








摘 要:旨在探明胰島素樣生長(zhǎng)因子1(insulin-like growth factors1,IGF1)、輔酶Q10(coenzyme Q10,CoQ10)及褪黑素(melatonin,MT)聯(lián)合添加對(duì)牛卵母細(xì)胞和胚胎發(fā)育以及熱應(yīng)激囊胚的影響。本研究于屠宰場(chǎng)采集牛離體卵巢,于實(shí)驗(yàn)室抽取卵丘卵母細(xì)胞復(fù)合體(cumulus-oocyte complexes,COCs),在牛卵母細(xì)胞體外成熟(in vitro maturation,IVM)液及牛胚胎體外培養(yǎng)(in vitro culture,IVC)液中添加IGF1、CoQ10及MT,檢測(cè)各添加方式對(duì)牛卵母細(xì)胞發(fā)育能力、牛卵母細(xì)胞活性氧(reactive oxygen species,ROS)水平及線粒體膜電位(mitochondrial membrane potential,ΔΨm)的影響;在囊胚期施加41℃熱應(yīng)激,檢測(cè)熱應(yīng)激及聯(lián)合添加對(duì)牛IVF囊胚發(fā)育能力及凋亡水平的影響,并利用qRT-PCR檢測(cè)囊胚中胚胎質(zhì)量相關(guān)基因mRNA表達(dá)水平。各組試驗(yàn)均重復(fù)3次。結(jié)果表明,與未添加組(CT-0組)相比,聯(lián)合添加IGF1、CoQ10及MT組(ICM組)卵母細(xì)胞成熟率((90.40±2.06)%vs.(65.41±0.63)%)、卵裂率((93.33±1.96)%vs.(59.77±2.93)%)及囊胚率((51.43±5.34)%vs.(26.92±3.24)%)均顯著提高(P<0.05);ICM組牛卵母細(xì)胞ROS水平顯著降低;ΔΨm顯著提高(P<0.05)。與熱應(yīng)激組(HS組)相比,聯(lián)合添加IGF1、CoQ10及MT(ICM+HS組)顯著提高了囊胚擴(kuò)張率((62.00±2.97)%vs.(30.77±8.66)%,P<0.05),抑制了熱應(yīng)激囊胚細(xì)胞凋亡,并提高了IGFBP3、ATP1A1、DSC2及IFNT2的mRNA表達(dá)水平(P<0.05)。綜上表明,聯(lián)合添加IGF1、CoQ10及MT有效提高牛卵母細(xì)胞發(fā)育能力,降低ROS水平,提高ΔΨm。熱應(yīng)激降低牛囊胚擴(kuò)張率,促進(jìn)牛囊胚細(xì)胞凋亡,影響囊胚質(zhì)量,而聯(lián)合添加IGF1、CoQ10及MT緩解了熱應(yīng)激損傷。
關(guān)鍵詞:IGF1;CoQ10;褪黑素;熱應(yīng)激;奶牛;胚胎
中圖分類號(hào):S823.3
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0366-6964(2024)06-2474-12
收稿日期:2023-12-25
基金項(xiàng)目:國(guó)家重點(diǎn)研發(fā)計(jì)劃政府間重點(diǎn)專項(xiàng)(2022YFE0100200);國(guó)家自然科學(xué)基金國(guó)際合作項(xiàng)目(32161143032);農(nóng)業(yè)農(nóng)村部和財(cái)政部資助:現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系資助(CARS-36);國(guó)家家養(yǎng)動(dòng)物種質(zhì)資源庫(kù);中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(ASTIP-IAS06)
作者簡(jiǎn)介:張 航(1998-),男,河南鄭州人,碩士,主要從事動(dòng)物繁殖研究,E-mail:2113884879@qq.com
*通信作者:趙學(xué)明,主要從事家畜胚胎生物技術(shù)研究,E-mail:zhaoxueming@caas.cn
Combination of IGF1,CoQ10and MT Alleviated the Effects of
Heat Stress on Bovine IVF Blastocysts
ZHANGHang1,ZHANGPeipei1,YANGBaigao1,F(xiàn)ENGXiaoyi1,NIUYifan1,
YUZhou1,CAOJianhua1,WANPengcheng2,ZHAOXueming1*
(1.Institute of Animal Science,Chinese Academy of Agricultural Sciences,Beijing
100193,China; 2.Institute of Animal Husbandry and Veterinary Medicine,Xinjiang
Academy of Agricultural and Reclamation Science,UrumqiShihezi832000,China)
Abstract:The aim of this study was to investigate the effects of combination of insulin-like growth factor1(IGF1),coenzyme Q10(CoQ10),and melatonin(MT)on development of bovine oocytes,embryos and heat stressed blastocysts.In this study,bovine ovaries were collected from the abattoir and cumulus-oocyte complexes(COCs)were extracted in the laboratory.IGF1,CoQ10and MT were added to bovine oocyte in vitro maturation(IVM)solution and bovine embryo in vitro culture(IVC)solution.The developmental ability,level of reactive oxygen species(ROS)and mitochondrial membrane potential(ΔΨm)of bovine oocytes from each treatment were detected.By applying41℃heat stress at the blastocyst stage,the effects of heat stress and combined supplementation on the developmental ability and apoptosis level of bovine IVF blastocysts were determined,and the mRNA expression levels of embryo quality related genes were detected by qRT-PCR.Each experimental group was repeated3times.The results showed that the combination of IGF1,CoQ10and MT(ICM group)significantly increased oocyte maturation rate((90.40±2.06)%vs.(65.41±0.63)%),cleavage rate((93.33±1.96)%vs.(59.77±2.93)%)and blastocyst rate((51.43±5.34)%vs.(26.92±3.24)%))(Plt;0.05)compared with the non added group(CT-0group).In the ICM group,the ROS level of bovine oocytes was significantly decreased and the ΔΨm of bovine oocytes was significantly increased(Plt;0.05).Compared with the heat stress group(HS group),the combination of IGF1,CoQ10and MT(ICM+HS group)significantly increased expanding rate((62.00±2.97)%vs.(30.77±8.66)%,Plt;0.05)of heat stressed blastocysts,inhibited apoptosis of heat stressed blastocyst cells,and increased mRNA expression levels of IGFBP3,ATP1A1,DSC2,and IFNT2(Plt;0.05)of heat stressed blastocysts.In summary,the combination of IGF1,CoQ10and MT can effectively enhance the developmental ability,reduce the ROS level and increase the ΔΨm of bovine oocytes.Heat stress reduced the expanding rate of bovine blastocysts,promoted apoptosis of bovine blastocyst cells and damaged the quality of blastocysts,while the combination of IGF1,CoQ10and MT alleviated the damage from heat stress.
Key words:IGF1; CoQ10; melatonin; heat stress; dairy cow; embryo
*Corresponding author:ZHAO Xueming,E-mail:zhaoxueming@caas.cn
夏季熱應(yīng)激是降低奶牛繁殖力,影響奶業(yè)發(fā)展的重要原因。研究表明,當(dāng)溫度濕度指數(shù)(temperature-humidity index,THI)≥72時(shí),奶牛將無(wú)法充分散熱,隨即發(fā)生熱應(yīng)激[1],進(jìn)而嚴(yán)重?fù)p害奶牛繁殖[2-3]及產(chǎn)奶[4]性能,每年造成數(shù)十億美元的經(jīng)濟(jì)損失[4-5]。熱應(yīng)激對(duì)奶牛繁殖的影響包括高溫引起卵母細(xì)胞活性氧(reactive oxygen species,ROS)升高,加劇卵母細(xì)胞氧化應(yīng)激損傷[6],并降低卵母細(xì)胞線粒體膜電位水平(mitochondrial membrane potential,ΔΨm),進(jìn)而影響細(xì)胞代謝,損害卵母細(xì)胞發(fā)育[7]。熱應(yīng)激還對(duì)卵母細(xì)胞微管蛋白和微絲造成損傷,影響卵母細(xì)胞成熟,并增加受精失敗風(fēng)險(xiǎn)[8]。此外,熱應(yīng)激引發(fā)卵母細(xì)胞染色質(zhì)凝聚異常,進(jìn)而干擾胚胎染色質(zhì)重塑,影響胚胎基因組激活[9-10]。研究表明,當(dāng)2細(xì)胞期胚胎遭受熱應(yīng)激時(shí),胚胎微絲微管網(wǎng)絡(luò)受損,引發(fā)細(xì)胞器向細(xì)胞核周圍移動(dòng),并造成線粒體分布異常、腫脹,進(jìn)而損害胚胎發(fā)育[11-12]。
體外胚胎移植能有效減少熱應(yīng)激對(duì)奶牛繁殖力的負(fù)面影響。由于熱應(yīng)激主要對(duì)牛卵母細(xì)胞[13]及早期胚胎造成損害[14-16],當(dāng)胚胎發(fā)育至8~16細(xì)胞期時(shí),胚胎基因組激活,此時(shí)一些熱應(yīng)激蛋白以及內(nèi)源性抗氧化酶基因開始轉(zhuǎn)錄,胚胎對(duì)高溫的耐受性增加[17-18]。當(dāng)胚胎發(fā)育至桑葚胚期時(shí),施加熱應(yīng)激會(huì)導(dǎo)致胚胎熱應(yīng)激蛋白相關(guān)基因(如:HSPB11、HSPA1A等)轉(zhuǎn)錄水平提高,以此緩解熱應(yīng)激損傷[18]。而體外胚胎移植通常是將囊胚期胚胎移植到母牛體內(nèi)[19],該階段胚胎對(duì)高溫已經(jīng)具備了一定的抵抗力,因此,通過(guò)在體外培養(yǎng)胚胎能有效避免高溫對(duì)卵母細(xì)胞及早期胚胎的損害,提高熱應(yīng)激條件下奶牛繁殖力。研究表明,當(dāng)熱應(yīng)激發(fā)生時(shí),體外胚胎移植奶牛受孕率(42.1%)顯著高于人工授精奶牛(18.3%)[20]。
然而,盡管胚胎基因組激活后胚胎能獲得一定程度的耐熱性,但并無(wú)法完全抵抗熱應(yīng)激的負(fù)面影響。據(jù)統(tǒng)計(jì),當(dāng)THI=72時(shí),奶牛胚胎移植妊娠率可達(dá)78.78%,而當(dāng)THI升高至78時(shí),胚胎移植妊娠率則顯著降低至36.63%[21]。Kuroki等[22]的研究表明,對(duì)牛8細(xì)胞期胚胎施加熱應(yīng)激,胚胎ΔΨm顯著降低,胚胎發(fā)育至囊胚的能力顯著下降。Mori等[23]指出,冷凍牛囊胚遭受熱應(yīng)激后擴(kuò)張率顯著降低,IFN tau基因表達(dá)降低,這表明熱應(yīng)激損害冷凍囊胚發(fā)育能力,并可能影響后期的妊娠效果。在小鼠上,Cheng等[24]發(fā)現(xiàn)短時(shí)間(1h)的熱應(yīng)激抑制囊胚Oct4和Nanog蛋白表達(dá),他們認(rèn)為熱應(yīng)激通過(guò)破壞胚胎多能性,進(jìn)而損害哺乳動(dòng)物胚胎發(fā)育,甚至導(dǎo)致其死亡。
據(jù)報(bào)道,在體外胚胎生產(chǎn)過(guò)程中添加胰島素樣生長(zhǎng)因子1(insulin-like growth factors1,IGF1)能夠緩解熱應(yīng)激對(duì)胚胎的損傷,提高夏季胚胎移植妊娠率[25]。前人研究表明,IGF1能夠激活PI3K/Akt[26]及MAPK信號(hào)通路[27],降低熱應(yīng)激胚胎細(xì)胞凋亡水平并恢復(fù)熱應(yīng)激胚胎囊胚細(xì)胞數(shù)[26,28]。此外,輔酶Q10(coenzyme Q10,CoQ10)具有提高線粒體質(zhì)量、抗氧化的作用,能有效提高牛[29]、豬[30]、小鼠[31]等多個(gè)物種卵母細(xì)胞的發(fā)育能力。Gendelman和Roth[7]發(fā)現(xiàn)CoQ10有效恢復(fù)了秋季牛卵母細(xì)胞線粒體質(zhì)量,表明CoQ10一定程度上緩解了熱應(yīng)激對(duì)牛卵母細(xì)胞的損傷。還有研究使用褪黑素(melatonin,MT)清除ROS,進(jìn)而減小熱應(yīng)激對(duì)牛卵母細(xì)胞的負(fù)面影響[32]。Cebrian-Serrano等[33]的研究指出,10-4mol·L-1MT能提高熱應(yīng)激牛卵母細(xì)胞發(fā)育至囊胚的能力。然而,單獨(dú)添加IGF1[34]、CoQ10[7]或MT[35]還不足以完全抵消熱應(yīng)激的負(fù)面影響,熱應(yīng)激對(duì)奶牛體外胚胎生產(chǎn)及繁殖的威脅依然存在。
因此,本試驗(yàn)通過(guò)在卵母細(xì)胞體外成熟(in vitro maturation,IVM)液及胚胎體外培養(yǎng)(in vitro culture,IVC)液中聯(lián)合添加IGF1、CoQ10及MT,檢測(cè)牛卵母細(xì)胞成熟率、卵裂率、囊胚率及牛卵母細(xì)胞ROS水平、ΔΨm,并在囊胚期施加熱應(yīng)激后檢測(cè)囊胚擴(kuò)張率、囊胚細(xì)胞凋亡水平及胚胎發(fā)育相關(guān)基因轉(zhuǎn)錄水平,以探究聯(lián)合添加IGF1、CoQ10及MT對(duì)體外生產(chǎn)奶牛胚胎發(fā)育能力以及對(duì)熱應(yīng)激抵抗力的影響,以期為進(jìn)一步提高熱應(yīng)激條件下體外生產(chǎn)奶牛胚胎質(zhì)量奠定一定理論基礎(chǔ)。
1 材料與方法
1.1 試驗(yàn)分組
本試驗(yàn)分別設(shè)置空白組(CT-0)、添加物質(zhì)處理組(CT-I、IC、IM、ICM)、熱應(yīng)激組(HS)和熱應(yīng)激處理組(ICM+HS),其中添加物質(zhì)IGF1[36]為100ng·mL-1,CoQ10[7]為50μmol·L-1,MT[32]為1μmol·L-1。本試驗(yàn)根據(jù)培養(yǎng)階段進(jìn)行的分組見表1所示。
1.2 主要試劑
除特別說(shuō)明外,本試驗(yàn)所用試劑均采購(gòu)自Sigma公司。TCM-199和胎牛血清(foetal bovine serum,F(xiàn)BS)購(gòu)自Gibco公司。CoQ10和TUNEL細(xì)胞凋亡試劑盒購(gòu)自北京索萊寶科技有限公司。JC-1ΔΨm檢測(cè)試劑盒和ROS檢測(cè)試劑盒購(gòu)自上海碧云天生物技術(shù)有限公司。
1.3 試驗(yàn)方法
1.3.1 卵母細(xì)胞采集與IVM
本試驗(yàn)卵母細(xì)胞均來(lái)源于屠宰場(chǎng)卵巢。將卵巢放置于含有青霉素及鏈霉素的37 ℃生理鹽水中,于2h內(nèi)送至實(shí)驗(yàn)室。選擇直徑2~8mm大小的卵泡抽取卵丘卵母細(xì)胞復(fù)合體(cumulus-oocyte complexes,COCs),選擇含3層及以上卵丘細(xì)胞的COCs進(jìn)行后續(xù)試驗(yàn)。將COCs置入含IVM液的4孔板中,IVM液含TCM-199、10%FBS、1μg·mL-1雌二醇、10μg·mL-1促卵泡激素、50μg·mL-1表皮生長(zhǎng)因子、10μg·mL-1促黃體生成素、10μg·mL-1肝素及0.4mg·mL-1青霉素和鏈霉素。設(shè)置培養(yǎng)條件為38.5 ℃,5%CO2,成熟22~24h,統(tǒng)計(jì)各組卵母細(xì)胞成熟率。本試驗(yàn)采集卵巢共152對(duì)。
1.3.2 體外受精
以Brackett和Oliphant[37]的方法稍作修改后進(jìn)行體外受精。38 ℃水浴解凍凍精,在洗精液中混勻清洗,1800r·min-1離心5min,重復(fù)兩次。用受精液重懸精子,使精子密度為5×106個(gè)·mL-1。將混勻的精子(20μL)加入受精液(80μL)中,制成受精滴,在培養(yǎng)箱中平衡1.5h。篩選卵丘擴(kuò)散良好的成熟卵母細(xì)胞,使用1mg·mL-1透明質(zhì)酸酶進(jìn)行消化,并吹打至僅剩1~2層顆粒細(xì)胞。將卵母細(xì)胞放入受精滴,在38.5 ℃,5%CO2條件下培養(yǎng)16~18h。受精結(jié)束后,將受精卵放入胚胎前期培養(yǎng)液(CR1aa培養(yǎng)液)中培養(yǎng)48h,統(tǒng)計(jì)各組卵裂率,再放入胚胎后期培養(yǎng)液(含10%FBS CR1aa培養(yǎng)液)中,每隔48h半量換液。受精后第7天統(tǒng)計(jì)囊胚率(受精當(dāng)天認(rèn)定為第0天)。
1.3.3 ROS檢測(cè)
將成熟22~24h后的COCs放入1mg·mL-1透明質(zhì)酸酶中,充分吹打,脫去顆粒細(xì)胞。根據(jù)活性氧檢測(cè)試劑盒(S0033S,碧云天)說(shuō)明書檢測(cè)各組卵母細(xì)胞中ROS水平。首先,將卵母細(xì)胞放入0.1%PVA-PBS溶液中清洗,再放入10mmol·L-1DCFH-DA染色液中,37 ℃條件下避光染色20min。隨后,再次將卵母細(xì)胞放入0.1%PVA-PBS溶液中充分清洗,用倒置熒光顯微鏡(Nikon,日本)進(jìn)行拍攝。利用Image J軟件,選取各卵母細(xì)胞并分析其熒光強(qiáng)度,統(tǒng)計(jì)所采集熒光圖像的熒光值。
1.3.4 線粒體膜電位檢測(cè)
將成熟22~24h后的COCs放入1mg·mL-1透明質(zhì)酸酶中,充分吹打,脫去顆粒細(xì)胞。根據(jù)說(shuō)明書檢測(cè)各組卵母細(xì)胞中ΔΨm水平。首先,將卵母細(xì)胞放入0.1%PVA-PBS溶液中清洗,再放入JC-1染色液中,37 ℃條件下避光染色20min。隨后,再次將卵母細(xì)胞放入0.1%PVA-PBS溶液中充分清洗,用激光共聚焦顯微鏡(Leica,德國(guó))進(jìn)行拍攝。利用Image J軟件,選取各卵母細(xì)胞并分析其熒光強(qiáng)度,統(tǒng)計(jì)所采集熒光圖像的熒光值,紅色熒光與綠色熒光強(qiáng)度比值即為ΔΨm。
1.3.5 熱應(yīng)激處理及囊胚擴(kuò)張率統(tǒng)計(jì)
取出受精后第7天囊胚,CT-I組囊胚設(shè)置培養(yǎng)條件為38.5 ℃,5%CO2,培養(yǎng)24h;根據(jù)Rivera和Hansen[38]的方法,HS組囊胚和ICM+HS組囊胚設(shè)置培養(yǎng)條件為41 ℃,5%CO2,培養(yǎng)12h,后更改培養(yǎng)條件為38.5 ℃,5%CO2,繼續(xù)培養(yǎng)12h。隨后,統(tǒng)計(jì)囊胚擴(kuò)張率。
1.3.6 TUNEL細(xì)胞凋亡檢測(cè)
利用TUNEL細(xì)胞凋亡試劑盒(T2196,索萊寶)檢測(cè)囊胚細(xì)胞凋亡水平。根據(jù)制造商說(shuō)明書,將囊胚放入0.1%PVA-PBS溶液中充分清洗,然后將囊胚放入4%多聚甲醛中,4 ℃固定30min,再用0.2%Triton X-100室溫通透囊胚20min。隨后,將TdT酶與TUNEL Reaction Buffer充分混勻,制成TUNEL反應(yīng)液。將囊胚放入TUNEL反應(yīng)液中37 ℃避光孵育1h,然后用0.1%Triton X-100清洗囊胚,再將囊胚放入5μg·mL-1的DAPI染液,室溫避光孵育5min。染色完成后,囊胚壓片,用激光共聚焦顯微鏡(Leica,德國(guó))進(jìn)行拍攝。
1.3.7 實(shí)時(shí)熒光定量PCR
利用Cells-to-cDNAⅡKit(Invitrogen,美國(guó))試劑盒合成cDNA,用PowerUpTM SYBRTM Green Master Mix試劑盒檢測(cè)基因表達(dá)水平。參照NCBI中牛基因序列,利用引物設(shè)計(jì)軟件(https:∥bioinfo.ut.ee/primer3-0.4.0/)完成引物設(shè)計(jì),引物信息見表2所示。實(shí)時(shí)熒光定量PCR(real-time quantitative PCR)體系如下:PowerUpTM SYBRTM Green Master Mix(2×)7.5μL、引物0.6μL、cDNA1μL,并用ddH2O補(bǔ)至15μL。利用實(shí)時(shí)熒光定量PCR儀(Applied Biosystems,美國(guó))進(jìn)行檢測(cè),反應(yīng)條件:95℃預(yù)變性2min;95℃10s,60℃30s40個(gè)循環(huán)。以β-actin作為內(nèi)參基因,以2-ΔΔCt法計(jì)算基因相對(duì)表達(dá)水平。
1.4 統(tǒng)計(jì)分析
各試驗(yàn)至少重復(fù)3次。數(shù)據(jù)采用SPSS27.0軟件進(jìn)行單因素方差分析,并使用Duncan′s檢驗(yàn)法進(jìn)行顯著性分析,數(shù)據(jù)以“平均數(shù)±標(biāo)準(zhǔn)差”表示,P<0.05表示差異顯著。
2 結(jié) 果
2.1 IGF1、CoQ10、MT聯(lián)合添加對(duì)牛卵母細(xì)胞及胚胎發(fā)育能力的影響
各組牛卵母細(xì)胞發(fā)育能力結(jié)果如表3所示。ICM組牛卵母細(xì)胞成熟率((90.40±2.06)%)、卵裂率((93.33±1.96)%)顯著高于其他組(P<0.05),ICM組囊胚率((51.43±5.34)%)顯著高于CT-0組((26.92±3.24)%,P<0.05)和CT-I組((37.50±2.50)%,P<0.05)。該結(jié)果說(shuō)明聯(lián)合添加IGF1、CoQ10和MT能夠顯著提高牛卵母細(xì)胞及胚胎的發(fā)育能力。
2.2 IGF1、CoQ10、MT聯(lián)合添加對(duì)卵母細(xì)胞ROS水平的影響
各組牛卵母細(xì)胞DCFH-DA染色代表圖見圖像如圖1A所示。如圖1B所示,ICM組牛卵母細(xì)胞DCFH-DA熒光強(qiáng)度顯著低于CT-0和CT-I組(P<0.05),IC組和IM組牛卵母細(xì)胞DCFH-DA熒光強(qiáng)度顯著低于CT-0組(P<0.05),說(shuō)明IVM期間聯(lián)合添加IGF1、CoQ10和MT能夠顯著降低牛卵母細(xì)胞ROS水平。
2.3 IGF1、CoQ10、MT聯(lián)合添加對(duì)卵母細(xì)胞ΔΨm的影響
各組牛卵母細(xì)胞JC-1染色代表圖像如見圖2A所示。如圖2B所示,ICM組牛卵母細(xì)胞ΔΨm顯著高于其他組(P<0.05),說(shuō)明IVM期間聯(lián)合添加IGF1、CoQ10和MT能夠顯著提高牛卵母細(xì)胞ΔΨm。
2.4 IGF1、CoQ10、MT聯(lián)合添加及熱應(yīng)激對(duì)胚胎發(fā)育能力的影響
各組牛卵母細(xì)胞、胚胎發(fā)育能力及囊胚熱應(yīng)激后擴(kuò)張率如表4所示。ICM+HS組卵裂率((93.45±3.50)%)和囊胚率((49.68±2.04)%)顯著高于CT-I組((75.37±6.29)%,(31.69±0.48)%,P<0.05)和HS組((75.63±2.95)%,(32.22±1.92)%,P<0.05)。熱應(yīng)激后,ICM+HS組囊胚擴(kuò)張率((62.00±2.97)%)顯著高于HS組((30.77±8.66)%,(P<0.05)),但顯著低于CT-I組((82.76±3.91)%,(P<0.05))。由此可見,熱應(yīng)激損傷牛IVF囊胚發(fā)育能力,而聯(lián)合添加IGF1、CoQ10、MT一定程度上緩解了熱應(yīng)激損傷。
2.5 IGF1、CoQ10、MT聯(lián)合添加及熱應(yīng)激對(duì)牛囊胚細(xì)胞凋亡水平的影響
各組牛囊胚TUNEL染色代表圖見像如圖3A。如圖3B所示,ICM+HS組牛囊胚細(xì)胞凋亡率顯著低于HS組(P<0.05),且與CT-I組無(wú)顯著差異(P>0.05),說(shuō)明聯(lián)合添加IGF1、CoQ10和MT能夠抑制熱應(yīng)激造成的囊胚細(xì)胞凋亡。
2.6 IGF1、CoQ10、MT聯(lián)合添加及熱應(yīng)激對(duì)牛囊胚質(zhì)量相關(guān)基因表達(dá)的影響
各組牛囊胚質(zhì)量相關(guān)基因表達(dá)如圖4所示。與HS組相比,ICM+HS組IGFBP3、ATP1A1、DSC2、IFNT2基因表達(dá)水平顯著提高,但顯著低于CT-I組,說(shuō)明熱應(yīng)激影響胚胎質(zhì)量,而聯(lián)合添加IGF1、CoQ10、MT有助于提高熱應(yīng)激囊胚質(zhì)量。
3 討 論
熱應(yīng)激阻礙奶牛胚胎發(fā)育[21],嚴(yán)重?fù)p害奶牛繁殖效率[17],而大量研究指出IGF1[39]、CoQ10[7,40]及MT[41-42]具有提高奶牛卵母細(xì)胞及胚胎質(zhì)量的作用,一定程度上能夠緩解熱應(yīng)激對(duì)奶牛卵母細(xì)胞及胚胎的影響。因此,本研究推斷,在奶牛體外胚胎生產(chǎn)中聯(lián)合添加IGF1、CoQ10及MT能進(jìn)一步改善奶牛卵母細(xì)胞及胚胎質(zhì)量,進(jìn)而提高奶牛胚胎對(duì)熱應(yīng)激的抵抗力。
前人研究發(fā)現(xiàn),IGF1、CoQ10及MT對(duì)牛卵母細(xì)胞及胚胎發(fā)育具有改善作用。Sakaguchi等[43]指出,成熟促進(jìn)因子(maturation/M-phase promoting factor,MPF)及絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)均可調(diào)節(jié)牛卵母細(xì)胞減數(shù)分裂進(jìn)程,而IGF1能與表皮生長(zhǎng)因子協(xié)同促進(jìn)MPF及MAPK活性,進(jìn)而提高牛卵母細(xì)胞成熟率。此外,胚胎發(fā)育同樣受MAPK調(diào)節(jié),而IGF1通過(guò)激活MAPK信號(hào)通路進(jìn)而促進(jìn)了胚胎分裂,提高囊胚率[44]。Abdulhasan等[29]指出,CoQ10通過(guò)提高線粒體呼吸效率,促進(jìn)ATP產(chǎn)生,進(jìn)而幫助牛卵母細(xì)胞抵抗外界應(yīng)激,改善卵母細(xì)胞發(fā)育。Zhao等[45]指出,MT避免了ROS對(duì)牛卵母細(xì)胞微絲微管的破壞、改善細(xì)胞器分布,提高卵母細(xì)胞質(zhì)量。同時(shí),MT改善受精相關(guān)蛋白IP3R1分布,并促進(jìn)CD9及JUNO蛋白表達(dá),提高卵母細(xì)胞受精能力[45],并通過(guò)提高H3K9ac水平調(diào)節(jié)胚胎組蛋白乙酰化,誘導(dǎo)胚胎染色質(zhì)重塑,進(jìn)而改善胚胎質(zhì)量[46]。與前人研究結(jié)果一致,我們的本研究結(jié)果表明IGF1、IGF1和CoQ10、IGF1和MT均能促進(jìn)牛卵母細(xì)胞發(fā)育能力,顯著提高卵母細(xì)胞成熟率、受精后卵裂率及囊胚率,而聯(lián)合添加IGF1、CoQ10及MT效果最為顯著。
ROS是線粒體代謝的副產(chǎn)物,高濃度ROS會(huì)破壞DNA、脂質(zhì)、蛋白質(zhì)等,引發(fā)卵母細(xì)胞凋亡[47-48]。本研究結(jié)果顯示,IGF1對(duì)牛卵母細(xì)胞ROS水平?jīng)]有顯著影響,但I(xiàn)GF1與CoQ10或MT聯(lián)合使用能發(fā)揮顯著的抗氧化效果,且三者聯(lián)合添加時(shí)效果最為明顯,這一結(jié)果也對(duì)應(yīng)了聯(lián)合添加對(duì)牛卵母細(xì)胞發(fā)育能力的改善效果。我們認(rèn)為由此推測(cè),聯(lián)合添加對(duì)ROS的清除作用或許依賴于CoQ10和MT的抗氧化特性。CoQ10作為一種高效的抗氧化劑,能夠有效降低豬[30]、小鼠[31]等卵母細(xì)胞ROS水平,同時(shí),CoQ10能通過(guò)改善線粒體功能,促進(jìn)ATP生成,進(jìn)而緩解氧化應(yīng)激的負(fù)面影響,提高卵母細(xì)胞恢復(fù)穩(wěn)態(tài)的能力[29]。MT及其衍生物均具有高效的抗氧化作用,能夠直接清除卵母細(xì)胞中的ROS,且MT促進(jìn)抗氧化酶相關(guān)基因轉(zhuǎn)錄,并上調(diào)GSH水平,進(jìn)而發(fā)揮抗氧化效果[45,49]。
線粒體是細(xì)胞能量代謝的主要場(chǎng)所,對(duì)卵母細(xì)胞發(fā)育至關(guān)重要[50-51]。ΔΨm反映線粒體活性,是衡量卵母細(xì)胞質(zhì)量的重要指標(biāo)之一[52]。我們的本研究結(jié)果顯示,IGF1提高牛卵母細(xì)胞ΔΨm,而IGF1聯(lián)合添加CoQ10或MT后,ΔΨm進(jìn)一步提高,聯(lián)合添加IGF1、CoQ10及MT則發(fā)揮了最強(qiáng)的提升效果,這也反映了聯(lián)合添加能通過(guò)改善牛卵母細(xì)胞線粒體活性,進(jìn)而改善牛卵母細(xì)胞質(zhì)量。與前人研究結(jié)果相似,Giroto等[53]的研究指出IGF1通過(guò)調(diào)節(jié)線粒體功能相關(guān)基因表達(dá)調(diào)控胚胎質(zhì)量,此外IGF1還通過(guò)調(diào)控COX1表達(dá)間接影響卵母細(xì)胞代謝,進(jìn)而提高線粒體活性[54]。Heydarnejad等[55]認(rèn)為,線粒體活性與電子呼吸鏈效率相關(guān),而CoQ10作為線粒體電子呼吸鏈的載體,能有效促進(jìn)ATP合成,提高卵母細(xì)胞ΔΨm,改善線粒體功能[29]。Zhao等[56]的研究指出,MT通過(guò)維持鈣離子穩(wěn)態(tài),清除ROS,從而保護(hù)線粒體。MT及其代謝物還能維持線粒體呼吸鏈復(fù)合物Ⅰ、Ⅲ和Ⅳ的活性,抑制線粒體電子漏,進(jìn)而提高ΔΨm,改善線粒體質(zhì)量[57]。
前人研究指出,熱應(yīng)激損害奶牛胚胎發(fā)育[58],僅6h的熱應(yīng)激便會(huì)大大增加冷凍囊胚的凋亡率[23],而IGF1[28]、CoQ10[7,59]及MT[33]均有改善胚胎質(zhì)量,緩解熱應(yīng)激的作用。因此,本研究檢測(cè)了各組囊胚擴(kuò)張率、囊胚細(xì)胞凋亡水平以及囊胚發(fā)育相關(guān)基因表達(dá)水平。結(jié)果表明,熱應(yīng)激抑制牛囊胚擴(kuò)張,顯著增加囊胚細(xì)胞凋亡比例,影響囊胚質(zhì)量相關(guān)基因表達(dá),損害囊胚發(fā)育,而聯(lián)合添加IGF1、CoQ10及MT一定程度上抑制了熱應(yīng)激損傷。
研究表明,IGF1能通過(guò)PI3K信號(hào)通路抑制凋亡發(fā)生,并通過(guò)MAPK信號(hào)通路促進(jìn)囊胚的進(jìn)一步發(fā)育[27]。此外,胚胎發(fā)育依賴線粒體供能,而由于胚胎中線粒體數(shù)量恒定,隨著胚胎細(xì)胞數(shù)量增加,胚胎發(fā)育所需能量隨之升高,這要求線粒體供能的效率也必須隨之提升,而研究表明CoQ10能提高線粒體ATP合成效率,進(jìn)而提高牛囊胚ATP水平[59],這不僅有助于細(xì)胞應(yīng)對(duì)環(huán)境應(yīng)激[29],同時(shí)滿足了胚胎發(fā)育需求,進(jìn)而促進(jìn)囊胚擴(kuò)張[59]。Cebrian-Serrano等[33]報(bào)道了較高濃度MT(10-4mol·L-1)能挽救熱應(yīng)激對(duì)牛卵母細(xì)胞的損傷,促進(jìn)囊胚發(fā)育,而10-6mol·L-1MT則能顯著降低熱應(yīng)激引起的胚胎氧化應(yīng)激[60]。
IGFBP3是IGFBP蛋白中的一員,通過(guò)調(diào)節(jié)IGF1活性進(jìn)而促進(jìn)胚胎發(fā)育[36],我們的本研究結(jié)果表明IGF1、CoQ10及MT聯(lián)合添加提高了熱應(yīng)激囊胚IGFBP3的轉(zhuǎn)錄水平。此外,ATP1A1參與調(diào)節(jié)囊胚液積累及囊胚擴(kuò)張過(guò)程中細(xì)胞間的連接[61],纖凝蛋白Ⅱ(desmocollinⅡ,DSC2)參與橋粒形成,調(diào)控囊胚擴(kuò)張[62]。而IGF1、CoQ10和MT聯(lián)合添加提高了熱應(yīng)激條件下ATP1A1及DSC2表達(dá),這或許是囊胚擴(kuò)張率增加的原因之一。IFNT2是判斷囊胚質(zhì)量的重要標(biāo)準(zhǔn)之一,IFNT2的高表達(dá)有利于維持妊娠,并與囊胚的低溫耐受性相關(guān)[63-64]。我們的本研究結(jié)果發(fā)現(xiàn),熱應(yīng)激降低IFNT2表達(dá),而聯(lián)合添加緩解了這一情況。此外,聯(lián)合添加對(duì)胚胎質(zhì)量相關(guān)基因的改善,一定程度上也解釋了熱應(yīng)激囊胚擴(kuò)張率增加及凋亡率減少的現(xiàn)象。
4 結(jié) 論
本研究結(jié)果表明,在體外胚胎生產(chǎn)過(guò)程中聯(lián)合添加IGF1、CoQ10及MT能提高牛卵母細(xì)胞成熟率、卵裂率及囊胚率,降低ROS水平并提高ΔΨm。熱應(yīng)激導(dǎo)致體外生產(chǎn)牛囊胚擴(kuò)張率下降,細(xì)胞凋亡率升高,囊胚IGFBP3、ATP1A1、DSC2及IFNT2轉(zhuǎn)錄水平降低,而聯(lián)合添加IGF1、CoQ10及MT改善了這一情況。本研究結(jié)果為改善熱應(yīng)激條件下體外生產(chǎn)奶牛胚胎質(zhì)量奠定一定理論基礎(chǔ)。
參考文獻(xiàn)(References):
[1]DASH S,CHAKRAVARTY AK,SINGH A,et al.Effect of heat stress on reproductive performances of dairy cattle and buffaloes:a review[J].Vet World,2016,9(3):235-244.
[2]KASIMANICKAM R,KASIMANICKAM V.Impact of heat stress on embryonic development during first16days of gestation in dairy cows[J].Sci Rep,2021,11(1):14839.
[3]MISHRA SR.Behavioural,physiological,neuro-endocrine and molecular responses of cattle against heat stress:an updated review[J].Trop Anim Health Prod,2021,53(3):400.
[4]THORNTON P,NELSON G,MAYBERRY D,et al.Impacts of heat stress on global cattle production during the21st century:a modelling study[J].Lancet Planet Health,2022,6(3):e192-e201.
[5]WANKAR AK,RINDHE SN,DOIJAD NS.Heat stress in dairy animals and current milk production trends,economics,and future perspectives:the global scenario[J].Trop Anim Health Prod,2021,53(1):70.
[6]ROTH Z,WOLFENSON D.Comparing the effects of heat stress and mastitis on ovarian function in lactating cows:basic and applied aspects[J].Domest Anim Endocrinol,2016,56:S218-S227.
[7]GENDELMAN M,ROTH Z.Incorporation of coenzyme q10into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence[J].Biol Reprod,2012,87(5):118.
[8]ROTH Z.Effect of heat stress on reproduction in dairy cows:insights into the cellular and molecular responses of the oocyte[J].Annu Rev Anim Biosci,2017,5:151-170.
[9]BáEZ F,LóPEZ DARRIULAT R,RODRíGUEZ-OSORIO N,et al.Effect of season on germinal vesicle stage,quality,and subsequent in vitro developmental competence in bovine cumulus-oocyte complexes[J].J Therm Biol,2022,103:103171.
[10]CAMARGO LS A,AGUIRRE-LAVIN T,ADENOT P,et al.Heat shock during in vitro maturation induces chromatin modifications in the bovine embryo[J].Reproduction,2019,158(4):313-322.
[11]RIVERA RM,KELLEY KL,ERDOS GW,et al.Reorganization of microfilaments and microtubules by thermal stress in two-cell bovine embryos[J].Biol Reprod,2004,70(6):1852-1862.
[12]RIVERA RM,KELLEY KL,ERDOS GW,et al.Alterations in ultrastructural morphology of two-cell bovine embryos produced in vitro and in vivo following aphysiologically relevant heat shock[J].Biol Reprod,2003,69(6):2068-2077.
[13]STAMPERNA K,DOVOLOU E,GIANNOULIS T,et al.Developmental competence of heat stressed oocytes from Holstein and Limousine cows matured in vitro[J].Reprod Domest Anim,2021,56(10):1302-1314.
[14]NANAS I,CHOUZOURIS TM,DOVOLOU E,et al.Early embryo losses,progesterone and pregnancy associated glycoproteins levels during summer heat stress in dairy cows[J].J Therm Biol,2021,98:102951.
[15]STAMPERNA K,GIANNOULIS T,DOVOLOU E,et al.The effects of heat shock protein70addition in the culture medium on the development and quality of in vitro produced heat shocked bovine embryos[J].Animals,2021,11(12):3347.
[16]MITKIEWSKA K,KORDOWITZKI P,PAREEK CS.Effects of heat stress on bovine oocytes and early embryonic development-an update[J].Cells,2022,11(24):4073.
[17]LEPOCK JR.How do cells respond to their thermal environment?[J].Int JHyperthermia,2005,21(8):681-687.
[18]SAKATANI M,BONILLA L,DOBBS KB,et al.Changes in the transcriptome of morula-stage bovine embryos caused by heat shock:relationship to developmental acquisition of thermotolerance[J].Reprod Biol Endocrinol,2013,11:3.
[19]HANSEN PJ.The incompletely fulfilled promise of embryo transfer in cattle-why aren′t pregnancy rates greater and what can we do about it?[J].J Anim Sci,2020,98(11):skaa288.
[20]STEWART BM,BLOCK J,MORELLI P,et al.Efficacy of embryo transfer in lactating dairy cows during summer using fresh or vitrified embryos produced in vitro with sex-sorted semen[J].J Dairy Sci,2011,94(7):3437-3445.
[21]ABDEL AZIZ RL,HUSSEIN MM,MOHAMED MA A,et al.Heat stress during critical windows of the oestrous cycle and risk of pregnancy establishment in embryo-recipient dairy heifers[J].Reprod Domest Anim,2022,57(8):856-863.
[22]KUROKI T,IKEDA S,OKADA T,et al.Astaxanthin ameliorates heat stress-induced impairment of blastocyst development in vitro:-astaxanthin colocalization with and action on mitochondria-[J].J Assist Reprod Genet,2013,30(5):623-631.
[23]MORI M,HAYASHI T,ISOZAKI Y,et al.Heat shock decreases the embryonic quality of frozen-thawed bovine blastocysts produced in vitro[J].J Reprod Dev,2015,61(5):423-429.
[24]CHENG MB,WANG X,HUANG Y,et al.Hyperthermia depletes Oct4in mouse blastocysts and stem cells[J].Stem Cell Res Ther,2020,11(1):195.
[25]BLOCK J,HANSEN PJ.Interaction between season and culture with insulin-like growth factor-1on survival of in vitro produced embryos following transfer to lactating dairy cows[J].Theriogenology,2007,67(9):1518-1529.
[26]JOUSAN FD,OLIVEIRA LJ,HANSEN PJ.Short-Term culture of in vitro produced bovine preimplantation embryos with insulin-like growth factor-I prevents heat shock-induced apoptosis through activation of the Phosphatidylinositol3-Kinase/Akt pathway[J].Mol Reprod Dev,2008,75(4):681-688.
[27]JOUSAN FD,HANSEN PJ.Insulin-like growth factor-I promotes resistance of bovine preimplantation embryos to heat shock through actions independent of its anti-apoptotic actions requiring PI3K signaling[J].Mol Reprod Dev,2007,74(2):189-196.
[28]JOUSAN FD,HANSEN PJ.Insulin-like growth factor-I as asurvival factor for the bovine preimplantation embryo exposed to heat shock[J].Biol Reprod,2004,71(5):1665-1670.
[29]ABDULHASAN MK,LI Q,DAI J,et al.CoQ10increases mitochondrial mass and polarization,ATP and Oct4potency levels,and bovine oocyte MII during IVM while decreasing AMPK activity and oocyte death[J].J Assist Reprod Genet,2017,34(12):1595-1607.
[30]YANG CX,LIU S,MIAO JK,et al.CoQ10improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress[J].Theriogenology,2021,159:77-86.
[31]LEE CH,KANG MK,SOHN DH,et al.Coenzyme Q10ameliorates the quality of mouse oocytes during in vitro culture[J].Zygote,2022,30(2):249-257.
[32]DE CASTRO CAVALLARI F,LEAL CL V,ZVI R,et al.Effects of melatonin on production of reactive oxygen species and developmental competence of bovine oocytes exposed to heat shock and oxidative stress during in vitro maturation[J].Zygote,2019,27(3):180-186.
[33]CEBRIAN-SERRANO A,SALVADOR I,RAGA E,et al.Beneficial effect of melatonin on blastocyst in vitro production from heat-stressed bovine oocytes[J].Reprod Domest Anim,2013,48(5):738-746.
[34]BONILLA AQ S,OLIVEIRA LJ,OZAWA M,et al.Developmental changes in thermoprotective actions of insulin-like growth factor-1on the preimplantation bovine embryo[J].Mol Cell Endocrinol,2011,332(1/2):170-179.
[35]YAACOBI-ARTZI S,SHIMONI C,KALO D,et al.Melatonin slightly alleviates the effect of heat shock on bovine oocytes and resulting blastocysts[J].Theriogenology,2020,158:477-489.
[36]BLOCK J,WRENZYCKI C,NIEMANN H,et al.Effects of insulin-like growth factor-1on cellular and molecular characteristics of bovine blastocysts produced in vitro[J].Mol Reprod Dev,2008,75(5):895-903.
[37]BRACKETT BG,OLIPHANT G.Capacitation of rabbit spermatozoa in vitro[J].Biol Reprod,1975,12(2):260-274.
[38]RIVERA RM,HANSEN PJ.Development of cultured bovine embryos after exposure to high temperatures in the physiological range[J].Reproduction,2001,121(1):107-115.
[39]YANG S,YANG YZ,HAO HS,et al.Supplementation of EGF,IGF-1,and Connexin37in IVM medium significantly improved the maturation of bovine oocytes and vitrification of their IVF blastocysts[J].Genes(Basel),2022,13(5):805.
[40]MADDAHI A,SABERIVAND A,HAMALI H,et al.Exploring the impact of heat stress on oocyte maturation and embryo development in dairy cattle using aculture medium supplemented with vitamins E,C,and coenzyme Q10[J].J Therm Biol,2024,119:103759.
[41]GUTIéRREZ-A?EZ JC,HENNING H,LUCAS-HAHN A,et al.Melatonin improves rate of monospermic fertilization and early embryo development in abovine IVF system[J].PLoS One,2021,16(9):e0256701.
[42]EL-SHEIKH M,MESALAM AA,SONG SH,et al.Melatonin alleviates the toxicity of high nicotinamide concentrations in oocytes:potential interaction with nicotinamide methylation signaling[J].Oxid Med Cell Longev,2021,2021:5573357.
[43]SAKAGUCHI M,DOMINKO T,YAMAUCHI N,et al.Possible mechanism for acceleration of meiotic progression of bovine follicular oocytes by growth factors in vitro[J].Reproduction,2002,123(1):135-142.
[44]BONILLA AQ S,OZAWA M,HANSEN PJ.Timing and dependence upon mitogen-activated protein kinase signaling for pro-developmental actions of insulin-like growth factor1on the preimplantation bovine embryo[J].Growth Horm IGF Res,2011,21(2):107-111.
[45]ZHAO XM,WANG N,HAO HS,et al.Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events[J].J Pineal Res,2018,64(1):e12445.
[46]SU JM,WANG YS,XING XP,et al.Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos[J].J Pineal Res,2015,59(4):455-468.
[47]RODRíGUEZ-NUEVO A,TORRES-SANCHEZ A,DURAN JM,et al.Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I[J].Nature,2022,607(7920):756-761.
[48]VAN DER REEST J,NARDINI CECCHINO G,HAIGIS MC,et al.Mitochondria:their relevance during oocyte ageing[J].Ageing Res Rev,2021,70:101378.
[49]YANG MH,TAO JL,CHAI ML,et al.Melatonin improves the quality of inferior bovine oocytes and promoted their subsequent IVF embryo development:mechanisms and results[J].Molecules,2017,22(12):2059.
[50]KIRILLOVA A,SMITZ JE J,SUKHIKH GT,et al.The role of mitochondria in oocyte maturation[J].Cells,2021,10(9):2484.
[51]ADHIKARI D,LEE IW,YUEN WS,et al.Oocyte mitochondria-key regulators of oocyte function and potential therapeutic targets for improving fertility[J].Biol Reprod,2022,106(2):366-377.
[52]AL-ZUBAIDI U,LIU J,CINAR O,et al.The spatio-temporal dynamics of mitochondrial membrane potential during oocyte maturation[J].Mol Hum Reprod,2019,25(11):695-705.
[53]GIROTO AB,F(xiàn)ONTES PK,F(xiàn)RANCHI FF,et al.Use of pregnancy-associated plasma protein-A during oocyte in vitro maturation increases IGF-1and affects the transcriptional profile of cumulus cells and embryos from Nelore cows[J].Mol Reprod Dev,2019,86(11):1694-1704.
[54]ASCARI IJ,ALVES NG,JASMIN J,et al.Addition of insulin-like growth factor Ito the maturation medium of bovine oocytes subjected to heat shock:effects on the production of reactive oxygen species,mitochondrial activity and oocyte competence[J].Domest Anim Endocrin,2017,60:50-60.
[55]HEYDARNEJAD A,OSTADHOSSEINI S,VARNOSFADERANI SR,et al.Supplementation of maturation medium with CoQ10enhances developmental competence of ovine oocytes through improvement of mitochondrial function[J].Mol Reprod Dev,2019,86(7):812-824.
[56]ZHAO XM,HAO HS,DU WH,et al.Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes[J].J Pineal Res,2016,60(2):132-141.
[57]PANG YW,ZHAO SJ,SUN YQ,et al.Protective effects of melatonin on the in vitro developmental competence of bovine oocytes[J].Anim Sci J,2018,89(4):648-660.
[58]RYAN DP,BLAKEWOOD EG,LYNN JW,et al.Effect of heat-stress on bovine embryo development in vitro[J].J Anim Sci,1992,70(11):3490-3497.
[59]STOJKOVIC M,WESTESEN K,ZAKHARTCHENKO V,et al.Coenzyme Q10in submicron-sized dispersion improves development,hatching,cell proliferation,and adenosine triphosphate content of in vitro-produced bovine embryos[J].Biol Reprod,1999,61(2):541-547.
[60]ORTEGA MS,ROCHA-FRIGONI NA S,MINGOTI GZ,et al.Modification of embryonic resistance to heat shock in cattle by melatonin and genetic variation in HSPA1L[J].J Dairy Sci,2016,99(11):9152-9164.
[61]WATSON AJ,NATALE DR,BARCROFT LC.Molecular regulation of blastocyst formation[J].Anim Reprod Sci,2004,82-83:583-592.
[62]COLLINS JE,LORIMER JE,GARROD DR,et al.Regulation of desmocollin transcription in mouse preimplantation embryos[J].Development,1995,121(3):743-753.
[63]RIZOS D,GUTIéRREZ-ADáN A,PéREZ-GARNELO S,et al.Bovine embryo culture in the presence or absence of serum:implications for blastocyst development,cryotolerance,and messenger RNA expression[J].Biol Reprod,2003,68(1):236-243.
[64]KHATUN H,EGASHIRA J,SAKATANI M,et al.Sericin enhances the developmental competence of heat-stressed bovine embryos[J].Mol Reprod Dev,2018,85(8-9):696-708.
(編輯 郭云雁)