612.
[43]LIU L N,SHI B B,ZHANG A L,et al.A polyphosphoramide-grafted lignin enabled thermostable and fire-retardant polylactide with preserved mechanical properties[J].Composites Part A,2022,160:107028.
[44]ZHANG A L,ZHANG J Z,LIU L N,et al.Engineering phosphorus-containing lignin for epoxy biocomposites with enhanced thermal stability, fire retardancy and mechanical properties[J].Journal of Materials Science & Technology,2023,167:82-93.
[45]ZHOU S,TAO R,DAI P,et al.Two-step fabrication of lignin-based flame retardant for enhancing the thermal and fire retardancy properties of epoxy resin composites[J].Polymer Composites,2020,41(5):2025-2035.
[46]俞雨農(nóng),蒲新明,鄭兵,等.磷系阻燃聚酯的制備及其性能[J].浙江理工大學(xué)學(xué)報(自然科學(xué)版),2021,45(2):205-211.
YU Yunong,PU Xinming,ZHENG Bing,et al.Preparation and properties of phosphorus flame retardant polyester[J].Journal of Zhejiang Sci-Tech University (Natural Sciences Edition),2021,45(2):205-211.
[47]王益文,周杰睿,馮新星,等.新型P、N協(xié)效阻燃劑的制備及其在PA66中的應(yīng)用[J].浙江理工大學(xué)學(xué)報(自然科學(xué)版),2022,47(6):806-813.
WANG Yiwen,ZHOU Jierui,F(xiàn)ENG Xinxing,et al. Preparation of new P-N synergistic flame retardant and its application in PA66[J].Journal of Zhejiang Sci-Tech University(Natural Sciences Edition),2022,47(6):806-813.
[48]王益文.磷/氮協(xié)效阻燃劑對PA66的阻燃改性及性能研究[D].杭州:浙江理工大學(xué),2022:1-60.
WANG Yiwen.Study on Flame Retardant Modification and Properties of PA66 with P/N Synergistic Flame Retardant[D].Hangzhou:Zhejiang Sci-Tech University,2022:1-60.
[49]WANG S,MA S Q,XU C X,et al.Vanillin-derived high-performance flame retardant epoxy resins: Facile synthesis and properties[J].Macromolecules,2017,50(5):1892-1901.
[50]WEI Y,ZHU S Y,QIAN Q W,et al.Hexachlorocyclotriphosphazene functionalized lignin as a sustainable and effective flame retardant for epoxy resins[J].Industrial Crops and Products,2022,187:115543.
[51]WENG S X,LI Z,BO C Y,et al.Design lignin doped with nitrogen and phosphorus for flame retardant phenolic foam materials[J].Reactive and Functional Polymers,2023,185:105535.
[52]LI J X,YAN Z P,LIU M,et al.Triple silicon, phosphorous, and nitrogen-grafted lignin-based flame retardant and its vulcanization promotion for styrene butadiene rubber[J].ACS Omega,2023,8(24):21549-21558.
[53]仲磊.基于木質(zhì)素的反應(yīng)型阻燃劑設(shè)計及其在阻燃型酚醛泡沫中的應(yīng)用研究[D].揚(yáng)州:揚(yáng)州大學(xué),2023:32-45.
ZHONG Lei.Design of Reactive Flame Retardant Based on Lignin and Its Application in Flame Retardant Phenolic Foam[D].Yangzhou:Yanzhou University,2023:32-45.
[54]宋玉軍.一種木素鋁阻燃劑及其制備方法與應(yīng)用:CN102220145A[P].2011-10-19.
SONG Yujun.A lignin aluminum flame retardant and its preparation method and application: CN102220145A[P].2011-10-19.
[55]GUO Y B,ZUO C L,TAN W,et al.Fabricating flame retardant polyacrylonitrile fibers modified by sodium lignosulfonate and copper ions[J].Polymer Degradation and Stability,2022,206:110176.
[56]LIU L N,HUANG G B,SONG P G,et al.Converting industrial alkali lignin to biobased functional additives for improving fire behavior and smoke suppression of polybutylene succinate[J].ACS Sustainable Chemistry & Engineering,2016,4(9):4732-4742.
[57]馬松琪.木質(zhì)素/有機(jī)硅對環(huán)氧樹脂的協(xié)同阻燃及機(jī)理研究:CN103450636A[P].2014-06-26.
MA Songqi.Study on the synergistic flame retardancy and mechanism of lignin/silicone epoxy resin: CN103450636A[P].2014-06-26.
[58]戴靜,陳偉佳,潘夢麗,等.硅改性木質(zhì)素成炭劑協(xié)同膨脹阻燃聚丙烯制備及性能研究[J].工業(yè)安全與環(huán)保,2023,49(3):50-54.
DAI Jing,CHEN Weijia,PAN Mengli,et al.Study on preparation and properties of silicon modified lignin charring agent synergistic intumescent flame retardant polypropylene[J].Industrial Safety and Environmental Protection,2023,49(3):50-54.
[59]路煥青,宋艷,王中平,等.一種含N、Si木質(zhì)素基成炭劑的合成及其表征[J].塑料科技,2016,44(7):90-94.
LU Huanqing,SONG Yan,WANG Zhongping,et al.Synthesis and characterization of a lignin-based charring agent containing nitrogen and silicon[J].Plastics Science and Technology,2016,44(7):90-94.
[60]王剛.阻燃性有機(jī)硅高分子材料的研究進(jìn)展[J].山東工業(yè)技術(shù),2014(13):72.
WANG Gang.Research progress of flame retardant silicone polymer materials[J].Journal of Shandong Industrial Technology, 2014(13):72.
[61]黃勇杰.磷硅協(xié)效阻燃水性丙烯酸酯防腐涂料的制備及其性能研究[D].杭州:浙江理工大學(xué),2023:1-82.
HUANG Yongjie.Preparation and Properties of P-Si Synergistic Flame-retardant Waterborne Anticorrosion Acrylic Coating[D].Hangzhou:Zhejiang Sci-Tech University,2023:1-82.
[62]張順,吳寧晶,李美江.有機(jī)硅阻燃劑的研究進(jìn)展[J].高分子通報,2010(12):72-77.
ZHANG Shun,WU Ningjing,LI Meijiang.Research progress on organic-silicon flame retardant[J].Polymer Bulletin,2010(12):72-77.
[63]MENG D,WANG H L,LI Y C,et al.Constructing lignin based nanoparticles towards flame retardant thermoplastic polyurethane composites with improved mechanical and oxidation resistant properties[J].International journal of biological macromolecules,2023,253:126570.
[64]王倩.納米技術(shù)在紡織物上的應(yīng)用[J].現(xiàn)代紡織技術(shù),2006,14(5):10.
WANG Qian.Application of nanotechnology in textiles[J].Advanced Textile Technology,2006,14(5):10.
[65]劉學(xué),李淑君,劉守新,等.木質(zhì)素納米顆粒的制備及其功能化應(yīng)用研究進(jìn)展[J].生物質(zhì)化學(xué)工程,2020,54(5):53-65.
LIU Xue,LI Shujun,LIU Shouxin,et al.Research progress in preparation and functional application of lignin-based nanoparticles[J].Biomass Chemical Engineering,2020,54(5):53-65.
[66]SONG K L,GANGULY I,EASTIN I,et al.Lignin-modified carbon nanotube/graphene hybrid coating as efficient flame retardant[J].International Journal of Molecular Sciences,2017,18(11):2368.
[67]CHOLLET B,LOPEZ-CUESTA J M,LAOUTID F,et al.Lignin nanoparticles as a promising way for enhancing lignin flame retardant effect in polylactide[J].Materials,2019,12(13):2132.
[68]李靜,章沈翀,曾士乂,等.木質(zhì)素納米顆粒/聚乙烯醇/殼聚糖三元復(fù)合材料及其制備方法和應(yīng)用:CN1136 52047B[P].2023-02-24.
LI Jing, ZHANG Shenchong, ZENG Shiyi, et al.Lignin nanoparticles/polyvinyl alcohol/chitosan ternary composites and its preparation method and application:CN11365 2047B[P].2023-02-24.
[69]郭亞軍.改性納米二氧化硅木質(zhì)素基酚醛泡沫的制備及性能研究[D].北京:中國林業(yè)科學(xué)研究院,2018:1-67.
GUO Yajun.Preparation and Properties of Phenolic Foam Modified by Nano Silica and Lignin[D].Beijing:Chinese Academy of Forestry,2018:1-67.
The latest research progress of lignin flame retardants
LIU? Yi1a,? LIU? Yanyan2, LIU? Yuanjun1,? ZHAO? Xiaoming1
(1a. School of Textile Science and Engineering; 1b. Tianjin Key Laboratory of Advanced Textile Composites;
1c. Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, Tiangong University,
Tianjin 300387, China; 2.Loftex Industries Ltd., Binzhou 256600, China)
Abstract:
Lignin is currently the second largest resource of biomass materials in the plant world. However, due to the complexity of the molecular structure of lignin, its thermal stability is relatively poor, and it does not contain flame-retardant elements such as phosphorus and nitrogen. The direct use of lignin as a flame retardant shows limited effectiveness in enhancing the flame retardancy of materials, hindering its market prospects as a high-end flame-retardant material. Physical synergy and chemical grafting treatment can improve the inherent defects of lignin fibers, resulting in low smoke release, low heat release rate, high flame retardancy and high thermal stability. At the same time, this treatment can better maintain the original performance of the fuel, such as softness, air permeability and so on. However, the traditional flame-retardant preparation process involves the use of toxic substances, such as halogens and metals, resulting in processing difficulties. Finally, it tends to decompose easily at high temperatures, diminishing its flame retardant effectiveness. Safety problems seriously restrict the sustainable development of traditional flame retardants. In summary, the use of lignin flame-retardant materials is the most environmentally friendly and easy-to-implement improvement method in the flame retardant industry.
Usually, lignin is compounded with other flame retardants, or flame-retardant elements or groups are introduced into the chemical structure of lignin by chemical modification. In physical synergy, lignin can be used as a charring agent to make the char layer of the flame-retardant material more compact after combustion. In composite flame-retardant materials, the content of lignin has a certain impact on the flame-retardant effect. As the lignin content increases, the limiting oxygen index of the combustible material rises, while the total smoke production and the total heat release rate decrease. Chemical grafting modification can be roughly divided into nitrogen and phosphorus modification, nitrogen and phosphorus modification containing metal ions, organic silicon modification and nano modification. Among them, nitrogen and phosphorus modification is widely used. In terms of flame retardancy, most chemically modified lignin flame retardants can improve thermal stability and reduce smoke generation.
In the nitrogen and phosphorus modified lignin flame retardant, the phosphorus element plays a role in promoting the formation of carbon in the composite, making it form a dense carbon layer and flame retardant in the condensed phase. During the combustion process, nitrogen forms ammonia to dilute air, achieving the purpose of high efficiency flame retardant in the gas phase flame-retardant mechanism. The introduction of metal ions can further improve the performance of nitrogen and phosphorus modified lignin flame retardant. Silicone lignin flame retardant has good heat resistance, oxidation resistance and smoke suppression. The introduction of organosilicon contributes to the formation of a uniform and dense carbon layer, aiding in the reduction of carbon emissions. The nano-modified lignin flame retardant, due to the presence of nanoscale, exhibits a high specific surface area, facilitating contact with the material surface and enhancing flame retardant effectiveness. At the same time, the dispersion of lignin nanoparticles in the material can form a gas phase barrier effect, slow down the combustion spread and improve the flame retardancy.
Through physical synergy and chemical grafting modification, the flame-retardant effect of lignin is improved. There are problems in the use of traditional flame retardants, such as high toxicity, serious environmental pollution and high energy consumption. These problems seriously restrict the sustainable development of the flame retardant industry. The preparation of lignin flame retardants is an effective way to improve environmental protection and flame retardancy. Lignin flame retardants can carbonize combustibles at high temperatures to produce porous carbon materials and release some harmless gases. As a result, lignin flame retardants are more environmentally friendly and efficient. Therefore, lignin flame retardants become a research hotspot for the sustainable development of the flame retardant industry.
Keywords:
lignin; physical collaboration; chemical modification; bio-based flame retardant; green environmental protection