
[摘要]目的探究血紅素加氧酶1(HO-1)抑制劑鋅原卟啉(ZnPP)對BV2小膠質細胞抗凋亡相關蛋白表達水平的影響。方法以25 μmol/L的ZnPP處理BV2小膠質細胞24 h后,使用CCK-8法檢測細胞活力,采用Western blot的方法檢測細胞內ZnPP對BV2小膠質細胞抗凋亡蛋白B淋巴細胞瘤-2蛋白(Bcl-2)與促凋亡蛋白Bcl2-Associated X蛋白(Bax)、剪切的天冬氨酸特異性半胱氨酸蛋白酶-3(Cleaved caspase 3)等蛋白表達的影響。結果與對照組相比,以10 μmol/L的 ZnPP處理BV2小膠質細胞24 h后細胞活力無明顯變化(F=14.720,q=2.819,P>0.05)。而以25 μmol/L的 ZnPP作用于小膠質細胞24 h后,細胞活力明顯下降(q=7.591,P<0.001);細胞內HO-1和Bcl-2蛋白表達明顯降低,Cleaved caspase 3蛋白和Bax蛋白表達明顯增加,差異均有統計學意義(t=2.975~5.189,P<0.01)。結論ZnPP處理BV2小膠質細胞后可通過線粒體凋亡途徑激活細胞凋亡,此過程可能與抑制HO-1的作用有關。
[關鍵詞]鋅;原卟啉類;血紅素加氧酶-1;小神經膠質細胞;細胞凋亡;線粒體蛋白質類
[中圖分類號]R977.9;R322.8[文獻標志碼]A[文章編號]2096-5532(2024)03-0368-04
doi:10.11712/jms.2096-5532.2024.60.045[開放科學(資源服務)標識碼(OSID)]
[網絡出版]https://link.cnki.net/urlid/37.1517.r.20240424.0942.001;2024-04-2417:13:28
Effect of zinc protoporphyrin on the expression of apoptosis-related proteins in BV2 microglial cellsLIU Rong, JING Cuiting, XIE Junxia, WANG Jun(Department of Physiology, School of Basic Medicine, Qingdao University Medical College, Qingdao 266071, China)
[Abstract]ObjectiveTo investigate the effect of zinc protoporphyrin (ZnPP), an inhibitor ofheme oxygenase 1 (HO-1), on the expression levels of the anti-apoptosis-related proteins in BV2 microglial cells. MethodsBV2 microglial cells were treated with 25 μmol/L ZnPP for 24 hours. CCK-8 assay was used to measure cell viability, and Western blot was used to measure the changes in the protein expression levels of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) and the pro-apoptotic proteins Bcl-2 related X protein (Bax) and Cleaved caspase-3 induced by ZnPP in BV2 microglial cells.ResultsCompared with the control group, the BV2 microglial cells treated with 10 μmol/L ZnPP for 24 hours showed no significant change in cell viability (F=14.720,q=2.819,Pgt;0.05), while the microglial cells treated with 25 μmol/L ZnPP for 24 hours showed a significant reduction in cell viability (q=7.591,Plt;0.01), as well as significant reductions in the protein expression levels of HO-1 and Bcl-2 and significant increases in the protein expression levels of Cleaved caspase-3 and Bax (t=2.975-5.189,Plt;0.01).ConclusionTreatment of BV2 microglial cells with ZnPP can activate cell apoptosis through the mitochondrial apoptosis pathway, possibly by inhibiting HO-1.
[Key words]zinc; protoporphyrins; heme oxygenase-1; microglia; apoptosis; mitochondrial proteins
帕金森病(PD)是一類復雜的神經退行性疾病,其主要臨床癥狀表現為靜止性震顫、肌僵直、運動遲緩和姿勢不穩等[1-2]。PD的病理特征主要與黑質致密部多巴胺能神經元的進行性丟失有關[3-4]。近年來,有大量的體外、體內和人體研究表明,細胞凋亡與PD的發病機制密切相關[5]。鋅原卟啉(ZnPP)是血紅素合成過程中產生的一種中間體,是血紅素加氧酶1(HO-1)的抑制劑[6]。HO-1是血紅素降解途徑中的限速酶,它可以與NADPH細胞色素P450還原酶裂解血紅素生成一氧化碳、二價鐵和膽綠素。膽綠素可被其還原酶還原生成膽紅素[7]。在腦缺血再灌注模型中,ZnPP能通過抑制HO-1來調節血紅素分解代謝,從而促進大鼠海馬細胞凋亡并加重損傷[8]。在小鼠原代肝細胞中,用ZnPP處理后可以通過誘導細胞凋亡來加重肝損傷[9]。但是,對于用ZnPP處理小膠質細胞后,細胞是否會發生凋亡目前尚不清楚。因此,本研究使用ZnPP抑制HO-1的表達,檢測ZnPP對BV2小膠質細胞中抗凋亡蛋白B淋巴細胞瘤-2蛋白(Bcl-2)與促凋亡蛋白Bcl2-Associated X蛋白(Bax)、剪切的天冬氨酸特異性半胱氨酸蛋白酶-3(Cleaved caspase 3)等蛋白表達的影響,為后續研究神經退行性疾病提供新的實驗理論依據。
1材料和方法
1.1實驗材料
BV2小膠質細胞購置于北京協和醫學院細胞資源中心,DMEM培養液(美國Hyclone公司),胎牛血清(中國依科賽生物科技有限公司),青霉素-鏈霉素溶液(北京索萊寶科技有限公司),D-多聚賴氨酸、ZnPP(美國Sigma公司),Cleaved caspase 3抗體、Bcl-2抗體、Bax抗體和β-actin抗體(Abcam公司),HRP-IgG抗體(中國博奧森公司)。
1.2細胞培養與處理
將BV2小膠質細胞培養在含有體積分數為0.10的胎牛血清和加有青霉素(100 kU/L)-鏈霉素(0.1 g/L)的DMEM高糖培養液中,置于37 ℃、體積分數為0.05的CO2培養箱中培養。將細胞以2×108/L的密度接種于預先鋪有D-多聚賴氨酸的6孔板中,待細胞生長到70%~80%融合時,采用ZnPP(25 μmol/L)處理BV2小膠質細胞,并置于37 ℃、含體積分數0.05 CO2的培養箱中培養24 h。
1.3BV2小膠質細胞活力的CCK-8法檢測
分別向BV2細胞中加入濃度為0、10、25 μmol/L的ZnPP溶液,于培養箱中培養24 h。吸出原培養液,加入100 μL的基礎培養液、10 μL的CCK-8溶液,將培養板在培養箱中避光孵育1~4 h。使用酶標儀測定450 nm波長處的吸光度,并按照公式計算細胞活力。
1.4Cleaved caspase 3、Bcl-2和Bax蛋白表達檢測
用ZnPP處理BV2小膠質細胞24 h后,按照文獻方法[10]處理細胞,分別用Cleaved caspase 3(1∶1 000)、Bcl-2(1∶1 000)、Bax(1∶1 000)和β-actin(1∶10 000)一抗4 ℃孵育過夜,TBST清洗3次后用羊抗兔HRP-IgG(1∶10 000)二抗室溫孵育1 h。使用ECL發光液進行顯影,掃描后用Image J軟件分析結果。
1.5統計學處理
采用Graph Pad Prism 9.1軟件進行統計學處理。計量資料數據以±s形式表示,兩組均數比較采用獨立樣本t檢驗;多組均數比較采用單因素方差分析(One-Way ANOVA),組間兩兩比較采用Tukey法。以P<0.05為差異具有統計學意義。2結果
2.1ZnPP對BV2小膠質細胞活性影響
使用不同濃度ZnPP(0、10、25 μmol/L,n=5)作用于BV2小膠質細胞24 h后,細胞活力分別為1.000±0.007、0.956±0.029和0.881±0.053,差異具有統計學意義(F=14.720,P<0.001)。其中濃度為10 μmol/L的ZnPP組與對照組(0 μmol/L的ZnPP)相比較,細胞活力無明顯變化(q=2.819,P>0.05);而25 μmol/L的ZnPP組細胞活力與對照組相比明顯下降,差異有統計學意義(q=7.591,P<0.001)。
2.2ZnPP對BV2小膠質細胞HO-1蛋白表達的影響
對照組BV2小膠質細胞HO-1蛋白表達量為1.758±0.302,25 μmol/L的ZnPP處理組(ZnPP組)為1.171±0.288。與對照組相比,ZnPP組HO-1蛋白表達明顯降低,差異有統計學意義(t=2.975,P<0.05)。
2.3ZnPP對BV2小膠質細胞凋亡相關蛋白表達影響
與對照組相比較,25 μmol/L的ZnPP處理組(ZnPP組)BV2小膠質細胞的Cleaved caspase 3與Bax蛋白表達水平明顯升高,Bcl-2蛋白表達水平下降,且Bcl-2/Bax表達比值降低,差異均具有統計學意義(t=3.753~17.450,P<0.05)。見表1。
3討論
細胞凋亡是細胞的一種死亡方式,主要表現為細胞皺縮、胞膜內陷、核膜破裂以及染色質凝集等變化[11-12]。一般來說,細胞凋亡可以大致分為兩種途徑:一種是內在途徑,即線粒體凋亡途徑,該途徑主要受到Caspase 3、Bcl-2和Bax等凋亡相關蛋白的調節;另一種是外在途徑,也稱為死亡受體介導的途徑,這條途徑主要依賴于腫瘤壞死因子受體家族的死亡受體調節[13-15]。已有研究結果表明,細胞過度凋亡或者凋亡不足與神經退行性疾病的發生及發展密切相關[16-18]。
PD是繼阿爾茨海默病后被發現的第二大類常見的神經退行性疾病,其運動特征表現為運動遲緩、肌僵直、靜止性震顫和姿勢異常等。除此之外,還有許多非運動癥狀,如嗅覺異常、睡眠異常、焦慮和抑郁等[19-21]。PD的病理特征主要為黑質致密部多巴胺能神經元的進行性丟失以及路易體的形成[22]。而中腦黑質是腦內小膠質細胞分布密度最高的區域,該細胞激活可以產生大量的自由基進而損傷多巴胺能神經元[23]。盡管PD的病因尚不清楚,但是有研究結果表明,衰老是其主要的危險因素[24]。目前針對PD的治療多為藥物療法、基因療法和細胞療法等[25-27]。這些方法有一個共同的特點,它們僅僅只能起到緩解病情的作用,并不能治愈疾病。因此,現在迫切需要尋找和開發新的治療策略。近年來有研究發現,當轉基因小鼠的星形膠質細胞過表達HO-1時,會出現一系列PD相關改變,如明顯的運動不協調、黑質紋狀體多巴胺能神經元減少、基底神經節鐵沉積、線粒體損傷/線粒體自噬等與PD相符的異常[28]。此外對小鼠腦出血模型研究發現,HO-1表達主要出現在血腫區域周圍的小膠質細胞中[29]。并且在凝血酶誘導的腦損傷中也觀察到,HO-1的缺失與活化的小膠質細胞的數量減少有關[30]。所以從PD的致病因素來看,HO-1的表達水平將會是一個值得研究的新方向。
HO-1是一種由人類的HMOX1基因編碼的應激誘導同工酶[31]。它可以被多種刺激因素如脂多糖、炎性因子、重金屬以及紫外線等誘導產生高水平表達[32-35]。ZnPP是一種天然存在的金屬原卟啉,在體內缺鐵或鐵的利用率低時就會導致ZnPP合成增加,進而抑制HO-1的表達水平[6,36]。既往的研究表明,ZnPP通過抑制HO-1可以阻斷白楊素對膿毒癥引起的心功能障礙的保護作用[37]。在用ZnPP處理人晶狀體上皮細胞后則發現,角質形成細胞生長因子-2的保護作用發生顯著降低,并且細胞發生凋亡[38]。這與我們的實驗結果相一致。本文的研究結果表明,與對照組相比較,用抑制劑ZnPP處理的小膠質細胞內HO-1與Bcl-2蛋白表達明顯降低,Cleaved caspase 3與Bax蛋白表達明顯升高,而且Bcl-2/Bax比值明顯下降。這表明用ZnPP抑制HO-1的表達可以通過激活線粒體凋亡途徑來增加小膠質細胞的損傷,此過程可能與HO-1的調控有關。正如前所述,HO-1的表達水平在PD的進展過程中十分重要,而小膠質細胞的過度激活會導致細胞凋亡,并最終加劇PD的病理進展。所以,盡管HO-1與細胞凋亡的確切機制還尚不完全清楚,但是靶向HO-1或者調控HO-1的活性可能會為后續研究神經退行性疾病提供一個新的有意義的方向。
當然,本文實驗目前還有很多不足。我們僅在小膠質細胞系中進行了實驗,后續將會進一步在動物模型中進行驗證,繼續探究HO-1與線粒體凋亡途徑之間的關聯,以及其調控細胞凋亡的具體機制,以期為神經退行性疾病新療法的開發,以及新治療策略和生物標志物的開發提供新的思路。
[參考文獻]
[1]劉靜,司景梅. 神經炎癥介導的帕金森病運動防治研究進展[J]. 中國老年學雜志, 2023,43(6):1510-1515.
[2]BLOEM B R, OKUN M S, KLEIN C. Parkinson’s disease[J]." Lancet, 2021,397(10291):2284-2303.
[3]HAN Q W, YUAN Y H, CHEN N H. The therapeutic role of cannabinoid receptors and its agonists or antagonists in Parkinson’s disease[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020,96:109745.
[4]JANKOVIC J, TAN E K. Parkinson’s disease: etiopathoge-nesis and treatment[J]." Journal of Neurology, Neurosurgery, and Psychiatry, 2020,91(8):795-808.
[5]LEV N, MELAMED E, OFFEN D. Apoptosis and Parkin-son’s disease[J]. Progress in Neuro-Psychopharmacology amp; Biological Psychiatry, 2003,27(2):245-250.
[6]WANG Y, XIONG X X, GUO H, et al. ZnPP reduces autophagy and induces apoptosis, thus aggravating liver ischemia/reperfusion injury in vitro[J]. International Journal of Molecular Medicine, 2014,34(6):1555-1564.
[7]RYTER S W, TYRRELL R M. The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxyge-nase has both pro- and antioxidant properties[J]. Free Radical Biology amp; Medicine, 2000,28(2):289-309.
[8]YANG Y D, LI X, ZHANG L M, et al. Ginsenoside Rg1 suppressed inflammation and neuron apoptosis by activating PPARγ/HO-1 in hippocampus in rat model of cerebral ischemia-reperfusion injury[J]. International Journal of Clinical and Experimental Pathology, 2015,8(3):2484-2494.
[9]CARCHMAN E H, RAO J, LOUGHRAN P A, et al. Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice[J]. Hepatology, 2011,53(6):2053-2062.
[10]孟大鵬,謝俊霞,王俊. 枸櫞酸鐵銨對BV2小膠質細胞DMT1和FPN1表達影響[J]. 青島大學醫學院學報, 2017,53(1):12-13,17.
[11]WEERASINGHE P, BUJA L M. Oncosis: an important non-
3期劉榮,等. 鋅原卟啉對BV2小膠質細胞凋亡相關蛋白表達影響371
apoptotic mode of cell death[J]." Experimental and Molecular Pathology, 2012,93(3):302-308.
[12]LI M, GAO P, ZHANG J P. Crosstalk between autophagy and apoptosis: potential and emerging therapeutic targets for cardiac diseases[J]." International Journal of Molecular Sciences, 2016,17(3):332.
[13]KETELUT-CARNEIRO N, FITZGERALD K A. Apoptosis, pyroptosis, and necroptosis—oh my! the many ways a cell can die[J]. Journal of Molecular Biology, 2022,434(4):167378.
[14]HU H, TIAN M X, DING C, et al. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection[J]." Frontiers in Immunology, 2018,9:3083.
[15]LIU A K, KUANG J, ZHOU Y M, et al. EPR-based in situ enzymatic activity detection of endogenous caspase-3 in apoptosis cell lysates[J]." Chemical Communications, 2022,58(61):8528-8531.
[16]LIU J, LIU W J, YANG H. Balancing apoptosis and auto-phagy for Parkinson’s disease therapy: targeting BCL-2[J]. ACS Chemical Neuroscience, 2019,10(2):792-802.
[17]JOHNSON J, MERCADO-AYON E, MERCADO-AYON Y, et al. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases[J]." Archives of Biochemistry and Biophysics, 2021,702:108698.
[18]GUPTA R, AMBASTA R K, KUMAR P. Autophagy and apoptosis cascade: which is more prominent in neuronal death?[J]." Cellular and Molecular Life Sciences: CMLS, 2021,78(24):8001-8047.
[19]THE LANCET. Parkinson’s disease: a complex disease revi-sited[J]. Lancet, 2017,390(10093):430.
[20]CHIA S J, TAN E K, CHAO Y X. Historical perspective: models of Parkinson’s disease[J]." International Journal of Molecular Sciences, 2020,21(7):2464.
[21]MUSTAPHA M, MAT TAIB C N. MPTP-induced mouse model of Parkinson’s disease: a promising direction of therapeutic strategies[J]." Bosnian Journal of Basic Medical Sciences, 2021,21(4):422-433.
[22]COOKSON M R, HARDY J, LEWIS P A. Genetic neuropathology of Parkinson’s disease[J]." International Journal of Clinical and Experimental Pathology, 2008,1(3):217-231.
[23]WANG Q S, OYARZABAL E, WILSON B, et al. Substance P enhances microglial density in the substantia nigra through neurokinin-1 receptor/NADPH oxidase-mediated chemotaxis in mice[J]. Clinical Science, 2015,129(8):757-767.
[24]PRINGSHEIM T, JETTE N, FROLKIS A, et al. The prevalence of Parkinson’s disease: a systematic review and meta-analysis[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2014,29(13):1583-1590.
[25]TANDON A, SINGH S J, CHATURVEDI R K. Nanomedicine against Alzheimer’s and Parkinson’s disease[J]." Current Pharmaceutical Design, 2021,27(12):1507-1545.
[26]ABELIOVICH A, HEFTI F, SEVIGNY J. Gene therapy for Parkinson’s disease associated with GBA1 mutations[J]." Journal of Parkinson’s Disease, 2021,11(s2):S183-S188.
[27]PARK T Y, JEON J, LEE N, et al. Co-transplantation of autologous Treg cells in a cell therapy for Parkinson’s disease[J]." Nature, 2023,619(7970):606-615.
[28]SONG W, CRESSATTI M, ZUKOR H, et al. Parkinsonian features in aging GFAP. HMOX1 transgenic mice overexpressing human HO-1 in the astroglial compartment[J]. Neurobio-logy of Aging, 2017,58:163-179.
[29]段淑榮,王瀟然,王春燕,等. 人腦出血血腫周圍皮質血紅素氧合酶-1和凋亡調節蛋白Bcl-2表達變化的研究[J]. 中華醫學雜志, 2007,87(27):1904-1907.
[30]OHNISHI M, KATSUKI H, UNEMURA K, et al. Heme oxygenase-1 contributes to pathology associated with thrombin-induced striatal and cortical injury in organotypic slice culture[J]. Brain Research, 2010,1347:170-178.
[31]BARAANO D E, SNYDER S H. Neural roles for heme oxygenase: contrasts to nitric oxide synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(20):10996-11002.
[32]LIU R, YANG J H, LI Y H, et al. Heme oxygenase-1: the roles of both good and evil in neurodegenerative diseases[J]. Journal of Neurochemistry, 2023,167(3):347-361.
[33]LI J C, LU K M, SUN F L, et al. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway[J]." Journal of Translational Medi-cine, 2021,19(1):96.
[34]LIU T, XIA Q M, LV Y S, et al. ErZhiFormula prevents UV-induced skin photoaging by Nrf2/HO-1/NQO1 signaling: an in vitro and in vivo studies[J]." Journal of Ethnopharmacology, 2023,309:115935.
[35]HUANG L, LU S Y, BIAN M X, et al. Punicalagin atte-nuates TNF-α-induced oxidative damage and promotes osteoge-nic differentiation of bone mesenchymal stem cells by activa-ting the Nrf2/HO-1 pathway[J]." Experimental Cell Research, 2023,430(1):113717.
[36]YANG G, NGUYEN X, OU J, et al. Unique effects of zinc protoporphyrin on HO-1 induction and apoptosis[J]." Blood, 2001,97(5):1306-1313.
[37]LI X Y, LI S, WANG Q, et al. Chrysin ameliorates sepsis-induced cardiac dysfunction through upregulating Nfr2/heme oxy-genase 1 pathway[J]. Journal of Cardiovascular Pharmacology, 2021,77(4):491-500.
[38]LIU S Y, JIN Z, XIA R Y, et al. Protection of human lens epi-thelial cells from oxidative stress damage and cell apoptosis by KGF-2 through the akt/Nrf2/HO-1 pathway[J]. Oxidative Medicine and Cellular Longevity, 2022,2022:6933812.
(本文編輯于國藝)