999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

蘋果與膠孢炭疽菌互作研究進展

2024-06-30 13:58:23冀志蕊王美玉張樹武杜宜南叢佳林徐秉良周宗山
果樹學報 2024年6期

冀志蕊 王美玉 張樹武 杜宜南 叢佳林 徐秉良 周宗山

摘? ? 要:膠孢炭疽菌(Colletotrichum gloeosporioides)能夠引發蘋果苦腐病和蘋果炭疽葉枯病,危害葉片和果實,影響果品產量和品質,給蘋果產業造成嚴重的經濟損失。對蘋果與病原物互作分子機制最新研究進展進行綜述,包括蘋果上炭疽病的病原菌組成和分類、侵染循環及其引發的果樹病害種類,病原菌的致病結構和降解酶類、致病相關基因的挖掘與分析、效應蛋白的篩選與功能分析等致病相關分子機制,蘋果被侵染后生理生化變化、激素信號、抗病基因挖掘、miRNA參與的免疫調控機制等抗病相關的研究內容,以期為解析病原菌致病機制及與寄主互作機制,進而為挖掘潛力候選基因,以及病害綜合防控和抗病分子育種奠定理論基礎。

關鍵詞:蘋果;膠孢炭疽菌;侵染機制;抗病機制

中圖分類號:S661.1 文獻標志碼:A 文章編號:1009-9980(2024)06-1199-14

Advances in study of the interaction between apple and Colletotrichum gloeosporioides

JI Zhirui1, 2, WANG Meiyu2, ZHANG Shuwu1, DU Yinan2, CONG Jialin2, XU Bingliang1*, ZHOU Zongshan2*

(1College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 2Research Institute of Pomology, Chinese Academy of Agricultural Science, Xingcheng 125100, Liaoning, China)

Abstract: Colletotrichum gloeosporioides can cause apple bitter rot, and anthracnose leaf blight, resulting in affecting fruit yield and quality, and causing serious economic losses to the apple industry. According to the latest fungal classification system, the C. gloeosporioides species complex consists of 13 different species, including C. gloeosporioides, C. aenigma and C. fructicola et al. Among them, C. fructicola and C. gloeosporioides are important pathogenic fungi on various fruit trees. Meanwhile, C. gloeosporioides can also cause diseases on other fruit trees such as cherry, passion fruit, and kiwifruit. In order to better prevent and control diseases, we need to have a comprehensive understanding of the classification, pathogenic mechanisms, and host interaction mechanisms of the pathogens on apples. In the process of colonizing host tissue, a number of C. gloeosporioides genes participate in different phases of infection procedures, which include conidiation, appressorium morphogenesis, melanization and penetration, biotrophy, necrotrophy, and various transport activities. In recent years, research on the pathogenic molecular mechanism of C. gloeosporioides on apples has mainly focused on the cloning and analysis of pathogenic related genes, screening and identification of effector proteins, pathogenic enzymes, and colletotoxins of C. gloeosporioides. Fungi secrete enzymes such as pectin, keratin and cellulase could help them successfully infect their hosts. New studies have shown that the adapter protein gene GcAP1 can regulate the expression of endopolygalacturonase genes (CgPG1 and CgPG2), pectin lyase genes (pnl-1, pnl-2), and pectate lyase genes (pelA, pelB), and GcAP1 is an important virulence factor of C. gloeosporioides. Currently, the successful application of PEG mediated genetic transformation and Agrobacterium mediated transformation in the study of C. gloeosporioides provides a basis for the development of pathogenic molecular mechanisms. It has been confirmed that the genes with different functions such as CgABCF2, CgCMK1, CgSET5, CgOpt1, CgNVF1, CgABCF2, CgChip6 are present in C. gloeosporioides, playing an important role in infecting apples. In addition, C2H2 transcription factors, cation stress response transcription factors CgSltA, CgCrzA, and CsHtf1 also play important roles in pathogen pathogenesis. During the infection process, C. gloeosporioides can also secrete a series of effectors to inhibit the host immune response, thereby promoting pathogen infection and colonization. Currently, scientists have analyzed the roles of effectors such as CfE12, CfEC92, and Sntf2 in C. gloeosporioides, laying the foundation for subsequent research on interactions of pathogen and host. In addition, C. gloeosporioides secrete toxins during the necrotrophic stage, causing necrosis of the host tissue. The research on apple disease resistance started relatively late, mainly focusing on germplasm resource identification, physiological and biochemical testing, disease resistance gene mining, plant hormone mediated disease resistance response, disease related transcription factors, and other mechanisms of action. Research has shown that after inoculation with anthrax fungus, the activities of superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), catalase (CAT), and serotonin N-acetyltransferase (SNAT) in apple leaves increased, indicating that these enzymes are involved in the infection process of C. gloeosporioides. Plant hormones play an important role in plant defense and growth and development, and hormones related to plant immune responses include salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid (ABA), and so on. Research has shown that there are significant differences in the expression levels of SA synthesis related genes MdEDS1, MdPAD4, MdPAL and SA signal transduction related genes MdNPR1, MdPR1 and MdPR5 between resistant and susceptible varieties. There are differences in the resistance and susceptibility of different apple varieties to C. gloeosporioides. The Hanfu variety has been used to screen for resistance genes due to its high resistance to C. gloeosporioides. WRKY and NAC transcription factors play a crucial role in plant resistance to pathogen infection. In apples, transcription factors MdWRKY15, MdWRKY17, and MdWRKY100 enhance apple resistance to anthracnose by regulating SA accumulation. Here, we plotted the downstream regulatory patterns of AtwrKY33 and MdWRKYs involved in the MAPK cascade reaction, and presented some research results on MdWRKYs. At the end of the article, we summarized the research results on the regulatory mechanism of miRNA involvement in plant immunity. Clarifying the pathogenic process and molecular mechanism of the pathogen is of great significance for the comprehensive prevention and control of C. gloeosporioides. With the deepening of various studies, researchers will inevitably change their thinking on the prevention and control of C. gloeosporioides. Traditional chemical prevention and control methods, such as the extensive use of fungicides and insecticides, can achieve the effect of combating pathogens, but they also can cause serious harm to the environment and people. Breeding of resistant varieties is a fundamental means to solve the problems in preventing and controlling C. gloeosporioides. This article aimed to analyze the pathogenic mechanism of pathogens and their interaction with hosts, laying a theoretical foundation for screening potential candidate genes and breeding new varieties resistant to diseases.

Key words: Apples; Colletotrichum gloeosporioides; Infection mechanism; Disease resistance mechanisms

炭疽菌(Colletotrichum)屬小叢殼科刺盤孢屬真菌,有性型為子囊菌門盤菌亞門小叢殼屬,在溫暖和潮濕的條件下易暴發流行,是世界上重要的植物病原菌之一[1]。炭疽菌可分為14個復合種和部分種,膠胞炭疽菌(C. gloeosporioides)是重要的一個復合種,能侵染1000余種作物,危害枝干、葉部、果實等部位,造成果實腐爛、植株枯萎甚至死亡。

C. gloeosporioides通過“半活體營養”寄生并侵染寄主植物[2],在整個侵染周期主要有活體營養型(biotrophic)和死體營養型(necrotrophic)兩種營養模式。在侵染初期活體營養階段,菌體不會立即殺死周邊寄主細胞,而是感應寄主表面的物理和化學信號(植物表面硬度、疏水性、葉片紋理、植物激素等),產生初侵染菌絲攝取寄主體內營養和能源。在侵染后期,分化出次生菌絲并迅速擴展,分泌細胞壁降解酶導致植物組織形成壞死斑,后轉換為死體營養[3-5],其生活史和侵染過程如圖1所示。

目前,生產上對炭疽病的防控以化學農藥為主,隨著人們對果品安全的逐漸重視,科研人員開展了藥劑篩選和復配[6]、農藥助劑應用[7]及植物免疫誘抗劑使用等[8]藥劑減量增效研究。盡管對蘋果炭疽病菌的侵染和致病研究取得一定進展,但因其種群多樣、侵染過程復雜,對其侵染致病機制和果樹抗性機制的研究仍有待深入。筆者在本文中將圍繞蘋果膠孢炭疽菌病原學、病原菌致病機制及果樹抗性機制展開論述。

1 侵染蘋果的膠孢炭疽菌復合群概述

膠孢炭疽菌(C. gloeosporioides)能夠引發蘋果果實炭疽病(apple bitter rot)和蘋果炭疽葉枯病(Glomerella leaf spot of apple,GLSA),也能引發果實采后炭疽病。膠孢炭疽菌復合種(C. gloeosporioides complex)是蘋果上主要的病原菌,包含果生刺盤孢(C. fructicola)、隱秘刺盤孢(C. aenigma)、膠孢刺盤孢(C. gloeosporioides)等13種不同炭疽菌,其中C. fructicola和C. gloeosporioides是多種果樹的重要致病菌,可以在無傷條件下成功侵染寄主[9-10]。除蘋果外,C. gloeosporioides還可引發櫻桃、百香果、獼猴桃等果樹病害[10-15](表1)。

2 膠孢炭疽菌致病分子機制

隨著生物信息學和分子生物學的發展,膠孢刺盤孢(C. gloeosporioides)、希金斯刺盤孢(C. higginsianum)、禾生刺盤孢(C. graminicola)、東方刺盤孢(C. orbiculare)等全基因組測序組裝完成并公布。在此基礎上,PEG介導的遺傳轉化[25]和農桿菌介導的轉化[26]在蘋果炭疽菌研究中成功應用,為病原菌致病分子機制的解析提供了理論依據[22-23]。近年來蘋果上膠孢炭疽菌致病分子機制的研究主要集中在致病結構和降解酶測定、致病基因的克隆與分析、效應蛋白篩選與功能研究及炭疽菌毒素等方面(圖2)[27-29]。

2.1 膠孢炭疽菌致病結構和降解酶

炭疽菌要穿透寄主的表皮組織,需要對寄主組織施加機械壓力,即孢子萌發時形成的附著胞及其胞內組合液產生膨壓,壓力施加至附著胞下部的侵染釘,當壓力到達一定程度時直接穿透植物表皮而侵入,構成侵染和定殖[30]。黑化附著胞的形成可能涉及一系列復雜的生物學過程,包括分泌特定的分子、改變細胞壁結構以提供附著支持等[31]。

植物的細胞壁是抵御病原菌侵入的天然屏障,病原菌通過分泌產生果膠酶、角質酶、纖維素酶、蛋白酶等降解酶類物質破壞寄主細胞壁,輔助其侵染和定殖。薛蓮[32]對蘋果采后炭疽病菌細胞壁降解酶活性進行分析,明確聚甲基半乳糖醛酸酶(PMG)和羧甲基纖維素酶(Cx)在病原菌侵染中發揮重要作用。研究表明,銜接蛋白GcAP1復合體分布于細胞質中,GcAP1基因能夠調控多聚半乳糖醛酸內切酶基因(CgPG1、CgPG2)、果膠裂解酶基因(pnl-1、pnl-2)及果膠酸酯裂解酶基因(pelA、pelB)的表達,從而影響炭疽菌的生長發育和毒力[33]。研究表明,膠孢炭疽菌pH依賴性轉錄因子CgPacC能夠調節細胞壁降解酶、轉運蛋白和抗氧化劑的表達,在病原菌定殖中發揮重要作用[34]。

2.2 膠孢炭疽菌侵染階段相關致病基因挖掘與分析

C. gloeosporioides成功侵染定殖包括分生孢子萌發、附著胞形成、黑色素生成、侵染釘穿透寄主組織等不同階段,涉及的基因及其調控機制較為復雜,目前的研究以單一基因為主。

Zhao等[35]證實蘋果炭疽葉枯病菌染色質調節基因CgSET5在菌絲生長、分生孢子形成、附著胞形成、細胞壁完整性、致病性中發揮重要作用,并同時參與過氧化物酶體的生物反應,是C. gloeosporioides的核心致病調節因子。該團隊在后續研究中證實單羧酸轉運蛋白CgMCT1參與了C. gloeosporioides營養生長、黑色素形成、分生孢子形成,且參與寄主體內ROS降解[27]。Zhou等[28]發現當炭疽菌CgABCF2基因缺失后,菌絲生長速率和附著胞數量顯著下降,導致致病性喪失。張俊祥等[36-37]研究證實CgCMK1、CgNVF1在炭疽菌分生孢子和附著胞中的表達,對分生孢子產量、附著胞形成、氧化脅迫應答反應及致病性等方面均有影響。徐杰[38]證實蘋果炭疽葉枯病菌基因GTPBP1在調控附著胞的形成中發揮作用。譚清群[39]研究證實氨甲酰磷酸合成酶(carbamyl phosphate synthase,CPS)小亞基基因Cpa1通過調控精氨酸的合成從而影響病原菌致病力。研究表明,寡肽轉運蛋白基因CgOpt1在菌絲中表達,參與真菌對IAA反應的調節,通過影響產孢和色素沉積來降低病菌的致病性[40]。甾醇糖基轉移酶編碼基因CgChip6參與分生孢子萌發和附著胞的形成,該基因缺失后病原菌毒力顯著下降[41]。Liang等[42]對果生炭疽菌(C. fructicola)1104-7基因組進行了測序和組裝,獲得了高質量參考基因組,為C. fructicola致病相關基因的研究提供了重要的理論和數據支撐。

2.3 轉錄因子調控膠孢炭疽菌分子機制

轉錄因子(transcription factor,TF)能夠與基因啟動子區域的順式作用元件進行特異性互作,從而調控目的基因的表達強度,可分為4類,即鋅指蛋白(包括3類:C2H2、C4和C6)、堿性亮氨酸拉鏈、堿性螺旋環螺旋和同源異形盒類轉錄因子[43]。已有研究表明,膠孢炭疽菌的轉錄因子在表達調控中能起到協調作用,能夠促進附著胞黑化和定殖。C2H2鋅指蛋白型轉錄因子CgAzf1、CgCrzA及CgGcp1能夠調控黑色素生物合成途徑相關基因的表達,參與分生孢子的萌發和侵染過程[31,44-45]。CfSte12能夠調控與附著胞功能相關的四次穿模蛋白PLS1(tetraspanin PLS1)、Gas1樣蛋白(Gas1-like proteins)、角質酶和黑色素合成的基因表達[46]。陽離子脅迫反應轉錄因子CgSltA、CgCrzA及CsHtf1在炭疽菌營養生長、分生孢子產生、附著胞形成和致病性等方面均發揮重要作用[45,47]。堿性亮氨酸拉鏈(basic leucine zipper,bZIP)轉錄因子CgAP1在C. gloeosporioides中起氧化還原傳感器的作用[48-49]。轉錄因子CfMcm1是C. fructicola的關鍵調節因子,在病原菌無性繁殖、黑色素形成、致病性、果膠酶降解等過程中發揮作用[50]。

2.4 效應蛋白篩選及功能研究

在侵染過程中,炭疽菌通過分泌一系列效應蛋白抑制寄主免疫反應,從而促進病原菌的侵染和定殖[51-52],不同侵染階段所分泌的效應因子功能不同[3,53]。隨著基因組測序的應用,炭疽菌中多個候選的效應因子被成功篩選鑒定[54-55]。真菌胞外膜蛋白CFEM(common in several fungal extracellular membrane)是真菌所獨有的蛋白結構域,與病原菌致病性密切相關。Shang等[56]研究證實,刺盤孢屬真菌CFEM型效應因子CfEC12能夠與蘋果中MdNIMIN2互作,與水楊酸受體NPR1競爭MdNIMIN2蛋白的結合位點,從而抑制蘋果抗性基因的表達和免疫反應。LysM型效應蛋白可以保護真菌細胞壁免受植物幾丁質酶的作用或隔離釋放的殼寡糖,從而避免被植物的防御系統識別,其具有幾丁質結合活性,可以結合幾丁質從而抑制植物的PTI(pattern-triggered immunity),促進病原菌的侵染[57]。Shang等[58]研究證實C. fructicola中效應蛋白CfEC92在早期附著胞生成和附著胞介導的滲透階段上調表達,抑制蘋果的PTI和相關防御基因表達,促進病原菌侵染。王美玉[59]開展效應蛋白Sntf2功能研究,證實其能夠與葉綠體組裝因子Mdycf39互作干擾葉綠體功能,從而抑制寄主植物的免疫反應,促進C. gloeosporioides的侵染和定殖。

2.5 膠孢炭疽菌毒素

炭疽菌在死體營養階段通過分泌毒素造成寄主組織壞死。目前,對于炭疽菌毒素的研究多集中在毒素生物學測定、成分鑒定純化階段。C. gloeosporioides產生的毒素為非寄主專化性毒素,能夠侵染多種寄主。Khodadadi等[60]分離鑒定了蘋果苦腐病病原菌,明確其毒素能夠對3種不同樹種造成危害,關于炭疽菌的毒素和作用機制仍然有待進一步深入研究。

3 蘋果抗膠胞炭疽菌侵染的分子機制

果樹在自然環境中會受到各類病原物的侵染,為了抵御病原菌的侵染,植物進化出識別和抵御病原菌的PTI和ETI兩層免疫系統[61]。第一層免疫系統是由植物細胞質膜上的模式識別受體感知微生物相關分子模式(microbe-associated molecular pattern,MAMPs)或損傷相關分子模式(damage-associated molecular pattern,DAMPs)而觸發一系列的免疫反應,稱為“模式觸發免疫”(PTI),該免疫反應包括活性氧(reactive oxygen species,ROS)的激活及抗病基因表達量上調等[62-63]。病原菌為了應對植物的PTI免疫反應進化出毒力蛋白(效應因子),抑制植物PTI反應,從而成功侵入,這一中間過程被稱為“效應因子觸發的易感性”,即EST(effector-triggered susceptibility)。最后,植物進化出識別和抵御這些效應子的胞內NLR來誘導更為強大的抗性反應,即第二層免疫“效應因子觸發的免疫”,ETI(effector-triggered immunnity)[64-65]。ETI的免疫反應主要包括程序性細胞死亡的過敏性反應(hypersensitive responses,HR)、Ca2+內流、胼胝質的沉積等。植物在PTI和ETI期間,產生的免疫反應幅度和時間有所不同,但所觸發的免疫信號網絡和下游反應有所重疊[66-68]。

蘋果抗炭疽病的研究起步相對較晚,主要開展了種質資源鑒定[69]、生理生化檢測、抗病基因挖掘、植物激素介導的抗病反應及抗病相關轉錄因子[70]作用機制等研究。

3.1 生理生化變化

研究表明接種炭疽菌后,嘎拉和富士葉片內超氧化物歧化酶(superoxide dismutase,SOD)、多酚氧化酶(polyphenoloxidas,PPO)、過氧化物酶(peroxidase,POD)、過氧化氫酶(catalase,CAT)、5-羥色胺-N-乙酰基轉移酶(SNAT)的活性增強,其相關基因表達量呈先升后降的趨勢,表明以上酶類參與了炭疽葉枯病菌的侵染過程[71-72]。蘋果不同組織被炭疽菌侵染后,PPO、POD、苯丙氨酸解氨酶(phenylalanine ammonia-lyase,PAL)等7種酶活性均有不同程度的提高[73-75]。通過分析不同抗感品種感染炭疽菌后細胞壁降解酶活性的變化,證實甲基半乳糖醛酸酶(PMG)和羧甲基纖維素酶(Cx)在病菌侵染過程中發揮作用,且抗病品種中細胞壁降解酶活性高峰的出現早于感病品種[76]。白靜科[30]比較了C. fructicola侵染后抗感品種中過氧化氫(H2O2)和乳突產生的差異,發現炭疽菌的侵染誘導了蘋果細胞中H2O2的積累和乳突的產生,并隨著侵染時間延長不斷積累。此外,生防菌也可以通過提高感病品種嘎拉葉片中POD、CAT、SOD等防御酶活性,減少活性氧的積累,從而誘導蘋果對炭疽菌的抗性[77]。

3.2 植物激素

植物激素在植物防御和生長發育中發揮重要作用,與植物免疫反應相關的激素包括水楊酸(SA)、茉莉酸(JA)、乙烯(ET)、脫落酸(ABA)等。SA和JA-ET激素作為重要的調控因子,在蘋果生物和非生物脅迫反應中發揮重要作用[78-79]。SA是通過異分支酸合成酶(ICS)和苯丙氨酸解氨酶(PAL)途徑合成。在應激條件下,超過90%的受刺激SA是通過ICS合成的[80]。當沒有遇到病原體或逆境時,植物細胞積累相對較低濃度的SA,外源噴施SA可增強抗病相關酶的活性,誘導高感蘋果品種對C. gloeosporioides產生抗性[81-82]。在蘋果中,藤牧1號、40-9及16-16等抗性品種(系)中SA合成相關基因MdEDS1、MdPAD4和MdPAL被C. gloeosporioides誘導表達,SA信號轉導相關基因MdNPR1、MdPR1、MdPR5的表達量顯著高于嘎拉等感病品種(系)[83]。水楊酸合成途徑中的關鍵酶MdICS1可以被G. cingulata誘導上調表達,而JA、ABA和ETH三種外源信號可抑制其表達。

3.3 蘋果抗病基因挖掘

不同蘋果品種對炭疽菌抗感表現存在差異,在田間蘋果炭疽葉枯病的表現尤為突出[84]。馬玉鑫[85]研究表明,寒富品種CDPK基因家族成員MdCDPK24基因在炭疽菌侵染后顯著上調表達。對寒富蘋果同源四倍體進行轉錄組測序,發現MdCaMBP6、MdIPT8在蘋果炭疽葉枯病菌侵染后顯著上調表達,能夠提高品種抗性[86-87]。Guo等[88]報道湖北蘋果M. hupehensis YT521-B同源結構域包含蛋白2(MhYTP2),其與MdRGA2L mRNA結合并降低其穩定性,在調節對炭疽葉枯病的抗性中發揮重要作用,可用于開發具有GLS抗性的蘋果品種。劉源霞等[89]采用分離群體分組分析(BSA)方法,篩選獲得了一個與抗病性狀相關的分子標記S0506206-24,在此基礎上,采用全基因組重測序和BSA相結合的方法,在該雜交群體中定位了1個蘋果抗炭疽葉枯病基因位點Rgls,并將其精細定位于標記InDel4199和SNP4299之間[90],室內接種驗證與Rgls位點緊密連鎖的4個分子標記S0405127(SSR)、S0304673(SSR)、SNP4236和InDel4254,準確率均高于90%[91]。

3.4 抗病相關轉錄因子參與的防御反應

植物被病原物感染后,當病原體相關的分子模式(PAMP)或效應器被植物識別時,細胞內的信號可以被激活,導致活性氧簇(ROS)的產生、絲裂原激活的蛋白激酶(MAPK)激活和防御基因的表達[62]。MAPKs能夠靶向并磷酸化調節下游基因轉錄的轉錄因子,最終響應病原菌的侵入。已報道的與炭疽菌侵染響應相關的轉錄因子有AP2/ERF、TGACG基序結合因子(BZIP)、MYC2(BHLH)、ARF、MYB、WRKY和NAC等7種,后兩者是高等植物特有的轉錄因子家族[92]。WRKYs轉錄因子作為MAPK級聯反應的重要靶標,在植物對病原菌的抗性中起關鍵作用。當病原菌侵入后,SA依賴的WRKY基因會迅速表達并積累,與抗病基因啟動子上的W盒[W-box,TTGAC(C/T)]特異性結合,啟動防御反應,從而形成復雜的WRKY調控網絡。在蘋果中,MKK4-MPK3下游轉錄因子MdWRKY15、MdWRKY17及MdWRKY100通過調控SA積累增強蘋果對炭疽菌的抗性[70,93]。其中,MdWRKY100正向調節蘋果對C. gloeosporioides的抗性;C. fructicola可提高感病品種中MdWRKY17蛋白積累,誘導MdMEK4-MdMPK3-MdWRKY17-MdDMR6-SA途徑,加速SA降解,從而降低果樹抗性[94]。此外,有研究表明,MdWRKY15通過激活SA合成酶MdICS1的表達增強對輪紋病的抗性[95]。酯酶/脂肪酶GELP1是MPK3/MPK6及其下游轉錄因子MdWRKY100的靶標,在蘋果抵御病原菌侵染中發揮重要作用[96]。Li等[97]和Lippok等[98]研究證實,γ-氨基丁酸(GABA)關鍵合成基因MdGAD1能夠與MdWRKY33互作,增強轉基因蘋果愈傷組織形成和葉片的抗氧化能力,正向調控蘋果對C. gloeosporioides的抗性。此外,MdWRKY31能夠與蘋果超敏反應蛋白MdHIR4(hypersensitive-induced reaction? protein,HIR)相互作用,影響SA信號通路中基因的轉錄從而調節蘋果對葡萄座腔菌B.dothidea的抗性[99]。MdWRKY75能夠與MdRAC7啟動子結合,調節漆酶的生物合成,并在蘋果斑點落葉病菌Alternaria alternata感染期間促進了木質素的合成[100]。最新研究表明,MdVQ10能夠與MdWRKY75互作,增強衰老相關基因MdSAG12和MdSAG18的轉錄,促進葉片損傷引發的衰老進程[101]。然而,以上幾個轉錄因子是否在蘋果對炭疽菌抗性中也發揮著相同或類似的作用仍有待進一步驗證(圖3)。

3.5 miRNA參與植物免疫的調控機制

非編碼的RNA分為微小RNA(microRNAs,miRNAs)和小干擾RNA(small interfering RNAs,siRNA)兩大類,miRNA是植物生長發育和脅迫應答中重要的調控因子[102]。miRNA可能參與調節病原菌感染中胼胝質沉積過程,在模式植物擬南芥中,miR773靶向抑制甲基轉移酶2(MET2),影響胼胝質沉積和ROS累積,負調控C. higginianum的抗病性[103]。Zhang等[104]研究發現,Md-miRln20靶向Md-TN1-GLS負調控蘋果對膠孢炭疽菌的侵染。此外,Zhang等[105]研究證實兩種CCR-NB-LRR蛋白MdRNL2和MdRNL6能夠形成復合物,抑制病原菌生長,提高了蘋果樹對蘋果斑點落葉病菌A. alternata的抗性,進一步研究證實其同樣能夠提高果樹對C. gloeosporioides的抗性[106]。張亞楠等[107]分析了抗感品種中抗病相關miRNA的表達量差異,預測miR390a、miR482b及miR396b/c/f 在蘋果被炭疽菌侵染中發揮重要作用。Shen等[108]研究發現,Mdm-miR160-MdARF17-MdWRKY33模塊能夠通過調節活性氧(ROS)提高蘋果耐寒性能,但其對病原菌致病力的影響仍未證實。上述結果對果樹抗病育種起重要的推動作用。

4 問題與展望

近年來,在分子生物學和生物信息學的推動下,蘋果和炭疽菌互作方面的研究取得了巨大進展。筆者詳細闡述了蘋果炭疽菌組成、病原菌侵染相關基因及其與寄主互作的研究進展。明確病原菌致病過程及其分子機制,對蘋果炭疽葉枯病的綜合防控具有重要意義,隨著各項研究的日益深入,研究者對炭疽病的防控思路必將有所轉變。

炭疽菌對蘋果產業造成巨大危害,由于炭疽菌具有潛伏侵染的特性,果樹病害監測不僅耗時費力,還存在一定的技術難題。利用傳統的化學防控手段,通過大量使用殺菌劑和殺蟲劑等雖能達到對抗病原菌的效果,但對環境和人體也會造成嚴重的危害。隨著生活水平的不斷提高,健康問題已經逐漸成為關注的焦點。目前,研發生態友好型生物防治策略已經被人們廣泛接受和認可,前景一片光明。開展抗性品種選育是從根本上解決果樹炭疽菌防控難問題的有效手段,符合現代農業的生產需求[109-110]。解析抗病機制能夠為蘋果抗病性改良提供重要的理論依據,是果業科研的重點研究領域。

生物信息學和分子生物學的各種先進技術為作物改良提供了其他途徑,能夠極大地縮短果樹育種周期,解決傳統實生苗選育耗時長的難題。通過構建蘋果高效遺傳轉化體系進一步開展基因編輯、RNA干擾等生物育種技術研究,培育具有優良性狀的蘋果新種質或新品種是果樹科研工作者努力的方向[110]。

總之,了解蘋果與炭疽菌互作的分子機制,能夠為培育抗病品種和創新病害防控策略提供新的見解,對果樹產業健康發展具有重要的指導意義。

參考文獻 References:

[1] DEAN R,VAN KAN J A L,PRETORIUS Z A,HAMMOND-KOSACK K E,DI PIETRO A,SPANU P D,RUDD J J,DICKMAN M,KAHMANN R,ELLIS J,FOSTER G D. The Top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology,2012,13(4):414-430.

[2] DE SILVA D D,CROUS P W,ADES P K,HYDE K D,TAYLOR P W J. Life styles of Colletotrichum species and implications for plant biosecurity[J]. Fungal Biology Reviews,2017,31(3):155-168.

[3] OCONNELL R,HERBERT C,SREENIVASAPRASAD S,KHATIB M,ESQUERR?-TUGAY? M T,DUMAS B. A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions[J]. Molecular Plant-Microbe Interactions,2004,17(3):272-282.

[4] TUCKER S L,TALBOT N J. Surface attachment and pre-penetration stage development by plant pathogenic fungi[J]. Annual Review of Phytopathology,2001,39:385-417.

[5] M?NCH S,LINGNER U,FLOSS D S,LUDWIG N,SAUER N,DEISING H B. The hemibiotrophic lifestyle of Colletotrichum species[J]. Journal of Plant Physiology,2008,165(1):41-51.

[6] 梁曉飛,侯彥忠,白云芳,李蘇莉,孫廣宇,朱明旗. 防控蘋果炭疽葉枯病的化學農藥減量增效研究[J]. 陜西農業科學,2022,68(1):39-43.

LIANG Xiaofei,HOU Yanzhong,BAI Yunfang,LI Suli,SUN Guangyu,ZHU Mingqi. Studies on improvement of chemical fungicide efficiency in control of apple Glomerella leaf spot disease[J]. Shaanxi Journal of Agricultural Sciences,2022,68(1):39-43.

[7] 劉安泰,張朝敏,李紫騰,曹克強,孟祥龍,胡同樂. 有機硅助劑在蘋果炭疽葉枯病化學防控中的減藥增效作用評價[J]. 植物保護,2022,48(1):284-290.

LIU Antai,ZHANG Chaomin,LI Ziteng,CAO Keqiang,MENG Xianglong,HU Tongle. Evaluation of increasing control effect and reducing fungicide effect of organosilicon adjuvant on chemical control of Glomerella apple leaf spot[J]. Plant Protection,2022,48(1):284-290.

[8] 劉禹彤,徐瑞旋,王洪濤,時彥嬌,李翠英,馬鋒旺,梁微. 外源甜菜堿提高蘋果對炭疽葉枯病的抗病性[J]. 果樹學報,2022,39(7):1252-1261.

LIU Yutong,XU Ruixuan,WANG Hongtao,SHI Yanjiao,LI Cuiying,MA Fengwang,LIANG Wei. Exogenous glycine betaine improved the resistance of apple to Glomerella leaf spot[J]. Journal of Fruit Science,2022,39(7):1252-1261.

[9] WENNEKER M,PHAM K,KERKHOF E,HARTEVELD D O C. First report of preharvest fruit rot of ‘Pink Lady apples caused by Colletotrichum fructicola in Italy[J]. Plant Disease,2021,105(5):1561.

[10] XU C N,ZHOU Z S,WU Y X,CHI F M,JI Z R,ZHANG H J. First report of stem and leaf anthracnose on blueberry caused by Colletotrichum gloeosporioides in China[J]. Plant Disease,2013,97(6):845.

[11] 劉麗萍,高潔,李玉. 植物炭疽菌屬Colletotrichum真菌研究進展[J]. 菌物研究,2020,18(4):266-281.

LIU Liping,GAO Jie,LI Yu. Advances in knowledge of the fungi referred to the genus Colletotrichum[J]. Journal of Fungal Research,2020,18(4):266-281.

[12] 王薇,符丹丹,張榮,孫廣宇. 蘋果炭疽葉枯病病原學研究[J]. 菌物學報,2015,34(1):13-25.

WANG Wei,FU Dandan,ZHANG Rong,SUN Guangyu. Etiology of apple leaf spot caused by Colletotrichum spp.[J]. Mycosystema,2015,34(1):13-25.

[13] LI Q L,BU J Y,SHU J,YU Z H,TANG L H,HUANG S P,GUO T X,MO J Y,LUO S M,SOLANGI G S,HSIANG T. Colletotrichum species associated with mango in Southern China[J]. Scientific Reports,2019,9(1):18891.

[14] ZHANG R,WANG S F,CUI J Q,SUN G Y,GLEASON M L. First report of bitter rot caused by Colletotrichum acutatum on apple in China[J]. Plant Disease,2008,92(10):1474.

[15] CHEN Y,FU D D,WANG W,GLEASON M L,ZHANG R,LIANG X F,SUN G Y. Diversity of Colletotrichum species causing apple bitter rot and Glomerella leaf spot in China[J]. Journal of Fungi,2022,8(7):740.

[16] YANG Z N,MO J Y,GUO T X,LI Q L,TANG L H,HUANG S P,WEI J G,HSIANG T. First report of Colletotrichum fructicola causing anthracnose on Pouteria campechiana in China[J]. Plant Disease,2021,105(3):708.

[17] TANG Z Y,LOU J,HE L Q,WANG Q D,CHEN L H,ZHONG X T,WU C F,ZHANG L Q,WANG Z Q. First report of Colletotrichum fructicola causing anthracnose on cherry (Prunus avium) in China[J]. Plant Disease,2021,106(1):317.

[18] HU Y F,LUO X X,XU Z H,ZHANG L H,WANG Y Q,CUI R Q,KUANG W G,XIA Y Y,MA J. First report of Colletotrichum fructicola causing anthracnose on Punica granatum in China[J]. Plant Disease,2023,107(9):2863.

[19] LI W Z,RAN F,LONG Y H,MO F X,SHU R,YIN X H. Evidences of Colletotrichum fructicola causing anthracnose on Passiflora edulis Sims in China[J]. Pathogens,2021,11(1):6.

[20] ZHANG Z H,YAN M J,LI W W,GUO Y Z,LIANG X F. First report of Colletotrichum aenigma causing apple Glomerella leaf spot on the Granny Smith cultivar in China[J]. Plant Disease,2021,105(5):1563.

[21] ZHANG Y J,SUN W X,NING P,GUO T X,HUANG S P,TANG L H,LI Q L,MO J Y. First report of anthracnose of Papaya (Carica papaya L.) caused by Colletotrichum siamense in China[J]. Plant Disease,2021,105(8):2252.

[22] FAN Y C,GUO F Y,WU R H,CHEN Z Q,LI Z. First report of Colletotrichum gloeosporioides causing anthracnose on grapevine (Vitis vinifera) in Shaanxi Province,China[J]. Plant Disease,2023,107(7):2249.

[23] AHMAD T,WANG J J,ZHENG Y Q,MUGIZI A E,MOOSA A,NIE C R,LIU Y. First record of Colletotrichum alienum causing postharvest anthracnose disease of mango fruit in China[J]. Plant Disease,2021,105(6):1852.

[24] WANG N,XU J,ZHAO X Z,WANG M Y,ZHANG J X. First report of Glomerella leaf spot of apple caused by Colletotrichum asianum[J]. Plant Disease,2020,104(10):2734.

[25] 韓小路,白靜科,張瑋,張榮,孫廣宇. PEG介導的蘋果果生刺盤孢Colletotrichum fructicola原生質體轉化[J]. 西北農業學報,2016,25(3):442-449.

HAN Xiaolu,BAI Jingke,ZHANG Wei,ZHANG Rong,SUN Guangyu. PEG-mediated transformation of Colletotrichum fructicola[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2016,25(3):442-449.

[26] 徐杰,王美玉,王娜,周宗山,張俊祥. 適用于ATMT介導的RNA干擾載體的構建及在蘋果炭疽葉枯病菌中的應用[J]. 基因組學與應用生物學,2020,39(9):4053-4057.

XU Jie,WANG Meiyu,WANG Na,ZHOU Zongshan,ZHANG Junxiang. Construction of RNAi vector and application of ATMT-mediated genetic transformation in Colletotrichum gloeosporioides of apple[J]. Genomics and Applied Biology,2020,39(9):4053-4057.

[27] WU J Y,JI Z R,WANG N,CHI F M,XU C N,ZHOU Z S,ZHANG J X. Identification of conidiogenesis-associated genes in Colletotrichum gloeosporioides by Agrobacterium tumefaciens-mediated transformation[J]. Current Microbiology,2016,73(6):802-810.

[28] ZHOU Z S,WU J Y,WANG M Y,ZHANG J X. ABC protein CgABCF2 is required for asexual and sexual development,appressorial formation and plant infection in Colletotrichum gloeosporioides[J]. Microbial Pathogenesis,2017,110:85-92.

[29] WANG M Y,JI Z R,YAN H F,XU J,ZHAO X Z,ZHOU Z S. Effector Sntf2 interacted with chloroplast-related protein Mdycf39 promoting the colonization of Colletotrichum gloeosporioides in apple leaf[J]. International Journal of Molecular Sciences,2022,23(12):6379.

[30] 白靜科. 果生炭疽菌Colletotrichum fructicola與蘋果不同抗性品種互作研究[D]. 楊凌:西北農林科技大學,2016.

BAI Jingke. Interaction between resistant and susceptible apple cultivars and Colletotrichum fructicola[D]. Yangling:Northwest A & F University,2016.

[31] 張興媛,王地廣,高菁,唐雯,李曉宇. 膠孢炭疽菌C2H2型轉錄因子CgGcp1的生物學功能[J]. 微生物學通報,2022,49(7):2587-2598.

ZHANG Xingyuan,WANG Diguang,GAO Jing,TANG Wen,LI Xiaoyu. Biological functions of a C2H2 transcription factor CgGcp1 in Colletotrichum gloeosporioides[J]. Microbiology China,2022,49(7):2587-2598.

[32] 薛蓮. 采后蘋果與炭疽菌互作的生理生化機制的研究[D]. 合肥:安徽農業大學,2005.

XUE Lian. Studies on physiological and biochemical mechanism of host-pathogen reaction between postharvest apple and Colletotrichum gloeosporioides[D]. Hefei:Anhui Agricultural University,2005.

[33] 張俊祥,冀志蕊,王娜,徐成楠,遲福梅,周宗山. 蘋果炭疽葉枯病菌GcAP1復合體β亞基基因的克隆及功能分析[J]. 中國農業科學,2017,50(8):1430-1439.

ZHANG Junxiang,JI Zhirui,WANG Na,XU Chengnan,CHI Fumei,ZHOU Zongshan. Gene cloning and functional analysis of GcAP1 complex beta subunit in Glomerella cingulata[J]. Scientia Agricultura Sinica,2017,50(8):1430-1439.

[34] ALKAN N,MENG X C,FRIEDLANDER G,REUVENI E,SUKNO S,SHERMAN A,THON M,FLUHR R,PRUSKY D. Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis[J]. Molecular Plant-Microbe Interactions,2013,26(11):1345-1358.

[35] ZHAO X Z,TANG B Z,XU J,WANG N,ZHOU Z S,ZHANG J X. A SET domain-containing protein involved in cell wall integrity signaling and peroxisome biogenesis is essential for appressorium formation and pathogenicity of Colletotrichum gloeosporioides[J]. Fungal Genetics and Biology,2020,145:103474.

[36] 張俊祥,王美玉,遲福梅,徐杰,周宗山. 蘋果炭疽葉枯病菌CgCMK1基因的克隆與功能分析[J]. 植物病理學報,2020,50(1):40-48.

ZHANG Junxiang,WANG Meiyu,CHI Fumei,XU Jie,ZHOU Zongshan. Cloning and functional analysis of CgCMK1 in Colletotrichum gloeosporioides[J]. Acta Phytopathologica Sinica,2020,50(1):40-48.

[37] 張俊祥,王美玉,徐成楠,周宗山. 蘋果炭疽葉枯病菌致病相關基因CgNVF1的功能初步分析[J]. 植物病理學報,2018,48(6):810-816.

ZHANG Junxiang,WANG Meiyu,XU Chengnan,ZHOU Zongshan. Functional analysis of the pathogenicity-related gene CgNVF1 in Colletotrichum gloeosporioides[J]. Acta Phytopathologica Sinica,2018,48(6):810-816.

[38] 徐杰. 蘋果炭疽葉枯病菌GTP結合蛋白GTPBP1的功能分析[D]. 北京:中國農業科學院,2020.

XU Jie. Function analysis of GTP-binding protein GTPBP1 in Colletotrichum gloeosporioides[D]. Beijing:Chinese Academy of Agricultural Sciences,2020.

[39] 譚清群. 蘋果炭疽葉枯病菌CPA1基因的鑒定與功能分析[D]. 長沙:湖南農業大學,2021.

TAN Qingqun. Identification and functional analysis of CPA1 in Colletotrichum gloeosporioides[D]. Changsha:Hunan Agricultural University,2021.

[40] CHAGU? V,MAOR R,SHARON A. CgOpt1,a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity[J]. BMC Microbiology,2009,9:173.

[41] KIM Y K,WANG Y H,LIU Z M,KOLATTUKUDY P E. Identification of a hard surface contact-induced gene in Colletotrichum gloeosporioides conidia as a sterol glycosyl transferase,a novel fungal virulence factor[J]. The Plant Journal,2002,30(2):177-187.

[42] LIANG X F,CAO M Y,LI S,KONG Y Y,ROLLINS J A,ZHANG R,SUN G Y. Highly contiguous genome resource of Colletotrichum fructicola generated using long-read sequencing[J]. Molecular Plant-Microbe Interactions,2020,33(6):790-793.

[43] LIU Q G,WANG Z C,XU X M,ZHANG H Z,LI C H. Genome-wide analysis of C2H2 zinc-finger family transcription factors and their responses to abiotic stresses in poplar (Populus trichocarpa)[J]. PLoS One,2015,10(8):e0134753.

[44] LI X Y,KE Z J,YU X J,LIU Z Q,ZHANG C H. Transcription factor CgAzf1 regulates melanin production,conidial development and infection in Colletotrichum gloeosporioides[J]. Antonie Van Leeuwenhoek,2019,112(7):1095-1104.

[45] WANG P,LI B,PAN Y T,ZHANG Y Z,LI D W,HUANG L. Calcineurin-responsive transcription factor CgCrzA is required for cell wall integrity and infection-related morphogenesis in Colletotrichum gloeosporioides[J]. The Plant Pathology Journal,2020,36(5):385-397.

[46] LIU W K,LIANG X F,GLEASON M L,CAO M Y,ZHANG R,SUN G Y. Transcription factor CfSte12 of Colletotrichum fructicola is a key regulator of early apple Glomerella leaf spot pathogenesis[J]. Applied and Environmental Microbiology,2020,87(1):e02212-e02220.

[47] 劉歡慶,周雙針,高菁,王金泓,唐雯,柳志強,李曉宇. 暹羅炭疽菌同源異型盒轉錄因子CsHtf1的生物學功能[J]. 微生物學通報,2023,50(12):5350-5362.

LIU Huanqing,ZHOU Shuangzhen,GAO Jing,WANG Jinhong,TANG Wen,LIU Zhiqiang,LI Xiaoyu. Biological function of a homeobox transcription factor CsHtf1 in Colletotrichum siamense[J]. Microbiology China,2023,50(12):5350-5362.

[48] SUN Y J,WANG Y L,TIAN C M. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides[J]. Fungal Genetics and Biology,2016,95:58-66.

[49] LI X Y,WU Y T,LIU Z Q,ZHANG C H. The function and transcriptome analysis of a bZIP transcription factor CgAP1 in Colletotrichum gloeosporioides[J]. Microbiological Research,2017,197:39-48.

[50] LIU W K,HAN L,CHEN J Z,LIANG X F,WANG B,GLEASON M L,ZHANG R,SUN G Y. The CfMcm1 regulates pathogenicity,conidium germination,and sexual development in Colletotrichum fructicola[J]. Phytopathology,2022,112(10):2159-2173.

[51] ELLIS J G,RAFIQI M,GAN P,CHAKRABARTI A,DODDS P N. Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens[J]. Current Opinion in Plant Biology,2009,12(4):399-405.

[52] RAFIQI M,ELLIS J G,LUDOWICI V A,HARDHAM A R,DODDS P N. Challenges and progress towards understanding the role of effectors in plant-fungal interactions[J]. Current Opinion in Plant Biology,2012,15(4):477-482.

[53] SHIMADA C,LIPKA V,OCONNELL R,OKUNO T,SCHULZE-LEFERT P,TAKANO Y. Nonhost resistance in Arabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function[J]. Molecular Plant-Microbe Interactions,2006,19(3):270-279.

[54] GAN P,IKEDA K,IRIEDA H,NARUSAKA M,OCONNELL R J,NARUSAKA Y,TAKANO Y,KUBO Y,SHIRASU K. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi[J]. New Phytologist,2013,197(4):1236-1249.

[55] OCONNELL R J,THON M R,HACQUARD S,AMYOTTE S G,KLEEMANN J,TORRES M F,DAMM U,BUIATE E A,EPSTEIN L,ALKAN N,ALTM?LLER J,ALVARADO-BALDERRAMA L,BAUSER C A,BECKER C,BIRREN B W,CHEN Z H,CHOI J,CROUCH J A,DUVICK J P,FARMAN M A,GAN P,HEIMAN D,HENRISSAT B,HOWARD R J,KABBAGE M,KOCH C,KRACHER B,KUBO Y,LAW A D,LEBRUN M H,LEE Y H,MIYARA I,MOORE N,NEUMANN U,NORDSTR?M K,PANACCIONE D G,PANSTRUGA R,PLACE M,PROCTOR R H,PRUSKY D,RECH G,REINHARDT R,ROLLINS J A,ROUNSLEY S,SCHARDL C L,SCHWARTZ D C,SHENOY N,SHIRASU K,SIKHAKOLLI U R,ST?BER K,SUKNO S A,SWEIGARD J A,TAKANO Y,TAKAHARA H,TRAIL F,VAN DER DOES H C,VOLL L M,WILL I,YOUNG S,ZENG Q D,ZHANG J Z,ZHOU S G,DICKMAN M B,SCHULZE-LEFERT P,VAN THEMAAT E V L,MA L J,VAILLANCOURT L J. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses[J]. Nature Genetics,2012,44(9):1060-1065.

[56] SHANG S P,LIU G L,ZHANG S,LIANG X F,ZHANG R,SUN G Y. A fungal CFEM-containing effector targets NPR1 regulator NIMIN2 to suppress plant immunity[J]. Plant Biotechnology Journal,2024,22(1):82-97.

[57] LIU L P,XU L,JIA Q,PAN R,OELM?LLER R,ZHANG W Y,WU C. Arms race:Diverse effector proteins with conserved motifs[J]. Plant Signaling & Behavior,2019,14(2):1557008.

[58] SHANG S P,WANG B,ZHANG S,LIU G L,LIANG X F,ZHANG R,GLEASON M L,SUN G Y. A novel effector CfEC92 of Colletotrichum fructicola contributes to glomerella leaf spot virulence by suppressing plant defences at the early infection phase[J]. Molecular Plant Pathology,2020,21(7):936-950.

[59] 王美玉. 蘋果炭疽葉枯病菌效應蛋白Sntf2抑制植物免疫的分子機制研究[D]. 北京:中國農業科學院,2022.

WANG Meiyu. Molecular mechanism of inhibition of plant immunity by effector Sntf2 from Colletotrichum gloeosporioides[D]. Beijing:Chinese Academy of Agricultural Sciences,2022.

[60] KHODADADI F,GONZ?LEZ J B,MARTIN P L,GIROUX E,BILODEAU G J,PETER K A,DOYLE V P,A?IMOVI? S G. Identification and characterization of Colletotrichum species causing apple bitter rot in New York and description of C. noveboracense sp. nov.[J]. Scientific Reports,2020,10(1):11043.

[61] PENG Y J,VAN WERSCH R,ZHANG Y L. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity[J]. Molecular Plant-Microbe Interactions,2018,31(4):403-409.

[62] COUTO D,ZIPFEL C. Regulation of pattern recognition receptor signalling in plants[J]. Nature Reviews Immunology,2016,16(9):537-552.

[63] TANG D Z,WANG G X,ZHOU J M. Receptor kinases in plant-pathogen interactions:More than pattern recognition[J]. The Plant Cell,2017,29(4):618-637.

[64] BIA?AS A,ZESS E K,DE LA CONCEPCION J C,FRANCESCHETTI M,PENNINGTON H G,YOSHIDA K,UPSON J L,CHANCLUD E,WU C H,LANGNER T,MAQBOOL A,VARDEN F A,DEREVNINA L,BELHAJ K,FUJISAKI K,SAITOH H,TERAUCHI R,BANFIELD M J,KAMOUN S. Lessons in effector and NLR biology of plant-microbe systems[J]. Molecular Plant-Microbe Interactions,2018,31(1):34-45.

[65] JONES J D G,DANGL J L. The plant immune system[J]. Nature,2006,444(7117):323-329.

[66] TSUDA K,SATO M,STODDARD T,GLAZEBROOK J,KATAGIRI F. Network properties of robust immunity in plants[J]. PLoS Genetics,2009,5(12):e1000772.

[67] DODDS P N,RATHJEN J P. Plant immunity:Towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics,2010,11(8):539-548.

[68] QI Y P,TSUDA K,GLAZEBROOK J,KATAGIRI F. Physical association of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) immune receptors in Arabidopsis[J]. Molecular Plant Pathology,2011,12(7):702-708.

[69] 吳建圓,王娜,冀志蕊,遲福梅,周宗山,張俊祥. 蘋果炭疽葉枯病菌致病力分析及蘋果種質抗病性鑒定[J]. 植物遺傳資源學報,2017,18(2):210-216.

WU Jianyuan,WANG Na,JI Zhirui,CHI Fumei,ZHOU Zongshan,ZHANG Junxiang. Pathogenicity differentiation of pathogen causing Glomerella leaf spot of apple (GLSA) and evaluation of resistance to GLSA in apple germplasms[J]. Journal of Plant Genetic Resources,2017,18(2):210-216.

[70] ZHANG F,WANG F,YANG S,ZHANG Y Y,XUE H,WANG Y S,YAN S P,WANG Y,ZHANG Z H,MA Y. MdWRKY100 encodes a group Ⅰ WRKY transcription factor in Malus domestica that positively regulates resistance to Colletotrichum gloeosporioides infection[J]. Plant Science,2019,286:68-77.

[71] 劉瑛雙,房中文,TURAKULOV K S,劉春曉,董超華,張玉剛. 接種蘋果炭疽葉枯病菌對蘋果葉片相關酶活性及基因表達的影響[J]. 青島農業大學學報(自然科學版),2021,38(3):157-163.

LIU Yingshuang,FANG Zhongwen,TURAKULOV K S,LIU Chunxiao,DONG Chaohua,ZHANG Yugang. Effects on related enzymes activity and gene expression analysis of inoculate apple leaves under Glomerella leaf spot stress[J]. Journal of Qingdao Agricultural University (Natural Science),2021,38(3):157-163.

[72] 吳成成,李婷,趙芮嘉,李保華,梁文星,王彩霞. 蘋果MpSNAT1的克隆與表達特性分析[J]. 植物生理學報,2018,54(5):872-878.

WU Chengcheng,LI Ting,ZHAO Ruijia,LI Baohua,LIANG Wenxing,WANG Caixia. Cloning and expression characterization of MpSNAT1 in Malus pumila[J]. Plant Physiology Journal,2018,54(5):872-878.

[73] 吳芳芳,檀根甲. 蘋果感染炭疽病菌后6種酶活性的變化[J]. 安徽農業大學學報,2004,31(1):46-50.

WU Fangfang,TAN Genjia. Changes in six kinds of enzyme activities in apple fruit inoculatedwith Colletotrichum gloeosporioides[J]. Journal of Anhui Agricultural University,2004,31(1):46-50.

[74] 吳芳芳,鄭有飛,胡正華,陳魁. UV-B輻射增強對蘋果炭疽菌生長特性及其過氧化氫酶活性的影響[J]. 生態環境,2008,17(1):158-162.

WU Fangfang,ZHENG Youfei,HU Zhenghua,CHEN Kui. Effects of enhancing ultraviolet-B radiation on grown character and catalase activity in Colletitrichum gloeosporiodes[J]. Ecology and Environment,2008,17(1):158-162.

[75] 孔祥華,侯董亮,張偉,田義軻,劉源霞,王彩虹. 炭疽葉枯病菌誘導的不同蘋果種質中防御酶活性及丙二醛含量比較[J]. 青島農業大學學報(自然科學版),2017,34(1):5-8.

KONG Xianghua,HOU Dongliang,ZHANG Wei,TIAN Yike,LIU Yuanxia,WANG Caihong. Comparison of defensive enzymes activities and malonaldehyde content induced by Glomerella cingulata among different apple resources[J]. Journal of Qingdao Agricultural University (Natural Science),2017,34(1):5-8.

[76] 薛蓮,檀根甲,徐先松,李麗,韓翔. 蘋果炭疽病菌對蘋果果實致病機制初探[J]. 安徽農業大學學報,2006,33(4):522-525.

XUE Lian,TAN Genjia,XU Xiansong,LI Li,HAN Xiang. Pathogenesis of the cell wall degrading enzymes produced by Colletotrichum gloeosporioides[J]. Journal of Anhui Agricultural University,2006,33(4):522-525.

[77] 朱學明,史祥鵬,雍道敬,張穎,李保華,梁文星,王彩霞. 內生放線菌A-1誘導蘋果對炭疽葉枯病的抗性[J]. 植物生理學報,2015,51(6):949-954.

ZHU Xueming,SHI Xiangpeng,YONG Daojing,ZHANG Ying,LI Baohua,LIANG Wenxing,WANG Caixia. Induction of resistance against Glomerella cingulata in apple by endophytic actinomycetes strain A-1[J]. Plant Physiology Journal,2015,51(6):949-954.

[78] BARI R,JONES J D G. Role of plant hormones in plant defence responses[J]. Plant Molecular Biology,2009,69(4):473-488.

[79] TANG L G,YANG G G,MA M,LIU X F,LI B,XIE J T,FU Y P,CHEN T,YU Y,CHEN W D,JIANG D H,CHENG J S. An effector of a necrotrophic fungal pathogen targets the calcium-sensing receptor in chloroplasts to inhibit host resistance[J]. Molecular Plant Pathology,2020,21(5):686-701.

[80] DEMPSEY D A,VLOT A C,WILDERMUTH M C,KLESSIG D F. Salicylic acid biosynthesis and metabolism[J]. The Arabidopsis Book,2011,9:e0156.

[81] ZHANG Y,SHI X P,LI B H,ZHANG Q M,LIANG W X,WANG C X. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple[J]. Plant Physiology and Biochemistry,2016,106:64-72.

[82] 趙妍,王晨. 水楊酸處理對蘋果采后品質及炭疽病害的影響[J]. 食品工業,2015,36(9):195-198.

ZHAO Yan,WANG Chen. Influence of salicylic acid on quality and anthracnose in postharvest apple fruit[J]. The Food Industry,2015,36(9):195-198.

[83] 何曉文,孟慧,張家虎,范昆,李林光. ‘嘎拉蘋果及其雜交后代對炭疽葉枯病的抗性機制分析[J]. 西北植物學報,2022,42(6):983-993.

HE Xiaowen,MENG Hui,ZHANG Jiahu,FAN Kun,LI Linguang. Resistance analysis of ‘Gala and F1 individuals to Glomerella leaf spot[J]. Acta Botanica Boreali-Occidentalia Sinica,2022,42(6):983-993.

[84] 張朝紅,陳東玫,楊鳳秋,趙同生,趙國棟,李揚,趙永波. 蘋果種質及雜種對炭疽菌葉枯病的田間抗性分析[J]. 河北農業科學,2018,22(3):42-46.

ZHANG Chaohong,CHEN Dongmei,YANG Fengqiu,ZHAO Tongsheng,ZHAO Guodong,LI Yang,ZHAO Yongbo. Field resistance of apple germplasm and hybrids to Glomerella leaf spot[J]. Journal of Hebei Agricultural Sciences,2018,22(3):42-46.

[85] 馬玉鑫. ‘寒富蘋果CDPK基因家族分析及MdCDPK24對蘋果炭疽病抗性功能鑒定[D]. 沈陽:沈陽農業大學,2023.

MA Yuxin. Analysis of CDPK gene family and identification of resistance function of MdCDPK24 to Colletotrichum gloeosporioides in ‘Hanfu apple[D]. Shenyang:Shenyang Agricultural University,2023.

[86] 趙偉玉. ‘寒富蘋果CaMBP基因家族分析及MdCaMBP6抗蘋果炭疽葉枯病的功能鑒定[D]. 沈陽:沈陽農業大學,2023.

ZHAO Weiyu. Analysis of CaMBP gene family in ‘Hanfu apple and function identification of MdCaMBP6 against apple Glomerella leaf spot[D]. Shenyang:Shenyang Agricultural University,2023.

[87] 史佳俊. 蘋果細胞分裂素合成關鍵酶基因MdIPT8在抗炭疽病中的功能解析[D]. 沈陽:沈陽農業大學,2022.

SHI Jiajun. Functional analysis of MdIPT8,a key enzyme gene for cytokinin synthesis in apple,in resistance to anthracnose[D]. Shenyang:Shenyang Agricultural University,2022.

[88] GUO T L,BAO R,YANG Z H,FU X M,HU L,WANG N,LIU C H,MA F W. The m6A reader MhYTP2 negatively modulates apple Glomerella leaf spot resistance by binding to and degrading MdRGA2L mRNA[J]. Molecular Plant Pathology,2023,24(10):1287-1299.

[89] 劉源霞,李保華,王彩虹,劉春曉,孔祥華,祝軍,戴洪義. 蘋果對炭疽菌葉枯病抗性遺傳的研究及其分子標記篩選[J]. 園藝學報,2015,42(11):2105-2112.

LIU Yuanxia,LI Baohua,WANG Caihong,LIU Chunxiao,KONG Xianghua,ZHU Jun,DAI Hongyi. Genetic studies and molecular markers screening of apple resistance to Glomerella leaf spot[J]. Acta Horticulturae Sinica,2015,42(11):2105-2112.

[90] 劉源霞,蘭進好,柏素花,孫曉紅,劉春曉,張玉剛,戴洪義. 蘋果抗炭疽菌葉枯病基因SNP和InDel標記的HRM篩選[J]. 園藝學報,2017,44(2):215-222.

LIU Yuanxia,LAN Jinhao,BAI Suhua,SUN Xiaohong,LIU Chunxiao,ZHANG Yugang,DAI Hongyi. Screening of SNP and InDel markers to Glomerella leaf spot resistance gene locus in apple using HRM technology[J]. Acta Horticulturae Sinica,2017,44(2):215-222.

[91] 劉春曉,蘭進好,侯鴻敏,張玉剛,戴洪義,劉源霞. 蘋果抗炭疽菌葉枯病基因相關的4個分子標記的準確性驗證[J]. 園藝學報,2017,44(7):1355-1362.

LIU Chunxiao,LAN Jinhao,HOU Hongmin,ZHANG Yugang,DAI Hongyi,LIU Yuanxia. Accuracy test of four molecular markers of Glomerella leaf spot resistant gene in apple cultivars[J]. Acta Horticulturae Sinica,2017,44(7):1355-1362.

[92] LI W X,PANG S Y,LU Z G,JIN B. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants[J]. Plants,2020,9(11):1515.

[93] 谷彥冰. 蘋果兩個WRKY轉錄因子的克隆和表達分析[D]. 北京:中國農業科學院,2016.

GU Yanbing. Cloning and expression analysis of two WRKY transcription factors in apple (Malus domestica Borkh.)[D]. Beijing:Chinese Academy of Agricultural Sciences,2016.

[94] SHAN D Q,CHANYU W,ZHENG X D,HU Z H,ZHU Y P,ZHAO Y,JIANG A W,ZHANG H X,SHI K,BAI Y X,YAN T C,WANG L,SUN Y Z,LI J F,ZHOU Z Y,GUO Y,KONG J. MKK4-MPK3-WRKY17-mediated salicylic acid degradation increases susceptibility to Glomerella leaf spot in apple[J]. Plant Physiology,2021,186(2):1202-1219.

[95] ZHAO X Y,QI C H,JIANG H,ZHONG M S,YOU C X,LI Y Y,HAO Y J. MdWRKY15 improves resistance of apple to Botryosphaeria dothidea via the salicylic acid-mediated pathway by directly binding the MdICS1 promoter[J]. Journal of Integrative Plant Biology,2020,62(4):527-543.

[96] JI Z R,WANG M Y,ZHANG S W,DU Y N,CONG J L,YAN H F,GUO H M,XU B L,ZHOU Z S. GDSL esterase/lipase GELP1 involved in the defense of apple leaves against Colletotrichum gloeosporioides infection[J]. International Journal of Molecular Sciences,2023,24(12):10343.

[97] LI Y X,CUI Y L,LIU B Y,XU R X,SHI Y J,LV L L,WANG H T,SHANG Y M,LIANG W,MA F W,LI C Y. γ-aminobutyric acid plays a key role in alleviating Glomerella leaf spot in apples[J]. Molecular Plant Pathology,2023,24(6):588-601.

[98] LIPPOK B,BIRKENBIHL R P,RIVORY G,BR?MMER J,SCHMELZER E,LOGEMANN E,SOMSSICH I E. Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W-box elements[J]. Molecular Plant-Microbe Interactions,2007,20(4):420-429.

[99] ZHAO X Y,QI C H,JIANG H,ZHONG M S,YOU C X,LI Y Y,HAO Y J. MdHIR4 transcription and translation levels associated with disease in apple are regulated by MdWRKY31[J]. Plant Molecular Biology,2019,101(1/2):149-162.

[100] HOU Y J,YU X Y,CHEN W P,ZHUANG W B,WANG S H,SUN C,CAO L F,ZHOU T T,QU S C. MdWRKY75e enhances resistance to Alternaria alternata in Malus domestica[J]. Horticulture Research,2021,8(1):225.

[101] ZHANG X W,XU R R,LIU Y K,YOU C X,AN J P. MdVQ10 promotes wound-triggered leaf senescence in association with MdWRKY75 and undergoes antagonistic modulation of MdCML15 and MdJAZs in apple[J]. The Plant Journal,2023,115(6):1599-1618.

[102] ZHANG S S,WU Y Q,HUANG X,WU W L,LYU L F,LI W L. Research progress about microRNAs involved in plant secondary metabolism[J]. International Journal of Biological Macromolecules,2022,216:820-829.

[103] SALVADOR-GUIRAO R,BALDRICH P,WEIGEL D,RUBIO-SOMOZA I,SAN SEGUNDO B. The microRNA miR773 is involved in the Arabidopsis immune response to fungal pathogens[J]. Molecular Plant-Microbe Interactions,2018,31(2):249-259.

[104] ZHANG Y,ZHANG Q L,HAO L,WANG S N,WANG S Y,ZHANG W N,XU C R,YU Y F,LI T Z. A novel miRNA negatively regulates resistance to Glomerella leaf spot by suppressing expression of an NBS gene in apple[J]. Horticulture Research,2019,6:93.

[105] ZHANG Q L,XU C R,WEI H Y,FAN W Q,LI T Z. Two pathogenesis-related proteins interact with leucine-rich repeat proteins to promote Alternaria leaf spot resistance in apple[J]. Horticulture Research,2021,8:219.

[106] ZHANG Q L,WANG Y H,WEI H Y,FAN W Q,XU C R,LI T Z. CCR-NB-LRR proteins MdRNL2 and MdRNL6 interact physically to confer broad-spectrum fungal resistance in apple (Malus × domestica)[J]. The Plant Journal,2021,108(5):1522-1538.

[107] 張亞楠,陳新慧,張杰. 蘋果炭疽病抗性miRNA的篩選[J]. 中國農學通報,2021,37(7):106-111.

ZHANG Yanan,CHEN Xinhui,ZHANG Jie. Screening of Malus miRNA:Mediated resistance to Colletotrichum gloeosporioides[J]. Chinese Agricultural Science Bulletin,2021,37(7):106-111.

[108] SHEN X X,PING Y K,BAO C N,LIU C,TAHIR M M,LI X W,SONG Y,XU W R,MA F W,GUAN Q M. Mdm-miR160-MdARF17-MdWRKY33 module mediates freezing tolerance in apple[J]. The Plant Journal,2023,114(2):262-278.

[109] YU X Y,HOU Y J,CAO L F,ZHOU T T,WANG S H,HU K X,CHEN J R,QU S C. MicroRNA candidate miRcand137 in apple is induced by Botryosphaeria dothidea for impairing host defense[J]. Plant Physiology,2022,189(3):1814-1832.

[110] LIU K,YANG A,YAN J D,LIANG Z L,YUAN G P,CONG P H,ZHANG L Y,HAN X L,ZHANG C X. MdAIL5 overexpression promotes apple adventitious shoot regeneration by regulating hormone signaling and activating the expression of shoot development-related genes[J]. Horticulture Research,2023,10(11):uhad198.

收稿日期:2024-03-13 接受日期:2024-04-07

基金項目:中央級公益性科研院所基本科研業務費專項(1610182023012);國家現代農業產業技術體系(CARS-27);中國農業科學院科技創新工程專項(CAAS-ASTIP-2021-RIP-05)

作者簡介:冀志蕊,女,在讀博士研究生,研究方向為果樹病害流行與綜合防控。Tel:0429-3598236,E-mail:xinyu_jzr@163.com

*通信作者 Author for correspondence. E-mail:xubl@gsau.edu.cn;Tel:0429-3598268,E-mail:zhouzongshan@caas.cn

主站蜘蛛池模板: 亚洲av无码人妻| 无码粉嫩虎白一线天在线观看| 免费无码在线观看| 国产在线自在拍91精品黑人| 欧美黄网在线| 欧美精品亚洲精品日韩专区va| 老司机午夜精品网站在线观看 | 免费看的一级毛片| 国产精品lululu在线观看| 中字无码精油按摩中出视频| 91丨九色丨首页在线播放| 人妻21p大胆| 国产精品jizz在线观看软件| 国产91九色在线播放| 久久精品女人天堂aaa| 亚洲国产欧美自拍| 青青草一区| 精品亚洲欧美中文字幕在线看 | 好吊色妇女免费视频免费| a在线亚洲男人的天堂试看| 国产一级视频久久| 国产另类视频| 国产色网站| 成人精品亚洲| 综合网久久| 亚洲一级毛片| 91无码人妻精品一区| 国产精品女主播| 成人在线不卡| 国产成人精品一区二区三区| 日韩精品专区免费无码aⅴ| 亚洲αv毛片| 亚洲,国产,日韩,综合一区| 99久久精品久久久久久婷婷| 亚洲制服丝袜第一页| 中文字幕永久在线看| 91亚洲精品第一| 一本无码在线观看| 第一页亚洲| 91国内在线观看| 亚洲精品你懂的| 无码内射在线| 精品夜恋影院亚洲欧洲| 亚洲精品无码AⅤ片青青在线观看| 香蕉视频在线观看www| 欧美激情福利| 日韩二区三区无| 在线免费不卡视频| 国产成人综合网在线观看| 亚洲美女一区| 一级做a爰片久久毛片毛片| 无码'专区第一页| 亚洲午夜天堂| 国产乱子精品一区二区在线观看| 国产精品女人呻吟在线观看| 福利国产微拍广场一区视频在线| 国产菊爆视频在线观看| 狼友视频国产精品首页| 亚洲不卡影院| 国产激情无码一区二区APP| 国产伦片中文免费观看| 一级毛片在线免费视频| a毛片在线| 国产人成在线视频| 丁香五月激情图片| 国产欧美日韩视频一区二区三区| 国产在线98福利播放视频免费| 国产人前露出系列视频| 久久久黄色片| 亚洲一欧洲中文字幕在线| 色精品视频| 亚洲不卡av中文在线| 在线欧美a| 在线不卡免费视频| 国产香蕉97碰碰视频VA碰碰看| 91精品国产综合久久香蕉922| 五月六月伊人狠狠丁香网| 国产玖玖视频| 亚洲成a人在线观看| 欧美精品xx| 99爱在线| 999精品在线视频|