999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

超高效液相色譜-三重四級桿質(zhì)譜聯(lián)用法同時(shí)測定荔枝中4種細(xì)胞分裂素

2024-06-30 22:41:56黃雨蓮趙明磊馬興帥李建國徐婧
果樹學(xué)報(bào) 2024年6期

黃雨蓮 趙明磊 馬興帥 李建國 徐婧

摘? ? 要:【目的】應(yīng)用超高效液相色譜-三重四級桿質(zhì)譜聯(lián)用儀(UPLC-MS/MS),建立一種同時(shí)測定荔枝反式玉米素核苷(tZR)、異戊烯基腺嘌呤核苷(IPR)、二氫玉米素(DHZ)、異戊烯基腺嘌呤(IP)4種細(xì)胞分裂素含量的方法。【方法】0.25 g荔枝樣品用乙腈-水(80∶20,體積比)溶液浸提8 h,經(jīng)Bond Elut Plexa PCX固相萃取柱純化,2.5%氨水甲醇洗脫后過0.22 ?m有機(jī)濾膜檢測。選取XSelect HSS T3色譜柱,以甲醇和5 mmol·L-1甲酸銨水溶液為流動(dòng)相進(jìn)行7 min梯度洗脫,采用電噴霧正離子(ESI+)模式電離,選擇反應(yīng)監(jiān)測(MRM)模式對細(xì)胞分裂素進(jìn)行定量。【結(jié)果】4種細(xì)胞分裂素的檢出限和定量限分別低于18.12和60.39 pg·g-1,在0.05~50 ng·mL-1質(zhì)量濃度范圍內(nèi)呈良好的線性關(guān)系,線性相關(guān)系數(shù)(r2)大于0.999。在高、中、低濃度三種加標(biāo)水平下,4種細(xì)胞分裂素的平均回收率為80.0%~108.2%,標(biāo)準(zhǔn)偏差為0.8%~15.5%。采用建立的方法可以同時(shí)檢測出荔枝果皮、果肉、種子、幼果、葉片和果柄離區(qū)中4種細(xì)胞分裂素含量。【結(jié)論】該方法簡便、快速、靈敏、準(zhǔn)確,適用于荔枝不同組織中細(xì)胞分裂素含量的測定。

關(guān)鍵詞:荔枝;液質(zhì)聯(lián)用;細(xì)胞分裂素;定量測定

中圖分類號:S667.1 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2024)06-1228-11

Simultaneous determination of four cytokinins in litchi by ultra-high performance liquid chromatography triple quadrupole mass spectrometry

HUANG Yulian1, ZHAO Minglei1, 2, MA Xingshuai1, 2, LI Jianguo1, 2*, XU Jing1*

(1Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/College of Horticulture, South China Agricultural University, Guangzhou 510642, Guangdong, China; 2Guangdong Litchi Engineering Research Center, Guangzhou 510642, Guangdong, China)

Abstract: 【Objective】 A method was developed to simultaneously measure four types of cytokinins (tZR, IPR, DHZ and IP) in litchi using ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry (UPLC-MS/MS). 【Methods】 The experiment was conducted using litchi pericarp 50 days after flowering. The XSelect HSS T3 chromatographic column was selected. Methanol and 5 mmol·L-1 ammonium formate aqueous solution were used as the mobile phase with a flow rate of 0.3 mL·min-1. A gradient elution was conducted for 7 minutes. Positive electrospray ionization (ESI+) and the multiple reaction monitoring (MRM) mode were set for mass spectrometry detection. Under these conditions [ion source temperature 150 ℃, capillary voltage 0.35 kV, dissolvent gas temperature 500 ℃, atomization gas flow rate 1000 L·h-1, cone hole gas flow 50 L·h-1, and collision gas (argon gas) 0.17 L·h-1], quantification of cytokinins was achieved. The effects of different extraction solvents (80% methanol, 80% acetone, and 80% acetonitrile), different extraction times (4 h, 8 h, 12 h, and 16 h), different purification methods (PCX column, C18 column, HLB column, and no column), different concentrations of ammonium-methanol eluent (0.5%, 1.0%, 2.5%, and 5.0%), and different aqueous phases when methanol is the organic phase (0.05% formic acid solution, 0.1% formic acid solution, 1 mmol·L-1 ammonium formate solution, and 5 mmol·L-1 ammonium formate solution) were separately examined for their impact on cytokinin extraction, enrichment, and separation efficiency. Compared to other endogenous hormones, cytokinins are unique in that they have a purine ring and are alkaline. The PCX column is a strong cation exchange column filled with polymer cation exchange resin, which concentrates alkaline analytes and thereby enhances the detection sensitivity of alkaline compounds. Cytokinins exist as cations in the acidified extraction solution (pH≈2-3). They are tightly adsorbed by the filler during passage through the PCX column, and then rinsed with a 0.1% formic acid methanol solution (pH≈5-6). At this point, most acidic and neutral compounds are removed, leaving the target substances on the column to be eluted with a 2.5% ammonia-methanol solution (pH≈11.3). Target substances flow out with the eluent are collected ultimately. In addition, cytokinins are also polar substances which can be separated according to the principles of C18 column and HLB column separation, namely the principle of similar solubility. The stationary phase of C18 and HLB reverse phase columns is non-polar. When the polarity of the mobile phase is greater than that of the stationary phase, the target substance is eluted with the polar mobile phase. 【Results】 As for the extraction conditions, the extraction effect was better with extraction solvent of 80% acetonitrile than the other extraction solutions and the extraction time was 8 hours, resulting in smooth, sharp peaks and high response values. Regarding the purification conditions, solid phase extraction with PCX was chosen, and the concentration of the ammonia methanol eluent was 2.5%. Under this condition, chromatogram had less interference, offering the best enrichment separation effect. For the mobile phase conditions, when methanol was used as the organic phase, a 5 mmol·L-1 aqueous solution of ammonium formate was most effective, with which the response intensity of the target substance was high and the peak time was appropriate. Fresh litchi samples were taken and ground into fine powder in a mortar with liquid nitrogen. 0.25 g of the sample was put into a 15 mL plastic centrifuge tube, and added with 2.5 mL of 80% acetonitrile pre-cooled at 4 ℃. Cytokinins were extracted at 4 ℃ for 8 hours, during which the sample was shaken twice. After extraction, the extract was centrifuged at a speed of 10 000 r·min-1 for 10 minutes at 4 ℃, and the supernatant was collected. An equal volume of 80% acetonitrile was added to the residue, shaken for 10 minutes, and centrifuged at a speed of 10 000 r·min-1 for 10 minutes at 4 ℃. The supernatant was combined, added with formic acid to adjust the pH value to 2-3, and mixed well to obtain the crude extract. Consecutively, 2.5 mL methanol and an equal volume of 2% aqueous solution of formic acid were added for activation and balancing. The crude extract was passed through the column at a rate of 1-2 drops per second, rinsed with an equal volume of 0.1% formic acid methanol solution, and finally washed twice with an equal volume of 2.5% ammonia-water methanol solution. The eluent was collected in a test tube, blown to almost dryness with nitrogen, and added with 0.25 mL 15% methanol solution to re-dissolve. After vortex mixing, the eluent was filtered through a 0.22 ?m organic membrane for testing. The limits of detection and quantification for the four cytokinins were below 18.12 and 60.39 pg·g-1, respectively, showing a good linear relationship within the concentration range of 0.05-50 ng·mL-1, with a correlation coefficient (r2) greater than 0.999. At three spiking levels of high, medium, and low concentrations (0.4, 2, and 20 ng·mL-1), the average recovery rates of the four cytokinins were between 80.0%-108.2%, with a standard deviation ranging from 0.8%-15.5%. The established method was used to measure the endogenous cytokinins in litchi pericarp, pulp, seed, young fruit, leaves, and the abscission zone, and all four cytokinins could be detected. 【Conclusion】 This method has the advantages of easy preprocessing, short detection cycle, good reproducibility, high sensitivity, and low cost. The final results are reliable, making it suitable for rapid screening and quantitative detection of cytokinins in various parts of litchi. The method is of great practical value.

Key words: Litchi; Liquid chromatography-mass spectrometry; Cytokinin; Quantitative determination

細(xì)胞分裂素是天然存在的腺嘌呤衍生物,是一類較活躍的植物激素,具有廣泛的生物學(xué)活性,參與植物從種子萌發(fā)到衰老的各個(gè)階段[1]。在植物中,它們主要以游離堿的形式存在,各種細(xì)胞分裂素分子結(jié)構(gòu)不同,但它們都具有芳香族環(huán)和側(cè)鏈,其中,芳香族環(huán)上帶有羧基和甲基或羥基等官能團(tuán),側(cè)鏈則包括苯丙氨基、異戊二烯基等官能團(tuán),這些官能團(tuán)賦予了細(xì)胞分裂素特定的生理功能。根據(jù)側(cè)鏈的不同,天然細(xì)胞分裂素又可以分為兩類,分別是異戊二烯類細(xì)胞分裂素和苯環(huán)類細(xì)胞分裂素,且前者更為普遍[2]。反式玉米素核苷(tZR)、異戊烯基腺嘌呤核苷(IPR)、二氫玉米素(DHZ)、異戊烯基腺嘌呤(IP)都屬于前者(圖1)。細(xì)胞分裂素的主要存在形式在不同的植物、相同植物的不同組織以及發(fā)育階段有很大的差異。例如在獼猴桃中,IPR是細(xì)胞分裂素最為常見的存在形式[3];而在葡萄中,tZR是最常見的存在形式[4]。作為一種植物生長必不可少的激素,細(xì)胞分裂素在荔枝發(fā)育的整個(gè)過程中都發(fā)揮了重要的作用,該文涉及的4種細(xì)胞分裂素在細(xì)胞分裂素的合成代謝過程中較為關(guān)鍵。

荔枝(Litchi chinensis Sonn.)為無患子科荔枝屬常綠植物,是華南的重要經(jīng)濟(jì)果樹,在熱帶農(nóng)業(yè)產(chǎn)業(yè)中占有重要的地位[5]。中國是荔枝的原產(chǎn)地,現(xiàn)有荔枝種植面積55萬hm2,主要分布在廣東、廣西、福建、海南等省區(qū)[6]。荔枝在中國南方已有數(shù)千年的種植歷史,且因色、香、味俱佳,深受廣大消費(fèi)者喜愛。李偉才等[7]發(fā)現(xiàn)無核荔枝果實(shí)中高含量的IAA和低含量的細(xì)胞分裂素可能是其產(chǎn)生無核的一個(gè)重要原因。在花芽分化過程中,細(xì)胞分裂素含量的升高會(huì)促進(jìn)芽的分化和側(cè)芽發(fā)育,消除頂端優(yōu)勢,促進(jìn)花芽分化[8-9]。環(huán)剝是抑制落果、提高產(chǎn)量的有效措施,環(huán)剝后葉片的細(xì)胞分裂素含量明顯提高[10]。采前落果期果柄離區(qū)內(nèi)細(xì)胞分裂素含量的增加會(huì)抑制果柄離層的形成,減少果實(shí)的脫落[11]。在荔枝體胚發(fā)育過程中,添加外源玉米素可以促進(jìn)體胚的進(jìn)一步發(fā)育,促進(jìn)球形胚的形成[12]。這些研究結(jié)果均說明細(xì)胞分裂素對荔枝的生長發(fā)育和產(chǎn)量形成至關(guān)重要。然而細(xì)胞分裂素在植物體內(nèi)的含量極低,且在提取和測定過程中受其他代謝物的干擾嚴(yán)重[13],因此,選擇一種合適的測定方法對獲取細(xì)胞分裂素準(zhǔn)確的測定結(jié)果至關(guān)重要。

目前,荔枝上多采用酶聯(lián)免疫法(ELISA)[14-17]和高效液相色譜法(HPLC)[18]測定細(xì)胞分裂素含量,且前人多針對細(xì)胞分裂素中的一種進(jìn)行測定,這兩種方法精密度不高,獲得的數(shù)據(jù)差異大。植物體本身除了基質(zhì)組成復(fù)雜外,檢測過程中還存在取樣難、稱量難和分析難等問題,這就對植物的定量分析提出了更高的要求[19]。因此,具有檢測限低、帶有質(zhì)譜準(zhǔn)確性、檢出準(zhǔn)確率高等特點(diǎn)的高效液相色譜-串聯(lián)質(zhì)譜法,已成為目前植物激素分析的主流檢測方法。荔枝果實(shí)的樣品酚類物質(zhì)含量高,需要探討細(xì)胞分裂素提取的最佳方案,高效液相色譜-質(zhì)譜聯(lián)用檢測的色譜和質(zhì)譜條件也需要進(jìn)一步的優(yōu)化。筆者在本研究中以仙進(jìn)奉荔枝為材料,首次建立了用超高效液相色譜-三重四級桿質(zhì)譜聯(lián)用儀(UPLC-MS/MS)同時(shí)測定荔枝不同部位(果皮、果肉、種子、幼果、葉片、果柄離區(qū))中tZR、IPR、DHZ、IP的檢測方法,為相關(guān)研究提供參考。

1 材料和方法

1.1 供試材料

以廣州市增城石灘中荔園的仙進(jìn)奉荔枝為試驗(yàn)材料,選花后50 d的荔枝果實(shí),將荔枝果實(shí)的果皮、果肉、種子和果柄離區(qū)分別作為試驗(yàn)材料,采集冬梢葉片,置于冰盒迅速帶回實(shí)驗(yàn)室,做好標(biāo)記后,置于液氮速凍后存放于-80 ℃冰箱中備用。

1.2 儀器與試劑

Waters超高效液相色譜-三重四極桿串聯(lián)質(zhì)譜聯(lián)用儀(ACQUITY UPLC H-Class/ Xevo TQD)、Eppendorf臺式冷凍離心機(jī)、Eppendorf Thermo Mixer混勻儀、氮吹儀。

乙腈(質(zhì)譜純)、甲醇(質(zhì)譜純)、甲酸(質(zhì)譜純)均購自賽默飛世爾科技公司,甲酸銨(色譜純,上海麥克林生化科技股份有限公司),28%~30%氨水(色譜純,上海阿拉丁生化科技股份有限公司),Bond Elut Plexa PCX柱(安捷倫科技有限公司),試驗(yàn)用水為屈臣氏蒸餾水。細(xì)胞分裂素標(biāo)準(zhǔn)品tZR、IPR、DHZ和IP均購自上海源葉生物科技有限公司,純度均≥98%。

1.3 標(biāo)準(zhǔn)溶液的配制

準(zhǔn)確稱取tZR、IPR、DHZ、IP的標(biāo)準(zhǔn)品,用質(zhì)譜甲醇制成單標(biāo)準(zhǔn)儲備液密封儲存于-80 ℃冰箱中,用15%的質(zhì)譜甲醇配制成0.1 ?g·mL-1的細(xì)胞分裂素混合標(biāo)準(zhǔn)溶液,密封儲存于-20 ℃冰箱備用,使用時(shí)再稀釋成相應(yīng)濃度。

1.4 樣品前處理

過程參考曹趙云等[20]的方法并加以改進(jìn),以花后50 d荔枝果皮為材料,分別考察不同提取劑(80%甲醇[21-23]、80%丙酮、80%乙腈[24])、不同提取時(shí)間(4 h、8 h、12 h、16 h)、不同純化方式(PCX柱[25]、C18柱[26]、HLB柱[27]、不過柱)、不同體積分?jǐn)?shù)的氨水甲醇洗脫液(0.5%、1.0%、2.5%、5.0%)對細(xì)胞分裂素提取富集及分離效果的影響;同時(shí)以5 ng·mL-1標(biāo)準(zhǔn)品為材料,考察甲醇為有機(jī)相時(shí)不同水相(0.05%甲酸水溶液、0.1%甲酸水溶液、1 mmol·L-1甲酸銨水溶液、5 mmol·L-1甲酸銨水溶液)對細(xì)胞分裂素提取富集及分離效果的影響,篩選出適合荔枝樣品的前處理流程。

優(yōu)化后的流程如圖2所示。取新鮮的荔枝果皮樣品,于研缽中加液氮磨細(xì),用千分之一天平準(zhǔn)確稱取0.25 g樣品于15 mL塑料離心管中,加入2.5 mL 4 ℃預(yù)冷的80%乙腈溶液,在4 ℃下浸提8 h,其間振搖2次。取出后于4 ℃在10 000 r·min-1的轉(zhuǎn)速下離心10 min,收集上清液。在殘?jiān)屑尤?.5 mL 80%乙腈,振蕩10 min,于4 ℃在10 000 r·min-1的轉(zhuǎn)速下離心10 min,將兩次提取液合并,加甲酸調(diào)pH值為2~3,混勻,獲得樣品粗提液。

依次用2.5 mL甲醇和2.5 mL 2%甲酸水溶液進(jìn)行活化和平衡固相萃取柱,約5 mL粗提液以每秒1~2滴的速度過柱,之后再用等體積甲醇溶液(含0.1%甲酸)淋洗,最后用2.5 mL甲醇溶液(含2.5%氨水)洗脫兩次,洗脫液收集于試管,氮吹至10 ?L,加0.25 mL 15%甲醇水溶液復(fù)溶,漩渦混勻后過0.22 ?m有機(jī)濾膜后待測。

1.5 色譜和質(zhì)譜條件

色譜條件:Waters公司X Select HSS T3柱(2.1 mm × 100 mm,2.5 ?m),流動(dòng)相A為甲醇,流動(dòng)B為5 mmol·L-1的甲酸銨水溶液,梯度洗脫程序見表1。

質(zhì)譜條件為電噴霧離子源(ESI+),檢測方式為多反應(yīng)檢測(MRM)模式。離子源溫度為150 ℃,毛細(xì)管電壓為0.35 kV,脫溶劑氣溫度500 ℃,霧化氣氮?dú)饬魉?000 L·h-1,錐孔氣流速50 L·h-1;碰撞氣(氬氣)流速0.17 L·h-1。質(zhì)譜參數(shù)見表2,4種細(xì)胞分裂素標(biāo)準(zhǔn)溶液的選擇反應(yīng)檢測色譜圖見圖3。

2 結(jié)果與分析

2.1 提取條件優(yōu)化

2.1.1 提取劑優(yōu)化 在植物激素測定中,常用的提取劑有甲醇、乙腈和丙酮[28-30]。以仙進(jìn)奉果皮為樣品,在其他條件相同的情況下,考察了80%甲醇、80%丙酮、80%乙腈作為提取溶劑的提取效果(圖4-A)。結(jié)果表明,對于tZR和IPR而言,80%乙腈的提取效果好;對于DHZ而言,80%甲醇的提取效果更好;對于IP而言,80%丙酮的提取效果更佳。經(jīng)過綜合比較,選擇80%乙腈作為提取劑。

2.1.2 提取時(shí)間優(yōu)化 選定80%乙腈作為提取劑,考察了提取時(shí)間分別為4 h、8 h、12 h、16 h時(shí)對細(xì)胞分裂素提取效果的影響。結(jié)果(圖4-B)表明,提取時(shí)間從4 h延長到8 h時(shí),tZR和DHZ的提取效果得到了顯著提升;提取時(shí)間從8 h延長到12 h時(shí),除IPR和IP提取效果略有下降外,其他兩種細(xì)胞分裂素的提取效果沒有發(fā)生顯著變化;提取時(shí)間從12 h延長到16 h時(shí),IP的提取效果略有下降,tZR的提取效果顯著下降。綜合比較,提取時(shí)間最終選擇8 h。

2.2 純化條件優(yōu)化

2.2.1 固相萃取柱優(yōu)化 純化條件主要考慮兩個(gè)重要參數(shù):固相萃取柱和洗脫溶劑。目前比較常見的固相萃取柱有以十八烷基鍵合相硅膠為填料的C18柱,以親水-親油平衡聚合物材料為填料的HLB柱以及以混合陽離子交換材料為填料的PCX柱等。以仙進(jìn)奉果皮為樣品,選擇C18柱、HLB柱、PCX柱,以及不純化這4種處理方式進(jìn)行比較(圖5-A)。C18柱可有效去除果皮中酯類及色素類化合物;HLB柱無需活化,純化步驟少,可有效除去磷脂、蛋白質(zhì)和色素等大分子物質(zhì);PCX柱能夠除去大量酸性和中性化合物;空白對照不進(jìn)行除雜。選擇PCX柱進(jìn)行純化時(shí),4種細(xì)胞分裂素檢測響應(yīng)值高且分離度好。其他3種純化方式,4種細(xì)胞分裂素檢測響應(yīng)值都較PCX柱低,DHZ和IP在色譜圖中分離度差。綜上所述,選擇PCX柱對樣品進(jìn)行純化。

2.2.2 洗脫液優(yōu)化 根據(jù)選定PCX柱的特點(diǎn),再結(jié)合細(xì)胞分裂素的理化性質(zhì),在空白樣品中添加相同質(zhì)量濃度(5 ng·mL-1)4種細(xì)胞分裂素,選擇不同體積分?jǐn)?shù)的氨水甲醇溶液進(jìn)行洗脫,考察回收率差異(圖5-B)。試驗(yàn)發(fā)現(xiàn),不同體積分?jǐn)?shù)氨水甲醇洗脫液均可影響細(xì)胞分裂素回收率。當(dāng)氨水甲醇的體積分?jǐn)?shù)為0.1%和1%時(shí),堿性較弱,PCX柱上固定的細(xì)胞分裂素不能被充分洗脫;氨水甲醇體積分?jǐn)?shù)增加到2.5%時(shí),堿性增強(qiáng),被洗脫的IPR和DHZ含量顯著增加;氨水甲醇體積分?jǐn)?shù)增加到5%時(shí),堿性進(jìn)一步增強(qiáng),但I(xiàn)PR和DHZ洗脫效果不佳,其他幾種細(xì)胞分裂素?zé)o明顯變化。因此,綜合比較之后,選擇體積分?jǐn)?shù)為2.5%的氨水甲醇溶液進(jìn)行洗脫。

2.3 色譜條件優(yōu)化

細(xì)胞分裂素是一類堿性物質(zhì),流動(dòng)相的pH值和組成會(huì)對色譜分離和響應(yīng)強(qiáng)度有較大的影響。試驗(yàn)采用甲醇分別與0.05%甲酸水溶液、0.10%甲酸水溶液、1 mmol·L-1甲酸銨水溶液和5 mmol·L-1甲酸銨水溶液組合,作為流動(dòng)相進(jìn)行考察,發(fā)現(xiàn)5 mmol·L-1甲酸銨水溶液(pH≈4.5)-甲醇為流動(dòng)相時(shí),4種細(xì)胞分裂素峰形較好,目標(biāo)物響應(yīng)值高(圖6)。

2.4 方法準(zhǔn)確度及精密度考察

2.4.1 線性關(guān)系和檢出限 取質(zhì)量濃度為50 ng·mL-1的混合標(biāo)準(zhǔn)溶液,依次稀釋配制成系列質(zhì)量濃度為0.05、0.10、0.50、1.00、5.00、10.00、50.00 ng·mL-1的混合標(biāo)準(zhǔn)溶液進(jìn)行檢測,繪制標(biāo)準(zhǔn)曲線,并進(jìn)行線性回歸,得到回歸方程和相關(guān)系數(shù)(r2)。再分別以3倍信噪比(S/N)和10倍信噪比所對應(yīng)的質(zhì)量濃度確定檢出限(LOD)和定量限(LOQ)。結(jié)果表明,tZR、IPR、DHZ、IP在0.05~50.00 ng·mL-1范圍內(nèi)線性良好,r2>0.999,LOD和LOQ分別為3.11~18.12和10.37~60.39 pg·g-1,說明該研究方法對細(xì)胞分裂素有較高的檢測靈敏度(表3)。

2.4.2 回收率 為了評價(jià)該方法的準(zhǔn)確性和可重復(fù)性,以荔枝果皮為樣品,向其中添加低、中、高三種不同質(zhì)量濃度的標(biāo)品(0.4、2.0、20.0 ng·mL-1)進(jìn)行回收率試驗(yàn),做3次平行試驗(yàn),計(jì)算平均加標(biāo)回收率和相對標(biāo)準(zhǔn)偏差。結(jié)果(表4)顯示,4種細(xì)胞分裂素的相對回收率為80.0%~108.2%,RSD為0.8%~15.5%。

2.4.3 實(shí)際樣品分析 為了證明該方法對荔枝不同部位的普適性,利用所建立的方法對荔枝果皮、果肉、種子、葉片、果柄離區(qū)和幼果中的內(nèi)源細(xì)胞分裂素進(jìn)行測定(圖7)。測定結(jié)果見表5,tZR含量(w,后同)以種子中最高(3.92 ng·g-1),果肉中最低(0.30 ng·g-1);IPR含量以葉片中最高(11.83 ng·g-1),其次為離區(qū)(7.86 ng·g-1),其他組織的含量均低于1.00 ng·g-1;DHZ在所有測定的組織中,只有葉片和種子中含量達(dá)到0.10 ng·g-1,其他組織均低于此值;IP含量以離區(qū)中最高(1.29 ng·g-1),種子種最低。上述部位中的4種細(xì)胞分裂素都能被檢出,說明該法可用于荔枝不同部位的測定。

3 討 論

對荔枝內(nèi)源激素的測定多采用ELISA法以及HPLC法(目前難以勝任)。ELISA法利用抗原與抗體的特異反應(yīng)將待測物與酶建立關(guān)聯(lián),當(dāng)同一類結(jié)構(gòu)相似激素存在時(shí),抗體專一結(jié)合性差,導(dǎo)致檢測值偏高;HPLC法根據(jù)各組分在固定相及流動(dòng)相中吸附能力、分配系數(shù)、離子交換作用或分子尺寸大小的差異,在色譜柱中進(jìn)行分離純化,因此結(jié)構(gòu)和極性相似的兩種化合物可分離度較差。李偉才等[7]用液相色譜法測得荔枝謝花后80 d內(nèi)果實(shí)中細(xì)胞分裂素的含量為0~800 ng·g-1,而周賢軍等[31]用酶聯(lián)免疫測量結(jié)果為0~760 pg·g-1。周昌敏等[10]用酶聯(lián)免疫測的白點(diǎn)期前后葉片中細(xì)胞分裂素含量為300~600 ng·g-1,花靜靜[32]用普通液質(zhì)聯(lián)用(LC-MS)測出來的結(jié)果約2.74 ng·g-1。胡桂兵等[33]用酶聯(lián)免疫測定結(jié)果約為335.36 ng·g-1,筆者在本研究中用超高效液相色譜-三重四級桿質(zhì)譜聯(lián)用法測定荔枝果皮花后50 d的IPR含量約為0.62 ng·g-1,金峰等[34]用液質(zhì)聯(lián)用測定冬梢葉片中IP和IPR含量分別為0.66和9.88 ng·g-1,與本文測定結(jié)果接近。以上結(jié)果說明ELISA法以及HPLC法的準(zhǔn)確性和靈敏度較差。而質(zhì)譜分析法(MS),是通過高能電子轟擊,檢測帶電分子離子或碎片離子的質(zhì)量數(shù),最終確定帶電離子質(zhì)量的方法,具有高選擇性和靈敏性。另外與傳統(tǒng)的HPLC相比,超高效液相色譜(UPLC)在保留HPLC優(yōu)點(diǎn)的同時(shí),還提升了分析速度。UPLC-MS/MS法更是結(jié)合了UPLC的高分離性、高速度的特點(diǎn)以及MS/MS高選擇性、高靈敏度的特點(diǎn),成為了目前植物激素檢測的主要手段之一,在石榴、文冠果、蘋果等果樹中也有相關(guān)報(bào)道[35-37]。

植物內(nèi)源激素屬于微量物質(zhì),難以分析,且樣品基質(zhì)效應(yīng)復(fù)雜,所以合適的前處理過程以及分析方法顯得尤為重要。當(dāng)以80%丙酮和80%甲醇為提取劑時(shí),對tZR和IP的提取效果不佳,且80%丙酮作為提取劑時(shí),提取劑綠色很深,說明其中溶解了很多葉綠素,易對后續(xù)檢測造成干擾;以80%乙腈為提取劑時(shí),DHZ和IPR提取效果不如另兩種,但tZR和IP的響應(yīng)值顯著高于另外兩種,且色譜圖分離度好。綜合考慮,選用80%乙腈作為提取劑。在提取過程中,提取8 h可達(dá)最佳效果,無需過夜,可實(shí)現(xiàn)當(dāng)天提取,當(dāng)天測定,提高了檢測結(jié)果的準(zhǔn)確度。與其他植物內(nèi)源激素相比,細(xì)胞分裂素較為特別的地方在于其具有嘌呤環(huán),呈堿性。因此利用其特性,在純化時(shí)選擇PCX強(qiáng)陽離子交換柱,該柱以聚合陽離子交換樹脂為填料,對弱堿性化合物吸附性較強(qiáng),進(jìn)而提高了堿性化合物的純化效果。細(xì)胞分裂素在酸化后的提取液(pH≈2~3)中呈陽離子狀態(tài),過柱時(shí)被填料吸附,再用含0.1%甲酸的甲醇溶液(pH≈5~6)淋洗,此時(shí)大多數(shù)酸性和中性化合物被清除,留在柱上的目標(biāo)物再用2.5%的氨水甲醇溶液洗脫(pH≈11.3),目標(biāo)物隨著洗脫液流出,最終實(shí)現(xiàn)目標(biāo)物的收集。XSelect HSS T3色譜柱以高強(qiáng)度硅膠為填料,可延長極性目標(biāo)物的保留時(shí)間,有利于樣品組分更好的分離。同時(shí)方法優(yōu)化了流動(dòng)相條件,最終實(shí)現(xiàn)了荔枝果實(shí)中多種細(xì)胞分裂素有效分離和準(zhǔn)確定量。

4 結(jié) 論

建立了高效液相色譜-三重四極桿質(zhì)譜法同時(shí)測定荔枝中tZR、IPR、DHZ和IP這4種細(xì)胞分裂素的檢測方法。樣品通過80%乙腈低溫提取,PCX純化,X Select HSS T3分離,在ESI+、MRM模式下分析定量,實(shí)現(xiàn)了荔枝不同樣品中4種關(guān)鍵細(xì)胞分裂素的高效提取和測定。樣品平均加標(biāo)回收率為80.0%~108.2%,RSD范圍為0.8%~15.5%。經(jīng)方法學(xué)驗(yàn)證,該方法具備前處理檢測周期短、重現(xiàn)性好、靈敏度高等優(yōu)點(diǎn),適用于荔枝各部位細(xì)胞分裂素的快速篩查和定量測定。

參考文獻(xiàn)References:

[1] BRIZZOLARI A,F(xiàn)OTI M C,SASO L,CIUFFREDA P,LAZAREVI? J,SANTANIELLO E. Evaluation of the radical scavenging activity of some representative isoprenoid and aromatic cytokinin ribosides (N6-substituted adenosines) by in vitro chemical assays[J]. Natural Product Research,2022,36(24):6443-6447.

[2] 馬新梅. 擬南芥細(xì)胞分裂素O-糖基轉(zhuǎn)移酶基因功能分析[D]. 濟(jì)南:山東大學(xué),2011.

MA Xinmei. Function analysis of a cytokinin O-glycosyltransferase gene in Arabidopsis thaliana[D]. Jinan:Shandong University,2011.

[3] 魯敏,黃亞欣,王國立,安華明.‘貴長獼猴桃果實(shí)內(nèi)源激素的動(dòng)態(tài)分布及含量變化與果實(shí)形狀發(fā)育的關(guān)系[J].植物生理學(xué)報(bào),2020,56(10):2159-2167.

LU Min,HUANG Yaxin,WANG Guoli,AN Huaming. The correlation between the dynamic distribution and content of endogenous hormones and the kiwi fruit shape during ‘Guichang fruits development[J]. Plant Physiology Journal,2020,56(10):2159-2167.

[4] 王寧,張艷霞,李棟梅,王振平. 寧夏不同子產(chǎn)區(qū)霞多麗葡萄內(nèi)源激素及果實(shí)品質(zhì)差異研究[J]. 果樹學(xué)報(bào),2023,40(7):1374-1385.

WANG Ning,ZHANG Yanxia,LI Dongmei,WANG Zhenping. Effect of different terroir conditions on endogenous hormones and berry quality of Chardonnay at the East Helan Mountains[J]. Journal of Fruit Science,2023,40(7):1374-1385.

[5] 李建國,王惠聰,周碧燕,趙明磊,李彩琴,夏瑞,黃旭明. 荔枝花果發(fā)育生理和分子生物學(xué)研究進(jìn)展[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,40(5):119-127.

LI Jianguo,WANG Huicong,ZHOU Biyan,ZHAO Minglei,LI Caiqin,XIA Rui,HUANG Xuming. Research advances in physiology and molecular biology of flower and fruit development in litchi[J]. Journal of South China Agricultural University,2019,40(5):119-127.

[6] 郭棟梁,黃石連,向旭. 2022年廣東荔枝生產(chǎn)形勢分析[J]. 廣東農(nóng)業(yè)科學(xué),2022,49(6):130-137.

GUO Dongliang,HUANG Shilian,XIANG Xu. Analysis of Guangdong litchi production situation in 2022[J]. Guangdong Agricultural Sciences,2022,49(6):130-137.

[7] 李偉才,魏永贊,胡會(huì)剛,石勝友,王一承,謝江輝. 3種無核荔枝果實(shí)發(fā)育過程中內(nèi)源激素含量變化動(dòng)態(tài)[J]. 熱帶作物學(xué)報(bào),2011,32(6):1042-1045.

LI Weicai,WEI Yongzan,HU Huigang,SHI Shengyou,WANG Yicheng,XIE Jianghui. Dynamic changes of endogenous hormone contents in the pericarp of seedless litchi during fruit growth and development[J]. Chinese Journal of Tropical Crops,2011,32(6):1042-1045.

[8] 肖華山,呂柳新,陳志彤. 荔枝花芽分化過程中內(nèi)源激素含量的動(dòng)態(tài)變化[J]. 寧德師專學(xué)報(bào)(自然科學(xué)版),2007,19(2):113-115.

XIAO Huashan,L? Liuxin,CHEN Zhitong. Dynamic changes of endogenous hormone inlitchi (Litchi chinensis Sonn.) during flower bud differentiation[J]. Journal of Ningde Teachers College (Natural Science),2007,19(2):113-115.

[9] 吳志祥,周兆德,陶忠良,王令霞. 妃子笑與鵝蛋荔枝花芽分化期間內(nèi)源激素的變化[J]. 熱帶作物學(xué)報(bào),2005,26(4):42-45.

WU Zhixiang,ZHOU Zhaode,TAO Zhongliang,WANG Ling-xia. Changes of endogenous hormones in Feizixiao and Edan litchi during flower bud differentiation[J]. Chinese Journal of Tropical Crops,2005,26(4):42-45.

[10] 周昌敏,何兆桓,楊苞梅,李國良,姚麗賢. 環(huán)剝對荔枝葉片營養(yǎng)及花果生長發(fā)育的影響[J]. 廣東農(nóng)業(yè)科學(xué),2018,45(4):34-42.

ZHOU Changmin,HE Zhaohuan,YANG Baomei,LI Guoliang,YAO Lixian. Effect of girdling on litchi foliar nutrient and development of flower and fruit[J]. Guangdong Agricultural Sciences,2018,45(4):34-42.

[11] 付亞男. A4無核荔枝落果與裂果生理基礎(chǔ)及其調(diào)控研究[D]. 海口:海南大學(xué),2017.

FU Yanan. Studies on the physiological basis of the fruit drop and cracking and its regulation of A4 seedless litchi[D]. Haikou:Hainan University,2017.

[12] 車建美,賴鐘雄,賴呈純,郭志雄,劉鴻洲,黃志宏. 荔枝體細(xì)胞胚胎發(fā)生早期的3種內(nèi)源激素含量變化[J]. 熱帶作物學(xué)報(bào),2005,26(2):55-61.

CHE Jianmei,LAI Zhongxiong,LAI Chengchun,GUO Zhixiong,LIU Hongzhou,HUANG Zhihong. Changes of endogenous phytohormones during the early somatic embryogenesis in litchi (Litchi chinensis Sonn.)[J]. Chinese Journal of Tropical Crops,2005,26(2):55-61.

[13] 蔡保東,劉昭,丁俊,馮鈺锜. 混合模式色譜-串聯(lián)質(zhì)譜聯(lián)用快速和高靈敏檢測植物組織內(nèi)源性細(xì)胞分裂素[J]. 分析科學(xué)學(xué)報(bào),2014,30(5):613-618.

CAI Baodong,LIU Zhao,DING Jun,F(xiàn)ENG Yuqi. Rapid and highly sensitive determination of endogenous cytokinins in plant samples by mixed-mode liquid chromatography-tandem mass spectrometry[J]. Journal of Analytical Science,2014,30(5):613-618.

[14] 魏永贊,董晨,王弋,鄭雪文,李偉才. 烯效唑?qū)笾ㄆ诎l(fā)育過程內(nèi)源激素的影響[J]. 熱帶作物學(xué)報(bào),2017,38(7):1188-1192.

WEI Yongzan,DONG Chen,WANG Yi,ZHENG Xuewen,LI Weicai. Effects of uniconazole on the endogenous phytohormone contents in the florescence period of litchi[J]. Chinese Journal of Tropical Crops,2017,38(7):1188-1192.

[15] CHEN X,TAO Z L,WU Z X,WANG L X,F(xiàn)U H Z,ZHOU Z D,F(xiàn)AN W B. Effect of paclobutrazol plus ethephon treatment on endogenous hormones and carbon and nitrogen nutrients in litchi variety ‘Feizixiao[J]. Agricultural Science & Technology,2013,14(8):1125-1131.

[16] 李建國,黃旭明,黃輝白,周碧燕. 大果型和小果型荔枝品種果實(shí)發(fā)育細(xì)胞學(xué)和生理學(xué)比較[J]. 果樹學(xué)報(bào),2002,19(3):158-162.

LI Jianguo,HUANG Xuming,HUANG Huibai,ZHOU Biyan. A cytological and physiological study of large-and small-sized litchi cultivars fruit[J]. Journal of Fruit Science,2002,19(3):158-162.

[17] 李建國,周碧燕. 大核和焦核“桂味” 荔枝果實(shí)發(fā)育及其發(fā)育期間果皮中內(nèi)源激素含量的變化比較[J]. 植物生理學(xué)通訊,2005,41(5):587-590.

LI Jianguo,ZHOU Biyan. Comparison on fruit development and changes in endogenous hormone contents in pericarp between large- and aborted-seeded litchi (Litchi chinensis Sonn. cv. Guiwei)[J]. Plant Physiology Communications,2005,41(5):587-590.

[18] 曾慶錢,陳厚彬,魯才浩,李建國. HPLC測定荔枝不同器官中內(nèi)源激素流程的優(yōu)化[J]. 果樹學(xué)報(bào),2006,23(1):145-148.

ZENG Qingqian,CHEN Houbin,LU Caihao,LI Jianguo. An optimized HPLC procedure for analyzing endogenous hormones in different organs of litchi[J]. Journal of Fruit Science,2006,23(1):145-148.

[19] 李玉璇,段春鳳,關(guān)亞風(fēng). 植物樣品中內(nèi)源性植物激素時(shí)空分布的研究進(jìn)展[J]. 色譜,2019,37(8):806-814.

LI Yuxuan,DUAN Chunfeng,GUAN Yafeng. Recent advances in spatio-temporal distribution of endogenous phytohormones[J]. Chinese Journal of Chromatography,2019,37(8):806-814.

[20] 曹趙云,馬有寧,牟仁祥,于莎莎,陳銘學(xué). 固相萃取-液相色譜-串聯(lián)質(zhì)譜法測定水稻中17種細(xì)胞分裂素[J]. 色譜,2015,33(7):715-721.

CAO Zhaoyun,MA Youning,MOU Renxiang,YU Shasha,CHEN Mingxue. Analysis of 17 cytokinins in rice by solid phase extraction purification and liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography,2015,33(7):715-721.

[21] ZHANG M,CHEN X J,ZHAO Y J,ZHANG J Q,HE Q Q,QIAN J Q,TAN G Y,LIU W,YANG X L,WANG B M. Quantification of six types of cytokinins:Integration of an ultra-performance liquid chromatographic-electrospray tandem mass spectrometric method with antibody based immunoaffinity columns equally recognizing cytokinins in free base and nucleoside forms[J]. Journal of Chromatography A,2022,1682:463497.

[22] 童建華,趙文魁,張雪芹,梁艷萍. 擬南芥中4種細(xì)胞分裂素的高效液相色譜法測定[J]. 亞熱帶植物科學(xué),2008,37(4):18-21.

TONG Jianhua,ZHAO Wenkui,ZHANG Xueqin,LIANG Yanping. Simultaneous determination of four kinds of cytokinin components in Arabidopsis thaliana by high performance liquid chromatography[J]. Subtropical Plant Science,2008,37(4):18-21.

[23] ZHOU X,LI R Q,WANG C,MA X X,SUN Y,SONG W X,WEI X B,LI D H,MA X,WANG R Q. Simultaneous quantitation of cytokinin bases and their glycoconjugates with stable isotope labelling ultrahigh performance liquid chromatography mass spectrometry[J]. Journal of Chromatography A,2021,1636:461782.

[24] CAI B D,ZHU J X,SHI Z G,YUAN B F,F(xiàn)ENG Y Q. A simple sample preparation approach based on hydrophilic solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry for determination of endogenous cytokinins[J]. Journal of Chromatography B,2013,942/943:31-36.

[25] CAO Z Y,SUN L H,MOU R X,ZHANG L P,LIN X Y,ZHU Z W,CHEN M X. Profiling of phytohormones and their major metabolites in rice using binary solid-phase extraction and liquid chromatography-triple quadrupole mass spectrometry[J]. Journal of Chromatography A,2016,1451:67-74.

[26] LI Y H,WEI F,DONG X Y,PENG J H,LIU S Y,CHEN H. Simultaneous analysis of multiple endogenous plant hormones in leaf tissue of oilseed rape by solid-phase extraction coupled with high-performance liquid chromatography-electrospray ionisation tandem mass spectrometry[J]. Phytochemical Analysis,2011,22(5):442-449.

[27] HAN Z,LIU G,RAO Q X,BAI B,ZHAO Z H,LIU H,WU A B. A liquid chromatography tandem mass spectrometry method for simultaneous determination of acid/alkaline phytohormones in grapes[J]. Journal of Chromatography B,2012,881/882:83-89.

[28] 張軍,杜平. 高效液相色譜-串聯(lián)質(zhì)譜法測定葡萄中的吡效隆和赤霉素[J]. 色譜,2011,29(11):1133-1136.

ZHANG Jun,DU Ping. Determination of forchlorfenuron and gibberellin acid in the grapes using high performance liquid chromatography tandem mass spectrometry[J]. Chinese Journal of Chromatography,2011,29(11):1133-1136.

[29] 徐婧,王丹,陳慶欣,張艷青,王俊,趙明磊,李建國. 超高效液相色譜—三重四級桿質(zhì)譜聯(lián)用法同時(shí)定量荔枝果實(shí)組織中IAA和ABA[J]. 中國南方果樹,2022,51(1):59-66.

XU Jing,WANG Dan,CHEN Qingxin,ZHANG Yanqing,WANG Jun,ZHAO Minglei,LI Jianguo. Simultaneous quantification of indole-3-aceticacid and abscisic acid in litchi fruit tissues by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. South China Fruits,2022,51(1):59-66.

[30] IZUMI Y,OKAZAWA A,BAMBA T,KOBAYASHI A,F(xiàn)UKUSAKI E. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry[J]. Analytica Chimica Acta,2009,648(2):215-225.

[31] 周賢軍,黃德炎,黃輝白,吳定堯. 螺旋環(huán)剝對‘糯米糍荔枝坐果與碳水化合物及激素的影響[J]. 園藝學(xué)報(bào),1999,26(2):77-80.

ZHOU Xianjun, HUANG Deyan, HUANG Huibai, WU Dingyao. Carbohydrate and endohormone status in relation to fruit set as influenced by trunk spiral girdling of young litchi trees[J]. Acta Horticulturae Sinica,1999,26(2):77-80.

[32] 花靜靜. 無核荔枝促花技術(shù)及其生理研究[D]. 海口:海南大學(xué),2021.

HUA Jingjing. Study on flower-promoting technology and physiology of seedless litchi[D]. Haikou:Hainan University,2021.

[33] 胡桂兵,陳大成,李平,歐陽若,高飛飛,王衛(wèi)華. 荔枝果皮花青苷與內(nèi)源激素含量的變化規(guī)律[J]. 福建果樹,2000(1):1-3.

HU Guibing,CHEN Dacheng,LI Ping,OUYANG Ruo,GAO Feifei,WANG Weihua. Changes in anthocyanin and endogenous hormone content in litchi peel[J]. Fujian Fruits,2000(1):1-3.

[34] 金峰,向旭,邱燕萍,袁沛元,凡超. 乙氧氟草醚對桂味荔枝冬梢控殺效果及內(nèi)源激素影響的研究[J]. 核農(nóng)學(xué)報(bào),2023,37(9):1894-1903.

JIN Feng,XIANG Xu,QIU Yanping,YUAN Peiyuan,F(xiàn)AN Chao. Study on oxyfluorfen control effect of oxyfluorfen on Guiwei litchi winter shoots (Litchi chinensis Sonn.) and its influence on endogenous hormones[J]. Journal of Nuclear Agricultural Sciences,2023,37(9):1894-1903.

[35] YILMAZ C,OZGUVEN A I. Hormone physiology of preharvest fruit cracking in pomegranate (Punica granatum L.)[J]. Acta Horticulturae,2006,727:545-550.

[36] 王鵬俠,阮成江,杜維,趙振. 文冠果種子不同發(fā)育期內(nèi)源激素的動(dòng)態(tài)變化[J]. 大連民族大學(xué)學(xué)報(bào),2022,24(1):1-4.

WANG Pengxia,RUAN Chengjiang,DU Wei,ZHAO Zhen. Dynamic changes of endogenous hormones in Xanthoceras sorbifolium seeds during different developmental stages[J]. Journal of Dalian Minzu University,2022,24(1):1-4.

[37] 王慶杰,金仲鑫,周李杰,郝玉金,姚玉新. 蘋果MdcyMDH過量表達(dá)對光合、激素和生長的影響[J]. 中國農(nóng)業(yè)科學(xué),2015,48(14):2868-2875.

WANG Qingjie,JIN Zhongxin,ZHOU Lijie,HAO Yujin,YAO Yuxin. Impacts of MdcyMDH overexpression on photosynthesis,hormone and growth in apple[J]. Scientia Agricultura Sinica,2015,48(14):2868-2875.

收稿日期:2024-02-06 接受日期:2024-03-24

基金項(xiàng)目:國家自然科學(xué)基金重點(diǎn)項(xiàng)目(32330092);國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)項(xiàng)目(CARS-32-07)

作者簡介:黃雨蓮,女,在讀碩士研究生,研究方向?yàn)橹参锛に販y定。E-mail:1401175682@qq.com

*通信作者 Author for correspondence. E-mail:jxu@scau.edu.cn;E-mail:jianli@scau.edu.cn

主站蜘蛛池模板: 欧美高清国产| 亚洲综合精品第一页| 亚洲人成在线免费观看| 中文无码精品a∨在线观看| 人妻丰满熟妇AV无码区| 久久亚洲天堂| 99ri国产在线| 九九热在线视频| 无码专区在线观看| 三级毛片在线播放| 国产精品女人呻吟在线观看| 99在线视频网站| 国产精品私拍99pans大尺度| 中文字幕天无码久久精品视频免费 | 精品伊人久久久大香线蕉欧美| 久久福利片| 亚洲第一成人在线| 亚洲AⅤ永久无码精品毛片| 五月婷婷丁香综合| 无码精品福利一区二区三区| 国产精品女主播| 国产亚洲高清视频| 欧美日韩激情在线| 国产另类乱子伦精品免费女| 久久久久国产精品嫩草影院| 99久久精品国产自免费| 国产福利在线免费观看| 亚洲精品另类| 久热这里只有精品6| 亚洲a级毛片| 伊人狠狠丁香婷婷综合色| 日韩欧美中文在线| 国产免费观看av大片的网站| 手机成人午夜在线视频| 视频二区欧美| 久久频这里精品99香蕉久网址| 欧美日本在线一区二区三区| 欧美在线三级| 九九免费观看全部免费视频| 国产办公室秘书无码精品| av在线人妻熟妇| 日韩免费无码人妻系列| 国产一区二区三区精品欧美日韩| 国产一区二区三区免费| 日韩黄色精品| 国产福利免费视频| 亚洲第一黄片大全| 91精品国产一区自在线拍| 久久精品亚洲专区| 黄色成年视频| 青青青伊人色综合久久| 日韩A∨精品日韩精品无码| 国产va免费精品观看| 中文字幕66页| 精品久久久久成人码免费动漫| 国产区精品高清在线观看| 成人国产精品网站在线看| 亚洲国产成人久久77| 亚洲va欧美ⅴa国产va影院| 另类重口100页在线播放| 日韩精品无码免费一区二区三区| 亚洲视频三级| 欧美a在线视频| 人与鲁专区| 欧美日本在线观看| 香蕉国产精品视频| 黄色福利在线| 又粗又硬又大又爽免费视频播放| 99ri精品视频在线观看播放| 国产精品福利社| 女人毛片a级大学毛片免费| 国产高清在线丝袜精品一区 | 尤物国产在线| 老色鬼欧美精品| 欧美日韩成人| 激情视频综合网| 国产在线精品香蕉麻豆| 日本免费一区视频| 国产精品微拍| 在线观看精品自拍视频| 亚洲人成网18禁| 9久久伊人精品综合|