

[摘要]目的研究黑質致密部(SNpc)多巴胺能神經元是否接受外側下丘腦(LH)的纖維投射。方法使用逆行示蹤劑、轉基因小鼠和順向病毒示蹤技術探究LH與SNpc的投射關系。在C57BL/6雄性小鼠(8周齡)的SNpc區注射逆行示蹤劑霍亂毒素亞基-B結合熒光素488(CTB-488),1周后制備冷凍腦切片,應用Olympus VS120熒光顯微鏡觀察LH腦區CTB-488陽性神經元。在TH-Cre轉基因雄性小鼠(8周齡)的LH注射順向跨突觸病毒AAV-hSyn-Flp-WPRE-hGH,在SNpc注射AAV-hSyn-Con/Fon-EYFP-WPRE-hGH,3周后灌注取腦并切片,觀察SNpc和紋狀體(Str)區EYFP陽性細胞及纖維。結果逆行示蹤實驗表明,CTB-488注射后可在LH區觀察到CTB-488陽性神經元,提示LH可能是SNpc的上游腦區。順向病毒追蹤實驗結果顯示,在小鼠SNpc觀察到明顯的EYFP陽性神經元且在Str可觀察到EYFP陽性纖維,提示LH支配SNpc的多巴胺能神經元。結論LH是SNpc的上游腦區,并支配SNpc的多巴胺能神經元。
[關鍵詞]帕金森病;黑質;下丘腦區,側;多巴胺能神經元;神經纖維;小鼠,轉基因
[中圖分類號]R742.5;R322.81[文獻標志碼]A[文章編號]2096-5532(2024)03-0359-05
doi:10.11712/jms.2096-5532.2024.60.047[開放科學(資源服務)標識碼(OSID)]
[網絡出版]https://link.cnki.net/urlid/37.1517.R.20240424.0942.003;2024-04-2416:52:19
Fibrous projections of the lateral hypothalamus to dopaminergic neurons in the substantia nigra pars compactaPAN Xuening, WANG Xiaoya, XIE Junxia, XU Huamin(Department of Physiology and Pathophysiology, Medical College of Qingdao University, Qingdao 266071, China)
[Abstract]ObjectiveTo investigate whether dopaminergic neurons in the substantia nigra pars compacta (SNpc) can receive fibrous projections from the lateral hypothalamus (LH).MethodsThe techniques of retrograde tracers, transgenic mice, and anterograde neural circuit tracers were used to investigate the projection from the LH to the SNpc. The retrograde tracer cho-lera toxin subunit B (recombinant) Alexa FluorTM 488 conjugate (CTB-488) was injected into the SNpc of male C57BL/6 mice aged 8 weeks; one week later, the brain was collected to prepare frozen brain slices, and the Olympus VS120 fluorescence microscope was used to observe CTB-488-positive neurons in the LH. The anterograde transneuronal virus AAV-hSyn-Flp-WPRE-hGH was injected into the LH of male TH-Cre transgenic mice aged 8 weeks, and AAV-hSyn-Con/Fon-EYFP-WPRE-hGH was injected into the SNpc of the mice; three weeks later, the brain was collected to prepare brain slices and observe EYFP-positive cells and fibers in the SNpc and the striatum (Str). ResultsThe retrograde tracer experiment showed that CTB-488-positive neurons were observed in the LH after the injection of CTB-488, indicating that the LH might be the upstream brain region of the SNpc. The anterograde transneuronal virus tracking experiment showed that EYFP-positive neurons were observed in the SNpc of mice and EYFP-positive nerve fibers were observed in the Str, suggesting that the LH might dominate the dopaminergic neurons in the SNpc. ConclusionThe LH is the upstream brain region of the SNpc and may dominate the dopaminergic neurons in the SNpc.
[Key words]Parkinson disease; substantia nigra; hypothalamic area, lateral; dopaminergic neurons; nerve fibers; mice, transgenic
帕金森病(PD)的臨床特征包括運動癥狀和非運動癥狀,如肌僵直、靜止性震顫和焦慮、抑郁等[1]。其病理特征為黑質多巴胺能神經元的丟失[2-3]。盡管其臨床和病理特征已得到充分證實,然而多巴胺能神經元損傷的機制尚未完全闡明[3-5]。研究表明,黑質多巴胺能神經元參與的環路異常是導致PD的重要機制之一[3,6]。黑質的多巴胺能神經元主要位于背側的黑質致密部(SNpc),并投射到背側紋狀體(Str)[7-8]。外側下丘腦(LH)是下丘腦的外側部分,含有許多神經肽[9],表達神經遞質谷氨酸或γ-氨基丁酸[10-12]。有研究結果顯示,將逆行示蹤劑氟金注射到LH中,在SNpc中觀察到了氟金陽性細胞[13],提示SNpc可以投射到LH。但是,SNpc的多巴胺能神經元是否接受LH的纖維投射尚不清楚。本文采用更靈敏高效的逆向示蹤劑霍亂毒素亞基-B結合熒光素488(CTB-488)驗證LH是SNpc的上游腦區,首次用TH-Cre轉基因小鼠探究LH對SNpc多巴胺能神經元的纖維投射。
1材料與方法
1.1實驗材料
1.1.1動物選擇及飼養SPF級雄性C57BL/6小鼠(8周齡)購自北京維通利華實驗動物有限公司;SPF級雄性TH-Cre轉基因小鼠為在本實驗室建立鑒定、繁殖體系。飼養條件:室溫(22±2)℃,濕度(50±2)%,12 h-12 h晝夜循環光照,可自由飲食。小鼠適應性飼養1周后進行實驗。動物使用和管理經青島大學實驗動物倫理委員會批準。
1.1.2主要實驗試劑及來源CTB-488購自武漢樞密腦科學技術有限公司。順向示蹤病毒:AAV-hSyn-Flp-WPRE-hGH(血清型2/1,滴度:1.00E+13 VG/mL)和AAV-hSyn-Con/Fon-EYFP-WPRE-hGH(血清型2/9,滴度:2.0E+12 VG/mL),購自武漢樞密腦科學技術有限公司。生理鹽水購自山東齊都藥業有限公司,異氟烷購自瑞沃德公司,阿佛丁購自南京愛貝生物科技有限公司。酪氨酸羥化酶(TH)抗體購自美國Millipore公司,Alexa Fluor 555 Donkey anti-mouse IgG抗體購自美國Thermo Fisher公司。
1.2實驗方法
1.2.1腦立體定位注射使用異氟烷對小鼠進行麻醉,將其固定于腦立體定位儀,調節左右耳桿與小鼠兩耳間連線平行。選定腦部中間位置,剪除小鼠顱頂被毛后用碘附或體積分數0.75的乙醇溶液消毒,縱向剪開頭皮,用棉簽蘸取適量生理鹽水輕輕擦拭顱骨表面,剝離附著在顱頂骨表面的黏膜,顯露前囟點,取其坐標定位零點,調整耳桿與儀器使前囟與后囟在同一水平位置,并調整左右兩側至水平。將玻璃電極中注入液體石蠟排除空氣,連接微量注射泵(瑞沃德公司),并吸取適量病毒溶液,將微量注射電極置于前囟點位置歸零。根據小鼠腦定位圖譜確定腦區坐標參數,定位注射點并用顱骨鉆開顱(直徑為0.5 mm),將玻璃電極插入目標腦區后以60 nL/min流量進行逆向示蹤劑CTB-488和順向示蹤病毒注射,注射完畢后對小鼠術區頭皮進行消毒縫合。具體操作步驟如下。
逆向示蹤劑CTB-488注射:將65 nL的 CTB-488單側注射于C57BL/6雄性小鼠(8周齡)的SNpc腦區,以前囟為原點,坐標為AP-2.92 mm、ML-1.50 mm、DV-4.40 mm。注射完成1周后進行灌注取腦。
順向示蹤病毒注射:將40 nL順向跨突觸病毒AAV-hSyn-Flp-WPRE-hGH單側注射于TH-Cre轉基因雄性小鼠(8周齡)的LH腦區,以其前囟點為原點,坐標為AP-1.25 mm、ML-1.10 mm、DV-5.20 mm;將50 nL的AAV-hSyn-Con/Fon-EYFP-WPRE-hGH單側注射于TH-Cre轉基因雄性小鼠SNpc腦區,坐標為AP-2.92 mm、ML-1.50 mm、DV-4.40 mm。注射完成3周后進行灌注取腦。
1.2.2小鼠腦組織切片樣本制備及觀察小鼠腹腔注射12.5 g/L的阿佛丁溶液進行麻醉,注射劑量為20 mL/kg體質量,待小鼠深度麻醉后剪開肋骨暴露心臟,使用生理鹽水和40 g/L多聚甲醛溶液進行灌注并取腦(在生物安全柜通風條件下進行)。將鼠腦置于40 g/L多聚甲醛溶液中固定6~12 h,固定完成后放入300 g/L蔗糖溶液中48 h(鼠腦沉入蔗糖溶液底部)。取出鼠腦使用冷凍切片機制備厚30 μm腦切片。小鼠腦片以0.01 mol/L 的PBS溶液清洗后,用抗熒光淬滅封片液(含DAPI)封片,使用Olympus VS120熒光顯微鏡進行觀察。
1.2.3免疫熒光染色將厚度30 μm冷凍腦組織切片在0.01 mol/L的PBS中搖床清洗3次,每次10 min。隨后使用體積分數0.05驢血清封閉1 h,然后加入TH一抗(稀釋比1∶1 000)4 ℃搖床孵育過夜。次日于0.01 mol/L的PBS中搖床清洗3次,每次10 min。清洗完畢后,加入Alexa Fluor 555 Donkey anti-mouse IgG二抗(1∶500)室溫孵育2 h。取出腦切片在0.01 mol/L的PBS中搖床清洗3次,每次10 min。最后進行貼片,用抗熒光淬滅封片液(含DAPI)封片,使用Olympus VS120熒光顯微鏡進行觀察。
2結果
2.1逆向追蹤SNpc的上游腦區
本研究將逆向示蹤劑CTB-488注射至5只C57BL/6雄性小鼠(8周齡)腦部的SNpc(圖1A),注射1周后進行灌注取腦并制作切片(30 μm),應用Olympus VS120熒光顯微鏡觀察CTB-488陽性神經元。結果顯示,在小鼠SNpc中可觀察到CTB-488細胞(綠色),表明注射的位點準確。在SNpc中CTB-488陽性細胞(綠色)部分與TH陽性細胞(紅色)共標(圖1B)。同時,在LH中觀察到CTB-488陽性細胞(綠色,圖1C)。提示LH可能是SNpc的上游腦區。
2.2順向示蹤驗證LH是SNpc的上游腦區
TH-Cre轉基因小鼠SNpc中多巴胺能神經元表達Cre重組酶。選取5只轉基因小鼠,在LH注射的Flp重組酶順向跨突觸至下游SNpc,在SNpc注射依賴Flp重組酶和Cre重組酶表達的AAV-hSyn-Con/Fon-EYFP-WPRE-hGH(圖2A)。因此,LH投射至SNpc的多巴胺能神經元可表達EYFP。順向病毒追蹤實驗結果表明,在SNpc觀察到了EYFP陽性神經元胞體(綠色,圖2B),在SNpc中EYFP陽性神經元(綠色)部分與TH陽性細胞(紅色)共標(圖2C),說明LH可能支配SNpc的多巴胺能神經元。在Str觀察到了EYFP陽性神經纖維(綠色,圖2D)。提示LH可能支配TH-Cre小鼠SNpc的多巴胺能神經元,并投射至Str。
3討論
PD是世界第二大類神經退行性疾病,雖然文獻報道了不同因素在PD發病中的可能作用,但其確切機制尚未闡明。目前對PD的治療主要是藥物療法,如左旋多巴類藥物,左旋多巴是DA的前體,可通過血-腦脊液屏障,代替缺失的DA發揮作用。但長期服用左旋多巴會引起許多副作用,如惡心、嘔吐等;并且左旋多巴和其他藥物只能控制PD癥狀,并不能減緩多巴胺能神經元的進行性死亡[14-15]。深部腦刺激(DBS)和干細胞移植也是近年來興起的新方法。雖然DBS治療可以改善部分PD病人的癥狀,但并不是對所有的病人都有效[16-17]。而將胎兒的神經干細胞移植到PD病人的Str,是具有爭議性的一種治療方法,涉及倫理問題[18-19]。因此,作為PD發病的關鍵腦區——富含多巴胺能神經元的SNpc,是研究PD發病及治療的重點腦區。探究SNpc的上游腦區對闡明PD中異常的神經環路機制有重要意義,可為PD的治療提供新的方向。
霍亂毒素亞單位B(CTB)是目前應用廣泛的一類逆行示蹤劑,來源于霍亂弧菌產生的霍亂毒素。CTB可通過與神經元突觸膜上的神經節苷脂GM1的戊多糖鏈結合附于細胞表面,可被軸突末端吸收并逆向運輸至胞體,進而特異、高效地逆行標記神經元。CTB-488將CTB與熒光素488結合,作為熒光逆向示蹤劑,目前已被廣泛用于逆行示蹤。本實驗采用CTB-488逆向追蹤小鼠SNpc的上游腦區,相較于前期的氟金法,CTB具有更靈敏高效的標記性,我們的研究結果也與先前的報道一致[3],證實LH可能是SNpc的上游腦區。進而我們創新性地將順行跨突觸病毒AAV-hSyn-Flp-WPRE-hGH注射至TH-Cre轉基因小鼠的LH中,并且在小鼠的同側SNpc中注射順行病毒AAV-hSyn-Con/Fon-EYFP-WPRE-hGH。結果顯示,在小鼠SNpc觀察到EYFP標記的多巴胺能神經元胞體,且在Str觀察到EYFP陽性的神經纖維。上述結果提示,LH可能是SNpc上游腦區,并支配SNpc的多巴胺能神經元,這為PD的神經環路機制探討提供了新的思路,也為研究LH-SNpc環路在PD中的作用提供了理論基礎。
SNpc的多巴胺能神經元可以投射至Str[20]。研究發現,在中腦切片中Sox6+多巴胺能神經元包括一個Aldh1a1+亞群(主要分布于SNpc腹側),在PD中丟失嚴重,這些神經元投射到背側Str,參與學習運動的調控[21-24]。此外,有研究證實,在PD中SNpc腹側的多巴胺能神經元比背側的易感性更強[25-26]。另外,上丘(SC)可投射至SNpc的多巴胺能神經元,激活此環路可增強小鼠的食欲運動[27]。最近的研究發現,SNpc可投射至外側眶額葉皮質(LOFC),這一環路與動物自我梳理行為有關[28]。這說明SNpc參與的環路可以調控多種行為,探究SNpc所涉及的神經環路具有重要意義。
已有研究證實,LH的神經元活動在十字高架迷宮開放臂探索性活動中十分重要[29-30]。此外,LH釋放的神經肽在控制食物攝入方面起著至關重要的作用[31]。先前的一項研究表明,LH中的DA水平會隨著食物攝入而增加[32];而阻斷LH中的DA受體會增加小鼠的食物攝入量[33-34]。有研究結果證實,SNpc是LH的上游腦區,參與攝食運動的調控[13]。結合本文的實驗結果,LH與SNpc之間可能存在相互投射的關系,這種雙向的投射關系提示二者可能參與不同行為的調控。綜合上述對LH與SNpc的功能研究,我們推測LH-SNpc環路可能參與調控PD誘導的運動障礙。而進一步探討LH-SNpc環路的功能及其在PD中的作用,可能為PD的環路機制研究提供新的方向。
[參考文獻]
[1]KALIA L V, LANG A E. Parkinson disease in 2015: evolving basic, pathological and clinical concepts in PD[J]. Nature Reviews Neurology, 2016,12(2):65-66.
[2]ZHANG Z, ZHANG K K, DU X R, et al. Neuroprotection of desferrioxamine in lipopolysaccharide-induced nigrostriatal dopamine neuron degeneration[J]. Molecular Medicine Reports, 2012,5(2):562-566.
[3]DEXTER D T, JENNER P. Parkinson disease: from pathology to molecular disease mechanisms[J]. Free Radical Biology and Medicine, 2013,62:132-144.
[4]SIMON D K, TANNER C M, BRUNDIN P. Parkinson di-sease epidemiology, pathology, genetics, and pathophysiology[J]. Clinics in Geriatric Medicine, 2020,36(1):1-12.
[5]POSTUMA R B, BERG D, STERN M, et al. MDS clinical diagnostic criteria for Parkinson’s disease[J]. Movement Di-sorders: Official Journal of the Movement Disorder Society, 2015,30(12):1591-1601.
[6]MASINI D, KIEHN O. Targeted activation of midbrain neurons restores locomotor function in mouse models of Parkinsonism[J]. Nature Communications, 2022,13(1):504.
[7]GEISLER S, ZAHM D S. Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions[J]. The Journal of Comparative Neurology, 2005,490(3):270-294.
[8]POULIN J F, CARONIA G, HOFER C, et al. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches[J]. Nature Neuroscience, 2018,21(9):1260-1271.
[9]GUILLAUMIN M C C, BURDAKOV D. Neuropeptides as primary mediators of brain circuit connectivity[J]. Frontiers in Neuroscience, 2021,15:644313.
[10]MICKELSEN L E, BOLISETTY M, CHIMILESKI B R, et al. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons[J]. Nature Neuroscience, 2019,22:642-656.
[11]STEUERNAGEL L, LAM B Y H, KLEMM P, et al. HypoMap-a unified single-cell gene expression atlas of the murine hypothalamus[J]. Nature Metabolism, 2022,4(10):1402-1419.
[12]ROSSI M A. Control of energy homeostasis by the lateral hypothalamic area[J]. Trends in Neurosciences, 2023,46(9):738-749.
[13]YONEMOCHI N, ARDIANTO C, YANG L Z, et al. Dopaminergic mechanisms in the lateral hypothalamus regulate feeding behavior in association with neuropeptides[J]. Biochemical and Biophysical Research Communications, 2019,519(3):547-552.
[14]PEDROSA A J, WALDTHALER J, MGGE F, et al. Non-
3期潘雪凝,等. 外側下丘腦與黑質致密部多巴胺能神經元的纖維投射363
lesional treatments for tremor in Parkinson’s disease: a systematic review and meta-analysis[J]. European Journal of Neurology, 2023,30(8):2544-2556.
[15]RICHMOND A M, LYONS K E, PAHWA R. Safety review of current pharmacotherapies for levodopa-treated patients with Parkinson’s disease[J]. Expert Opinion on Drug Safety, 2023,22(7):563-579.
[16]LIU Y, LI W N, TAN C H, et al. Meta-analysis comparing deep brain stimulation of the globus pallidus and subthalamic nucleus to treat advanced Parkinson disease[J]. Journal of Neurosurgery, 2014,121(3):709-718.
[17]POURAHMAD R, SALEKI K, ESMAILI M, et al. Deep brain stimulation (DBS) as a therapeutic approach in gait di-sorders: what does it bring to the table[J]? IBRO Neuroscience Reports, 2023,14:507-513.
[18]SVENDSEN C N, CALDWELL M A, SHEN J, et al. Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease[J]. Experimental Neurology, 1997,148(1):135-146.
[19]DHIVYA V, BALACHANDAR V. Cell replacement therapy is the remedial solution for treating Parkinson’s disease[J]. Stem Cell Investigation, 2017,4:59.
[20]LERNER T N, SHILYANSKY C, DAVIDSON T J, et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits[J]. Cell, 2015,162(3):635-647.
[21]HOWE M W, DOMBECK D A. Rapid signalling in distinct dopaminergic axons during locomotion and reward[J]. Nature, 2016,535:505-510.
[22]PEREIRA LUPPI M, AZCORRA M, CARONIA-BROWN G, et al. Sox6 expression distinguishes dorsally and ventrally biased dopamine neurons in the substantia nigra with distinctive properties and embryonic origins[J]. Cell Reports, 2021,37(6):109975.
[23]MENEGAS W, AKITI K, AMO R, et al. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli[J]. Nature Neuroscience, 2018,21(10):1421-1430.
[24]WU J B, KUNG J, DONG J, et al. Distinct connectivity and functionality of aldehyde dehydrogenase 1a1-positive nigrostria-tal dopaminergic neurons in motor learning[J]. Cell Reports, 2019,28(5):1167-1181.e7.
[25]GIBB W R, LEES A J. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 1991,54(5):388-396.
[26]KAMATH T, ABDULRAOUF A, BURRIS S J, et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease[J]. Nature Neuroscience, 2022,25:588-595.
[27]HUANG M Z, LI D P, CHENG X Y, et al. The tectonigral pathway regulates appetitive locomotion in predatory hunting in mice[J]. Nature Communications, 2021,12(1):4409.
[28]XUE J W, QIAN D D, ZHANG B Q, et al. Midbrain dopamine neurons arbiter OCD-like behavior[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022,119(46):e2207545119.
[29]BERNARDIS L L, BELLINGER L L. The lateral hypothalamic area revisited: ingestive behavior[J]. Neuroscience and Biobehavioral Reviews, 1996,20(2):189-287.
[30]HAKVOORT SCHWERDTFEGER R M, MENARD J L. The lateral hypothalamus and anterior hypothalamic nucleus diffe-rentially contribute to rats' defensive responses in the elevated plus-maze and shock-probe burying tests[J]. Physiology amp; Behavior, 2008,93(4/5):697-705.
[31]STAMATAKIS A M, VAN SWIETEN M, BASIRI M L, et al. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward[J]. The Journal of Neuroscience, 2016,36(2):302-311.
[32]MEGUID M M, YANG Z J, KOSEKI M. Eating induced rise in LHA-dopamine correlates with meal size in normal and bulbectomized rats[J]. Brain Research Bulletin, 1995,36(5):487-490.
[33]SATO T, MEGUID M M, FETISSOV S O, et al. Hypothalamic dopaminergic receptor expressions in anorexia of tumor-bearing rats[J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2001,281(6):R1907-R1916.
[34]IKEDA H, YONEMOCHI N, ARDIANTO C, et al. Pregabalin increases food intake through dopaminergic systems in the hypothalamus[J]. Brain Research, 2018,1701:219-226.
(本文編輯于國藝)