


[摘要]目的探討蟲草多糖功能化納米硒(Cs4-SeNPs)對脂多糖(LPS)誘導BV2小膠質細胞炎癥反應的作用及其可能機制。方法以不同濃度(0.01、0.10、1.00 μmol/L)Cs4-SeNPs作用LPS誘導的BV2小膠質細胞,采用四甲基偶氮唑藍(MTT)法檢測BV2小膠質細胞活力,免疫印跡技術檢測BV2小膠質細胞硒蛋白谷胱甘肽過氧化物酶4(GPX4)蛋白表達,熒光定量PCR技術檢測不同時間(4、8、12 h)BV2小膠質細胞促炎因子環氧化酶-2(COX-2)和誘導型一氧化氮合酶(iNOS)mRNA表達。結果0.01、0.10、1.00 μmol/L的Cs4-SeNPs對BV2細胞活力無明顯影響。與對照組相比,LPS組GPX4蛋白表達降低(F=25.47,q=6.43,Plt;0.01);0.01、0.10和1.00 μmol/L的Cs4-SeNPs處理組GPX4蛋白表達較LPS組明顯升高(q=5.72~14.07,Plt;0.01),且1.00 μmol/L Cs4-SeNPs作用效果最好(q=6.04~8.35,Plt;0.01)。LPS組COX-2與iNOS mRNA表達較對照組顯著上調(F=25.00、37.34,q=12.18、12.06,Plt;0.001)。1.00 μmol/L Cs4-SeNPs預處理12 h可顯著抑制COX-2基因表達(q=6.10,Plt;0.05);預處理8 和12 h可顯著抑制iNOS mRNA表達(q=4.71、6.97,Plt;0.05)。結論Cs4-SeNPs對LPS誘導的BV2小膠質細胞炎癥反應具有抑制作用,其機制可能與硒蛋白GPX4的調控有關。
[關鍵詞]硒;納米結構;小神經膠質細胞;脂多糖類;炎癥;磷脂氫過氧化物谷胱甘肽過氧化物酶;環氧化酶2
[中圖分類號]R916.3;R322.8[文獻標志碼]A[文章編號]2096-5532(2024)03-0322-05
doi:10.11712/jms.2096-5532.2024.60.094[開放科學(資源服務)標識碼(OSID)]
[網絡出版]https://link.cnki.net/urlid/37.1517.R.20240726.0914.001;2024-07-2617:24:21
Role and mechanism of action of cordyceps polysaccharide-functionalized selenium nanoparticles in inflammatory response of BV2 microglial cellsYANG Yanqing, WANG Xiaowen, ZHAO Nana, ZHANG Mei, CHEN Wenfang(Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China)
[Abstract]ObjectiveTo investigate the effect of cordyceps polysaccharide-functionalized selenium nanoparticles (Cs4-SeNPs) on lipopolysaccharide (LPS)-induced inflammatory response of BV2 microglial cells and its possible mechanism. MethodsLPS-induced BV2 microglial cells were treated with different concentrations (0.01, 0.10, 1.00 μmol/L) of Cs4-SeNPs. MTT assay was used to measure the viability of BV2 microglial cells; Western blotting was used to measure the protein expression level of the selenoprotein glutathioneperoxidase 4 (GPX4) in BV2 microglial cells, and quantitative real-time PCR was used to measure the mRNA expression levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in BV2 microglial cells at diffe-rent time points (4, 8, and 12 h).ResultsCs4-SeNPs with a concentration of 0.01, 0.10, and 1.00 μmol/L had no significant in-fluenceon the viability of BV2 cells. Compared with the control group, the LPS group had a significant reduction in the protein expression level of GPX4 (F=25.47,q=6.43,Plt;0.01), and compared with the LPS group, the 0.01, 0.10, and 1.00 μmol/L Cs4-SeNPs treatment groups had a significant increase in the protein expression level of GPX4 (q=5.72-14.07,Plt;0.01), with 1.00 μmol/L Cs4-SeNPs showingthe best effect (q=6.04-8.35,Plt;0.01). Compared with the control group, the LPS group had significant increases in the mRNA expression levels of COX-2 and iNOS (F=25.00,37.34;q=12.18,12.06;Plt;0.001). Pretreatment with 1.00 μmol/L Cs4-SeNPs for 12 h could significantly inhibit the mRNA expression of COX-2 (q=6.10,Plt;0.05), and pretreatment for 8 and 12 h significantly inhibited the mRNA expression of iNOS (q=4.71,6.97;Plt;0.05).ConclusionCs4-SeNPs has an inhibitory effect on LPS-induced inflammatory response in BV2 microglial cells,possibly by regulating the selenoprotein GPX4.
[Key words]selenium; nanostructures; microglia; lipopolysaccharides; inflammation; phospholipid hydroperoxide glutathione peroxidase; cyclooxygenase 2
神經退行性疾病的病理特征是神經元變性死亡,而神經元損傷通常與中樞神經系統的炎癥反應密切相關[1-2]。作為中樞神經系統中的常駐細胞,小膠質細胞具有監測突觸功能狀態及維持中樞神經系統內環境穩態的功能。但是,過度激活的小膠質細胞會產生大量的促炎因子,例如環氧化酶-2(COX-2)、誘導型一氧化氮合酶(iNOS)、腫瘤壞死因子-α(TNF-α)和白細胞介素-1β(IL-1β)等,加重神經炎癥反應并損傷神經元[2-5]。因此,通過抑制小膠質細胞的炎癥反應治療神經炎癥是一種有效的神經保護策略。硒在中樞神經系統參與了運動調節和學習記憶等功能[6]。硒主要通過硒蛋白發揮生物功能,硒蛋白可參與免疫細胞的激活、增殖和分化,進而進行免疫調節[7-8]。納米硒(SeNPs)因為低毒、可降解性以及高生物利用度等優點逐漸受到人們關注,而連接多糖基團的SeNPs具有更廣的應用范圍[9-11]。目前已有研究證實,SeNPs可通過調節炎癥和代謝信號發揮神經元保護作用,但對于多糖基團納米硒在神經炎癥中的抗炎作用尚未見報道[12-13]。本研究采用香港理工大學團隊研發的蟲草多糖功能化納米硒(Cs4-SeNPs),探究其對脂多糖(LPS)誘導的BV2小膠質細胞炎癥反應的影響及其可能機制。
1材料和方法
1.1實驗材料
Cs4-SeNPs(專利號:CN201911215358.5)由香港理工大學黃家興教授團隊提供,以雙蒸水溶解為1.5 mmol/L的儲存液,4 ℃保存。LPS購自美國Sigma公司,以生理鹽水溶解為2.5 g/L的儲存液,-20 ℃保存。3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴鹽(MTT)購自國風生物科技公司,應用0.01 mmol/L的PBS配成5 g/L母液,避光保存。二甲基亞砜(DMSO)購自Solarbio公司。谷胱甘肽過氧化物酶4(GPX4)抗體購自abcam公司,β-actin抗體購自Bioss公司。PAGE凝膠快速制備試劑盒、IgG-HRP二抗、ECL發光液均購自雅酶公司。PCR逆轉錄試劑盒購自美國TaKaRa公司,SYBRGreen(MasterMix)購自諾唯贊醫療科技有限公司,PCR擴增引物由青島蔚來生物科技有限公司提供。BV2細胞購自北京市協和醫學院細胞資源中心。
1.2實驗方法
1.2.1細胞培養BV2細胞置于含體積分數0.10胎牛血清、100 U/L青霉素和100 mg/L鏈霉素高糖DMEM培養液,在含體積分數0.05 CO2的37 ℃細胞培養箱中常規培養。當細胞生長至80%~90%融合時,接種細胞。
1.2.2MTT法檢測細胞活力將BV2細胞從培養瓶中吹打下來,離心后加入培養液進行細胞計數。當細胞密度達到8×107/L時,以每孔100 μL接種至96孔板進行培養。待板中細胞達70%融合時加入不同濃度(0.01、0.10、1.00 μmol/L)的Cs4-SeNPs培養24 h。棄掉96孔板中的液體后,每孔加入質量濃度為5 g/L的MTT溶液20 μL,避光培養4 h。隨后棄掉MTT溶液,每孔加入100 μL的 DMSO,放置搖床避光緩慢振蕩10 min使晶體溶解。使用酶標儀檢測490 nm波長處的吸光度值(OD值)。
1.2.3免疫印跡法(Western blot)檢測蛋白表達將BV2細胞接種于12孔板進行培養,待細胞生長達到80%融合時進行加藥處理。將細胞分為對照組(A組)、LPS誘導組(B組)、Cs4-SeNPs不同濃度(0.01、0.10、1.00 μmol/L)預處理與LPS共處理組(C組、D組、E組)。LPS誘導24 h后棄去培養液,加裂解液(lysis∶PMSF=99∶1,每孔100 μL)在冰上裂解30 min。將裂解后的細胞從孔板中刮下并收集至EP管中。提取細胞蛋白并用BCA法檢測蛋白濃度,每孔取15 μg蛋白進行十二烷基硫酸鈉聚丙烯酰胺凝膠(SDS-PAGE)電泳,恒壓80 V,恒流300 mA,90 min冰浴轉膜。用1×快速封閉液在室溫下封閉30 min后,加入GPX4一抗,4 ℃搖床孵育過夜。在一抗孵育后使用TBST洗膜3次,每次10 min。加入二抗室溫搖床孵育1 h,TBST洗膜3次,每次10 min。采用ECL化學發光試劑顯影,Image J軟件分析蛋白條帶,結果以目的蛋白條帶與β-actin條帶灰度值的比值表示。
1.2.4實時熒光定量聚合酶鏈反應(RT-PCR)技術檢測基因mRNA表達接種BV2細胞于12孔板中,待培養達80%融合時進行加藥處理。將細胞分為對照組(A組)、LPS誘導組(B組)、不同時間(4、8、12 h)Cs4-SeNPs(加入最佳濃度1.00 μmol/L)預處理后加LPS共處理6 h組(C組、D組、E組)。藥物處理各組細胞后,采用TRIzol法提取各分組細胞總RNA,使用PCR逆轉錄試劑盒將RNA逆轉錄為cDNA。按照要求配制20.0 μL的 PCR反應體系,包括10.0 μL 2×QuantiFast SYBR Premix Ex Taq、8.2 μL RNase free water、正向和反向引物各0.4 μL以及cDNA 1.0 μL。反應體系經RT-PCR儀擴增后得到CT值,通過2-△△CT法計算目的基因COX-2和iNOS的mRNA相對表達量。PCR擴增引物種類及其序列見表1。
1.3統計學處理
采用Graph Pad Prism 8.0統計軟件進行數據處理。計量資料數據以±s形式表示,多組均數比較采用單因素方差分析(One-Way ANOVA),繼以Tukey法進行兩兩比較。以Plt;0.05表示差異有統計學意義。
2結果
2.1不同濃度Cs4-SeNPs對BV2小膠質細胞活力影響
MTT檢測結果表明,各處理組細胞存活率分別為對照組(100.0±0.5)%、0.01 μmol/L Cs4-SeNPs組(92.4±4.3)%、0.10 μmol/L Cs4-SeNPs組(92.4±4.7)%、1.00 μmol/L Cs4-SeNPs組(91.5±6.5)%。與對照組細胞相比較,0.01、0.10、1.00 μmol/L Cs4-SeNPs對細胞活力均無顯著影響(n=3,F=0.66,q=0.04~1.88,Pgt;0.05)。
2.2不同濃度的Cs4-SeNPs對BV2小膠質細胞GPX4表達影響
Western blot檢測結果顯示,與對照組相比,LPS可顯著下調BV2小膠質細胞GPX4蛋白的表達(F=25.47,q=6.43,Plt;0.01),不同濃度的Cs4-SeNPs預處理均可以對抗LPS此作用(q=5.72~14.07,Plt;0.01),而且1.00 μmol/L Cs4-SeNPs上調GPX4蛋白表達的效果明顯優于其他濃度(q=6.04~8.35,Plt;0.01)。見圖1。
2.3不同作用時間對BV2小膠質細胞COX-2和iNOS mRNA表達影響
RT-PCR檢測結果顯示,同對照組相比,LPS誘導6 h可以顯著提高促炎因子COX-2和iNOS的mRNA表達(F=25.00、37.34,q=12.18、12.06,Plt;0.001)。Cs4-SeNPs預處理4 和8 h,COX-2 mRNA的表達與LPS組相比較沒有明顯差異;而Cs4-SeNPs預處理12 h,COX-2 mRNA的表達較LPS組顯著降低(F=25.00,q=6.10,Plt;0.05)。Cs4-SeNPs預處理8 h,iNOS mRNA表達水平較LPS組有明顯降低,至12 h降至最低(q=4.71、6.97,Plt;0.05)。見表2。
3討論
隨著人類壽命的不斷延長,神經退行性疾病對社會經濟的影響逐漸增加[14-15]。目前神經退行性疾病的病因尚未完全清楚,神經炎癥被認為是其常見的致病因素之一[15-17]。神經炎癥可導致促炎因子水平升高、巨噬細胞激活、外周白細胞浸潤和神經組織損傷等變化[18-20]。小膠質細胞的活化在持續的炎癥反應中發揮重要作用[21-22]。在神經炎癥期間,免疫原性分子可以激活小膠質細胞,產生大量促炎因子,導致神經元損傷,受損的神經元又進一步激活小膠質細胞,由此在小膠質細胞和神經元之間形成惡性循環[18]。因此,探索并研發有效的抗神經炎癥藥物成為防治神經退行性疾病研究的熱點之一。
硒在免疫調節中發揮著重要作用[23-24]。研究證實,硒不僅參與免疫啟動,同時還調節過度免疫反應、對抗慢性炎癥[25-26]。然而,硒狹窄的安全使用范圍限制了硒類制品應用[27-28]。SeNPs是基于納米級復合物的新型藥物,能夠極大增強硒的藥物功能,具有生物利用度高、毒性小等特點,可在風濕性骨關節炎、心肌炎、結腸炎、銀屑病等疾病中發揮抗炎保護作用[11,29-32]。本研究所采用的Cs4-SeNPs是由SeNPs連接蟲草多糖基團而成,克服了SeNPs易聚集的缺點。實驗結果顯示,0.01~1.00 μmol/L的Cs4-SeNPs對BV2小膠質細胞無毒性作用,Cs4-SeNPs可有效抑制LPS誘導的BV2小膠質細胞炎癥反應。本研究首次證實了Cs4-SeNPs具有抗小膠質細胞炎癥反應的作用。
硒在體內主要通過轉化為硒蛋白發揮抗氧化、抗炎、抗癌等作用[33-35]。GPX是人體內存在的主要硒蛋白,能夠抑制炎癥部位自由基的過度產生[36-38]。GPX4是GPX家族中的一員,有研究表明在脂質過氧化介導的疾病中激活GPX4能夠抑制NF-κB信號通路,發揮抗炎作用[39-41]。多項藥物實驗也證實,調節GPX4通路可有效抑制促炎因子表達[42-43]。另一項研究結果顯示,Toll樣受體4(TLR4)可調控GPX4表達,抑制TLR4可有效增加氧糖剝奪模型中GPX4表達[44]。本文的研究結果也顯示,LPS可以顯著降低GPX4的表達,而Cs4-SeNPs可以對抗此作用,提示GPX4在Cs4-SeNPs的抗炎保護中具有重要作用。
綜上所述,本研究結果提示Cs4-SeNPs對LPS誘導的BV2小膠質細胞炎癥反應具有抑制作用,其作用機制可能與GPX4的調控有關。本研究結果為Cs4-SeNPs防治神經退行性疾病提供了新的實驗依據。后續將對GPX4在Cs4-SeNPs抗炎作用中的調控機制進行深入探討。
[參考文獻]
[1]STEPHENSON J, NUTMA E, VAN DER VALK P, et al. Inflammation in CNS neurodegenerative diseases[J]. Immuno-logy, 2018,154(2):204-219.
[2]FORLONI G. Alpha synuclein: neurodegeneration and inflammation[J]. International Journal of Molecular Sciences, 2023, 24(6):5914.
[3]CAI Y L, LIU J L, WANG B, et al. Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets[J]. Frontiers in Immunology, 2022,13:856376.
[4]CLAUDINO DOS SANTOS J C, LIMA M P P, BRITO G A C, et al. Role of enteric glia and microbiota-gut-brain axis in Parkinson disease pathogenesis[J]. Ageing Research Reviews, 2023,84:101812.
[5]OLAH M, BIBER K, VINET J, et al. Microglia phenotype diversity[J]. CNS amp; Neurological Disorders Drug Targets, 2011,10(1):108-118.
[6]SOLOVYEV N D. Importance of selenium and selenoprotein for brain function: from antioxidant protection to neuronal signalling[J]. Journal of Inorganic Biochemistry, 2015,153:1-12.
[7]KIELISZEK M, BAEJAK S. Selenium: significance, and outlook for supplementation[J]. Nutrition, 2013, 29(5):713-718.
[8]NAVARRO-ALARCON M, CABRERA-VIQUE C. Selenium in food and the human body: a review[J]. The Science of the Total Environment, 2008,400(1-3):115-141.
[9]VINCETI M, MANDRIOLI J, BORELLA P, et al. Selenium neurotoxicity in humans: bridging laboratory and epidemiolo-gic studies[J]. Toxicology Letters, 2014, 230(2):295-303.
[10]CHEN N, YAO P, ZHANG W, et al. Selenium nanoparticles: enhanced nutrition and beyond[J]. Critical Reviews in Food Science and Nutrition, 2023,63(33):12360-12371.
[11]RAZA A, JOHNSON H, SINGH A, et al. Impact of sele-nium nanoparticles in the regulation of inflammation[J]. Archives of Biochemistry and Biophysics, 2022,732:109466.
[12]AMANI H, HABIBEY R, SHOKRI F, et al. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling[J]. Scientific Reports, 2019,9(1):6044.
[13]CARLSON B A, YOO M H, SHRIMALI R K, et al. Role of selenium-containing proteins in T-cell and macrophage function[J]. The Proceedings of the Nutrition Society, 2010,69(3):300-310.
[14]COVA I, MARKOVA A, CAMPINI I, et al. Worldwide trends in the prevalence of dementia[J]. Journal of the Neurological Sciences, 2017,379:259-260.
[15]WAREHAM L K, LIDDELOW S A, TEMPLE S, et al. Solving neurodegeneration: common mechanisms and strategies for new treatments[J]." Molecular Neurodegeneration, 2022,17(1):23.
[16]JELLINGER K A. Basic mechanisms of neurodegeneration: a critical update[J]. Journal of Cellular and Molecular Medicine, 2010,14(3):457-487.
[17]ZHANG W F, XIAO D, MAO Q W, et al. Role of neuroinflammation in neurodegeneration development[J]." Signal Transduction and Targeted Therapy, 2023,8(1):267.
[18]KEMPURAJ D, THANGAVEL R, NATTERU P A, et al. Neuroinflammation induces neurodegeneration[J]. Journal of Neurology, Neurosurgery and Spine, 2016,1(1):1003.
[19]RUSSO M V, MCGAVERN D B. Inflammatory neuroprotec-
326青島大學學報(醫學版)60卷
tion following traumatic brain injury[J]. Science, 2016,353(6301):783-785.
[20]ESTES M L, MCALLISTER A K. Alterations in immune cells and mediators in the brain: it’s not always neuroinflammation[J]! Brain Pathology, 2014, 24(6):623-630.
[21]WOODBURN S C, BOLLINGER J L, WOHLEB E S. The semantics of microglia activation: neuroinflammation, homeostasis, and stress[J]." Journal of Neuroinflammation, 2021,18(1):258.
[22]GAO C, JIANG J W, TAN Y Y, et al. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets[J]." Signal Transduction and Targeted Therapy, 2023,8(1):359.
[23]XIA X J, ZHANG X L, LIU M C, et al. Toward improved human health: efficacy of dietary selenium on immunity at the cellular level[J]." Food amp; Function, 2021,12(3):976-989.
[24]RAZAGHI A, POOREBRAHIM M, SARHAN D, et al. Selenium stimulates the antitumour immunity: Insights to future research[J]." European Journal of Cancer, 2021,155:256-267.
[25]HUANG Z, ROSE A H, HOFFMANN P R. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities[J]. Antioxidants amp; Redox Signaling, 2012,16(7):705-743.
[26]ZHENG Y H, XIE T, LI S L, et al. Effects of selenium as a dietary source on performance, inflammation, cell damage, and reproduction of livestock induced by heat stress: a review[J]." Frontiers in Immunology, 2021,12:820853.
[27]AMES B N. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(47):17589-17594.
[28]SONKUSRE P. Specificity of biogenic selenium nanoparticles for prostate cancer therapy with reduced risk of toxicity: an in vitro and in vivo study[J]. Frontiers in Oncology, 2019,9:1541.
[29]KASSAB R B, ELBAZ M, OYOUNI A A A, et al. Anticolitic activity of prodigiosin loaded with selenium nanoparticles on acetic acid-induced colitis in rats[J]. Environmental Science and Pollution Research International, 2022, 29(37):55790-55802.
[30]REHMAN A, JOHN P, BHATTI A. Biogenic selenium nanoparticles: potential solution to oxidative stress mediated inflammation in rheumatoid arthritis and associated complications[J]. Nanomaterials, 2021,11(8):2005.
[31]GANGADEVI V, THATIKONDA S, POOLADANDA V, et al. Selenium nanoparticles produce a beneficial effect in psoriasis by reducing epidermal hyperproliferation and inflammation[J]. Journal of Nanobiotechnology, 2021,19(1):101.
[32]GE J, GUO K, ZHANG C, et al. Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-κB/IκB pathway in heart[J]. The Science of the Total Environment, 2021,773:145442.
[33]XIE Y C, KANG R, KLIONSKY D J, et al. GPX4 in cell death, autophagy, and disease[J]." Autophagy, 2023,19(10):2621-2638.
[34]SCHOENMAKERS E, CHATTERJEE K. Human genetic disorders resulting in systemic selenoprotein deficiency[J]." International Journal of Molecular Sciences, 2021,22(23):12927.
[35]KHRLE J. Selenium in endocrinology-selenoprotein-related diseases, population studies, and epidemiological evidence[J]." Endocrinology, 2021,162(2):bqaa228.
[36]HARIHARAN S, DHARMARAJ S. Selenium and selenoproteins: it’s role in regulation of inflammation[J]. Inflammo-pharmacology, 2020,28(3):667-695.
[37]BRIGELIUS-FLOHE R F L. Regulatory phenomena in the glutathione peroxidase superfamily[J]." Antioxidants amp; Redox Signaling, 2020,33(7):498-516.
[38]PEI J, PAN X Y, WEI G H, et al. Research progress of glutathione peroxidase family (GPX) in redoxidation[J]." Frontiers in Pharmacology, 2023,14:1147414.
[39]WANG C Y, CHEN S S, GUO H Y, et al. Forsythoside A mitigates Alzheimer’s-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation[J]. International Journal of Biological Sciences, 2022,18(5):2075-2090.
[40]LI C, DENG X B, XIE X W, et al. Activation of glutathione peroxidase 4 as a novel anti-inflammatory strategy[J]. Frontiers in Pharmacology, 2018,9:1120.
[41]XIAO Z, KONG B, FANG J, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction[J]. Bioengi-neered, 2021,12(2):9367-9376.
[42]SUN J Y, ZHANG Y F, WANG C J, et al. Kukoamine A protects mice against osteoarthritis by inhibiting chondrocyte inflammation and ferroptosis via SIRT1/GPX4 signaling pathway[J]. Life Sciences, 2023,332:122117.
[43]WANG X M, LI S S, YU J Y, et al. Saikosaponin B2 ameliorates depression-induced microglia activation by inhibiting ferroptosis-mediated neuroinflammation and ER stress[J]. Journal of Ethnopharmacology, 2023,316:116729.
[44]ZHU K Y, ZHU X, SUN S H, et al. Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats[J]. Experimental Neurology, 2021,345:113828.
(本文編輯于國藝)