











A study on the preparation and performance of polyaniline composite conductivefabric-enhanced hydrogel sensors
摘要:
織物基柔性傳感器因其柔軟輕薄、靈敏度高,在可穿戴電子材料領域受到廣泛關注。文章以滌氨綸混紡織物為基底材料,采用原位聚合法制備了聚苯胺(PANI)復合導電織物,再將聚乙烯醇(PVA)和殼聚糖(CS)共混制備的水凝膠涂覆于其表面,得到PANI復合導電織物增強的水凝膠傳感器(PAC傳感織物),并對其進行了表征和性能測試。結果表明,13%-PAC傳感織物具有優異的導電性、耐低溫性、抗疲勞性和抗菌性,當應變為210.8%時,其斷裂強度達到8.2 MPa,靈敏度(GF)為0.461,對人體面部微表情、膝部和肘部的活動有較好的響應能力,有望應用于人體健康監測和柔性可穿戴傳感器等領域。
關鍵詞:
柔性可穿戴傳感器;原位聚合法;PANI復合導電織物;水凝膠;人體運動監測
中圖分類號:
TS106.5
文獻標志碼:
A
文章編號: 10017003(2024)10期數0069起始頁碼10篇頁數
DOI: 10.3969/j.issn.1001-7003.2024.10期數.008(篇序)
收稿日期:
20230404;
修回日期:
20240918
基金項目:
財政部和農業農村部“國家現代農業產業技術體系”項目(CARS-18)
作者簡介:
夏娟(1996),女,碩士研究生,研究方向為智能紡織品。通信作者:李楠,講師,linan@zstu.edu.cn。
可穿戴傳感器能將外部各種刺激(如壓力、溫度和濕度等)以電信號形式輸出[1-3],在健康監測、疾病診斷和人工智能等領域受到人們的廣泛關注[4-6]。將導電聚合物引入織物中,便可得到具有人體運動監測功能的導電織物傳感器[7-9]。與傳統剛性傳感器相比,此類傳感器柔軟輕薄、延展性好,靈敏度高且能夠貼合人體運動,使得檢測更為精確方便[10-11]。常見的導電聚合物有聚吡咯(Polypyrrole,Ppy)、聚苯胺(Polyaniline,PANI)和聚(3,4-乙撐二氧噻吩)(Poly(3,4-ethylenedioxythiophene),PEDOT),其中PANI具有穩定性好、合成工藝簡單、電導率高等優點,在導電織物基柔性傳感器領域中被廣泛應用[12-13]。如Yu等[14]采用原位聚合法制備了PANI/CTS/Wool復合導電織物,電導率達到11 S/cm。Ma等[15]采用原位聚合法制備了PANI和納米銀涂層織物柔性傳感器,該傳感器靈敏度為0.04~0.10 kPa-1,在最大應變19.0%下斷裂強度達到25.0 MPa,可用于人體運動監測。
用于可穿戴傳感器的先進功能材料中,水凝膠因具備優異的柔韌性和可拉伸性被廣泛使用[16]。但大多數水凝膠無法同時滿足高機械強度和高導電性,這在一定程度上限制了其應用[17],而將水凝膠與導電織物相結合制備的柔性導電織物基傳感器,可有效增強水凝膠的力學性能和靈敏度,為解決這一問題提供了新的思路[18-20]。
本文以高強度、高彈性回復能力的滌氨綸混紡織物(含92%滌綸、8%氨綸)為基底材料,采用原位聚合法制備了PANI復合導電織物,在其表面涂覆聚乙烯醇(Polyvinyl alcohol,PVA)和殼聚糖(Chitosan,CS)共混制備多功能水凝膠(PAC水凝膠),得到PANI導電織物基水凝膠。并在其兩端連接含有導線的電極制備柔性傳感器(PAC傳感織物),進一步測試了PAC傳感織物的力學性能、抗凍性、保水性、傳感性能和抗菌性能,驗證了織物基柔性可穿戴傳感器在人體運動監測領域中的潛力。
1 實 驗
1.1 材料與儀器
材料:殼聚糖(CS,≥97%)、苯胺(ANI,≥99.5%)、氯化鈣(CaCl2,AR)、聚乙烯醇-1799(PVA,AR)、鹽酸(HCl,AR)和過硫酸銨(APS,AR)(上海阿拉丁生化科技有限公司)。大腸桿菌(E.coli,ATCC 8739,BR)和金黃色葡萄球菌(S.aureus,ATCC 6538,BR)(上海魯微科技有限公司)。乙二醇(EG,AR)(上海麥克林生化科技股份有限公司)。滌氨綸混紡機織物(92%滌綸和8%氨綸,平方米質量95 g/m2)(紹興佰秀針紡織品有限公司)。
儀器:Gemini 500熱場發射掃描電子顯微鏡(德國Zeiss公司),Instron 3367萬能試驗機(美國Instron公司),Keithley 2400數字源表(美國Keithley公司),KH-01步進控制器(中國安卡科技有限公司),DSC 3+差示掃描量熱儀(瑞士Mettler公司),恒溫磁力攪拌器(德國IKA公司),凈化工作臺、恒溫振蕩培養箱(上海博迅實業有限公司),高壓滅菌鍋(施都凱儀器設備有限公司)。
1.2 織物上的PANI原位聚合
所需滌氨綸混紡織物樣品經去離子水(DI)水超聲清洗后,經60 ℃烘干得到預處理織物,將其浸沒在25 mL含有0.25 mL苯胺單體的HCl(1 mol/L)溶液中后超聲15 min,以保證ANI單體被織物充分吸收。然后緩慢加入一定量的APS進行攪拌,當溶液顏色由無色變成墨綠色,以500 r/min的速度在0~5 ℃冰水浴中持續攪拌4~5 h,經DI水洗滌,晾干后得到PANI復合導電織物。
1.3 水凝膠的制備
以PVA水凝膠為柔性網絡,采用簡便的一鍋法制備水凝膠。在25 mL DI中加入2 g CS攪拌,每10 min加入0.25 mL HCl(6 mol/L),共加入0.5 mL后繼續攪拌至CS完全溶解得到CS溶液。接著稱取一定量PVA和CaCl2溶解在由EG、DI和CS溶液組成的溶液中,95 ℃下恒溫攪拌2 h后,靜置30 min消除氣泡,得到的水凝膠稱為PAC水凝膠。通過控制CaCl2、EG、H2O和CS的質量及PVA的質量分數制備得到不同的PAC水凝膠,具體組成及命名如表1所示。
1.4 織物基柔性壓力傳感器(PAC傳感織物)的制備
用玻璃載片將PAC水凝膠均勻刮涂在PANI復合導電織物上得到PAC導電織物基水凝膠。將兩個接有導線的電極分別連接到尺寸為10 mm×30 mm的導電織物基水凝膠條的末端組裝PAC傳感織物。
1.5 測試與表征
1.5.1 形貌表征
將PAC導電織物基水凝膠剪成合適大小,用導電膠貼在載物臺上,在10 kV加速電壓下于場發射掃描電子顯微鏡上觀察試樣的表面形貌;同時,在150倍放大倍數下檢測PAC導電織物基水凝膠的表面元素,得到X射線能譜(EDS)圖。樣品在測試前均需要進行冷凍干燥和表面噴金處理。
1.5.2 抗凍性測試
用DSC測試PAC導電織物基水凝膠樣品在-70~25 ℃的耐低溫性,保護氣體為N2,N2流度為45 mL/min,降溫速率為10 ℃/min。
1.5.3 機械性能測試
將預處理織物和導電織物基水凝膠裁剪為10 mm×30 mm,用Instron 3367萬能試驗機以50 mm/min的拉伸速率測其力學性能和耗散能。耗散能是導電織物基水凝膠在某一應變下,由循環拉伸曲線所圍成的積分面積,可以評估其抗疲勞性。
1.5.4 保水性測試
將圓柱體(直徑5 mm、厚20 mm)13%-PAC水凝膠樣品置于恒定溫度(25 ℃)和濕度(60%)下儲存7 d,每隔24 h記錄一次樣品的質量。樣品質量損失率(W)的計算公式為:
W/%=W0-WtW0×100(1)
式中:W0是PAC水凝膠的初始質量,Wt是給定儲存時間的質量。
1.5.5 溶脹性測試
將13%-PAC水凝膠(半徑10 mm、厚2.5 mm)冷凍干燥得到質量為M0的凍干水凝膠。將其置于100 mL不同溫度的DI和不同pH值的溶液中進行溶脹實驗。每隔一定時間取出樣品,用濾紙吸干表面的水分并稱重記為MS,之后再浸入原溶液中,反復稱重,直至13%-PAC水凝膠的質量不再發生變化。水凝膠溶脹率(SR)的計算公式如下式所示:
SR/%=MS-M0M0×100(2)
1.5.6 抗菌性測試
參考GB/T 20944.3—2008《紡織品抗菌性能的評價第3部分:振蕩法》,選用E.coli和S.aureus作為目標實驗菌種。將所需菌液振蕩培養12 h后稀釋104倍,此時細菌濃度約為1×106 CFU/mL,通過平板計數法對導電織物基水凝膠的抗菌活性進行評估。樣品的抑菌率(Y)如下式所示:
Y/%=N-QN×100(3)
式中:N和Q分別為對照試樣和導電織物基水凝膠與實驗菌種振蕩接觸后和培養基的菌落數。
1.5.7 傳感性能測試
將PAC傳感織物與數字源表的正負極連接,測試其電學性能。傳感器的傳感性能由應變靈敏度(GF)進行衡量。GF由下式計算得到:
GF=ΔR/R0ε(4)
式中:ΔR為電阻變化量,R0為初始電阻,ε為對應的形變。
2 結果與分析
2.1 掃描電鏡測試
圖1(a)(b)顯示了處理前后織物表面的形貌變化,可見預處理織物表面較為光滑(圖1(a)),經表面原位聚合ANI后得到PANI復合導電織物(圖1(b))。從13%-PAC導電織物基水凝膠的截面(圖1(c))中可以看到,水凝膠完全包覆在導電織物表面。圖1(d)為PANI復合導電織物的EDS圖,其表面含有S、N和Cl元素,證明PANI成功聚合在了織物上。
2.2 織物基柔性應變傳感器性能分析
2.2.1 力學性能
為探究導電織物基PAC水凝膠的最佳PVA質量分數,本文通過拉伸實驗測試了不同PVA質量分數的PAC導電織物水凝膠的機械性能。圖2(a)為PAC導電織物基水凝膠的應力—應變曲線。而由圖2(c)可以看出,隨著PVA質量分數的增大,PAC導電織物基水凝膠的拉伸強度和應變分別在PVA質量分數為12%和13%時達到最大值。繼續增大PVA的質量分數,導電織物基水凝膠的拉伸強度和應變均呈現下降趨勢。研究認為PVA與CS分子間具有強烈的氫鍵作用,利于提高水凝膠的力學性能。當PVA質量分數過大,PVA過
量的氫鍵位點游離在聚合物網絡中,無法達到更好的增強效果。綜合對比,PVA質量分數為13%時,力學性能誤差較小,最穩定。由此確定質量分數為13%的PVA是PAC水凝膠的最佳增強用量。除非另有說明,否則本文使用13%-PAC水凝膠制備導電織物基柔性傳感器[21]。與預處理織物相比(圖2(b)),織物在酸性條件下原位聚合了剛性結構的PANI,其內部鏈剛性和鏈間的強相互作用破壞了原本堅固的結構,導致導電織物的力學性能下降[22]。13%-PAC水凝膠的拉伸應力為1.8 MPa,與織物結合后可能由于水凝膠的低應力使導電織物的性能有所下降,但拉伸強仍能達到最大值8.2 MPa(圖2(d)),與純水凝膠相比提升了3.56倍,表明織物與水凝膠結合能夠增強水凝膠的力學性能。
在20%~200%拉伸應變內對13%-PAC導電織物基水凝膠進行加載—卸載循環和耗散能測試,結果如圖3所示,其評估了13%-PAC導電織物基水凝膠的抗疲勞性能。13%-PAC導電織物基水凝膠在100%應變內的耗散能較小,具有高抗疲勞性。隨著拉伸應變的增大,織物和水凝膠中更多的網絡結構遭到破壞,磁滯曲線呈現隨著應變增大而逐漸增大的趨勢。此外,研究表明人體活動的應變通常小于75%[23]。因此,在100%應變內13%-PAC傳感織物優異的抗疲勞性有助于其在跟蹤人體運動領域的應用。
2.2.2 傳感性能
圖3(a)為織物基水凝膠傳感器的電阻圖。與僅加了CaCl2或PANI作為導電材料的織物基水凝膠相比,13%-PAC導電織物基水凝膠的電阻明顯下降,表明PANI和CaCl2能夠有效增強織物基水凝膠的導電性[24]。在500~3 000脈沖數/s內,不同速度拉伸13%-PAC傳感織物,其電阻率變化相同,如圖3(b)所示。圖4(c)為13%-PAC傳感織物的應變—電阻率曲線。隨著拉伸應變變化,13%-PAC傳感織物表現出階梯響應和穩定性。進一步地,對圖4(c)進行線性擬合,得到應變與電阻率的校準曲線,如圖4(d)所示。在10%~100%的應變內,13%-PAC傳感織物的靈敏度為0.461,線性相關系數達到0.996 9,可見有著準確且可靠的信號輸出。
2.2.3 抗凍性及保水性
圖5(a)為探究有機溶劑EG的存在對導電織物基水凝膠傳感器在-70~25 ℃內抗凍性能的影響。實驗表明,13%-PAC導電織物基水凝膠在此范圍內沒有出現相變,而用DI水置換出EG后的導電織物基純水凝膠在-11 ℃出現結晶。這是因為EG的存在與H2O形成強氫鍵,阻礙水分子的蒸發,使PAC導電織物基水凝膠呈現耐低溫性。此外,通過稱量水凝膠的質量來評估水凝膠在室溫下的保水能力。圖5(b)為13%-PAC導電織物基水凝膠在一定的環境中的保水率變化曲線。當儲存時間為7 d時,13%-PAC導電織物基水凝膠的保水率達到68.69%,表現出優異的保水能力。同時,13%-PAC水凝膠具有優異可塑性(圖5(c))、可書寫性(圖5(d))和可注射性(圖5(e)),能被制作成各種不規則形狀,模擬手指在觸屏手機上進行書寫。
3tQIizwvbLOTrRj3/m0GSw==2.2.4 溶脹性
采用質量分析法將冷凍干燥后的13%-PAC導電織物基水凝膠分別置于溫度為20、30、40 ℃的100 mL的DI水中,測試其溶脹行為,并得到時間—溶脹率曲線,如圖6(a)所示。隨著浸泡時間的增加,13%-PAC導電織物基水凝膠的吸水倍率不斷上升,直達飽和狀態。溫度為40 ℃、時間達到180 min時,溶脹率出現下降,主要原因是溫度較高,13%-PAC導電織物基水凝膠的持水性能下降而發生破碎。當溫度為20 ℃和30 ℃時,13%-PAC導電織物基水凝膠溶脹率在達到溶脹平衡后較為穩定,表現出了良好的水溶脹性能。
此外,研究了13%-PAC導電織物基水凝膠在不同pH值環境下的溶脹可逆行為,如圖6(b)所示。將冷凍干燥的13%-PAC導電織物基水凝膠放入pH值為10的緩沖溶液中溶脹至平衡稱重,然后在pH值為4和pH值為10的緩沖液中交替浸泡1 h記錄重量變化,重復12次。發現溶脹至平衡的13%-PAC導電織物基水凝膠轉移至pH值為4的緩沖溶液時會發生收縮,導致溶脹率降低,1 h后將其轉移回pH值為10的緩沖溶液,又會發生吸水現象導致溶脹率增大。這是因為
不同基團在不同pH值溶液中的離子化程度不同從而造成水凝膠的特性顯著變化[26]。這表明在緩沖溶液pH值發生變化時,13%-PAC導電織物基水凝膠具有良好的響應性和溶脹—收縮可逆性。
2.2.5 抗菌性
在檢測人體運動時,作為柔性可穿戴傳感器直接附著于皮膚表面的水凝膠應具有良好的抗菌性。圖7(a)(b)為13%-PAC水凝膠和13%-PAC水凝膠對E.coli和S.aureus的抗菌活性,其中Ⅰ為空白對照組、Ⅱ為13%-PA水凝膠、Ⅲ為13%-PAC水凝膠。結果顯示,13%-PA水凝膠對E.coli和S.aureus的生長具有輕微的抑制效果,可能是陽離子Ca2+對細菌有微弱的抑制作用[25]。當加入CS時,13%-PAC水凝膠對E.coli和S.aureus具有很強的抗菌性能,殺菌率分別高達92.55%和99.49%(圖7(c))。這是因為CS分子結構中存在帶正電的氨基,易與呈負電性的菌體相吸附而致細菌死亡,從而達到抗菌效果[27]。這表明在13%-PA水凝膠中加入天然抗菌物質CS能夠增強其抗菌性能。
2.3 人體運動監測
13%-PAC導電織物基水凝膠具有優異的柔性、良好的導電性和寬工作范圍,可以組裝成柔性傳感器連接到人體皮膚上,并用于監測人體運動。圖8(a)(b)中,13%-PAC傳感織物可以快速準確地監測到微表情引起的細微肌肉運動,其附著在志愿者面部的額頭和臉頰時,可以很容易地識別牙齒咀嚼和額頭從舒展到緊湊過程中面部肌肉拉伸引起的電阻率變化。其中,兩者的電信號波形存在細微差異,主要是因為咬齒的幅度和面部表情的運動無法保持一致。進一步地,將13%-PAC傳感織物裝配在手套上,通過監測電阻的相對變化精確地跟蹤手指的彎曲程度(30°、45°、90°),如圖8(c)所示。圖8(d)顯示了13%-PAC傳感織物集成在手腕處識別和監測手腕的彎曲。此外,13%-PAC傳感織物還可以監測身體其他部位的屈曲程度,如肘關節(圖8(e))和膝關節(圖8(f))。同時,由圖8(c~f)可以看出,在循環擴展/屈曲過程中,電信號是可重復且穩定的。因此,13%-PAC傳感織物可以用于人體運動的監測,具有分級響應的能力。
3 結 論
本文采用原位聚合法和一鍋法制備了基于PANI復合導電織物的13%-PAC水凝膠柔性傳感器。13%-PAC導電織物基水凝膠以高彈性高恢復能力的滌氨綸混紡織物為支撐材料,拉伸強度高(8.2 MPa)。在100%拉伸應變下,13%-PAC導電織物基水凝膠具有可恢復的能量耗散和高抗疲勞性。通過在PVA、EG和水分子之間形成氫鍵,阻礙水分子的蒸發,使水凝膠表現出優異的抗凍性和保水性,分別為-70 ℃下不發生相變,放置7 d后殘留質量比達到68.69%。此外,13%-PAC傳感織物表現出高靈敏度(GF=0.461)、穩定性和對不同應變的快速反應。在監測人體運動時,13%-PAC傳感織物可以監測人體面部微表情和運動狀態,對不同的運動幅度表現出不同的電阻率變化,實現分級響應。這種基于導電織物基水凝膠柔性傳感器與電子信息相結合的技術,有望為新一代智能紡織品在醫療診斷和健康監測設備等可穿戴電子領域的研發中提供新思路。
《絲綢》官網下載
中國知網下載
參考文獻:
[1]LEE G, WEI Q S, ZHU Y. Emerging wearable sensors for plant health monitoring[J]. Advanced Functional Materials, 2021, 31(52): 2106475.
[2]LI F, XUE H, LIN X Z, et al. Wearable temperature sensor with high resolution for skin temperature monitoring[J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43844-43852.
[3]MIAO L M, WAN J, SONG Y, et al. Skin-inspired humidity and pressure sensor with a wrinkle-on-sponge structure[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 39219-39227.
[4]GAO F F, ZHAO X, ZHANG Z, et al. A stretching-insensitive, self-powered and wearable pressure sensor[J]. Nano Energy, 2022(91): 106695.
[5]ATES H C, NGUYEB P Q, GONZALEZMACIA L, et al. End-to-end design of wearable sensors[J]. Nature Reviews Materials, 2022, 7(11): 887-907.
[6]JIN C, BAI Z Q. MXene-based textile sensors for wearable applications[J]. ACS Sensors, 2022, 7(4): 929-950.
[7]DENG P F, LI X, WANG Y B, et al. Highly stretchable ionic and electronic conductive fabric[J]. Advanced Fiber Materials, 2023, 5(1): 198-208.
[8]王盼, 王朝暉. 緯編導電織物多重性能及其制備的研究進展[J]. 絲綢, 2022, 59(6): 50-57.
WANG P, WANG Z H. Research progress on multiple properties and preparation of weft-knitted conductive fabrics[J]. Journal of Silk, 2022, 59(6): 50-57.
[9]WANG X, YANG B, LI Q, et al. Modeling the stress and resistance relaxation of conductive composites-coated fabric strain sensors[J]. Composites Science and Technology, 2021, 204(7): 108645.
[10]沈悅, 楊芳芳, 李楠. 復合纖維膜負載碳納米管的制備及傳感性能[J]. 絲綢, 2021, 58(6): 1-8.
SHEN Y, YANG F F, LI N. Preparation and sensing properties of composite nanofiber membrane loaded with carbon nanotubes[J]. Journal of Silk, 2021, 58(6): 1-8.
[11]田明偉, 李增慶, 盧韻靜, 等. 紡織基柔性力學傳感器研究進展[J]. 紡織學報, 2018, 39(5): 170-176.
TIAN M W, LI Z Q, LU Y J, et al. Recent progress of textile-based flexible mechanical sensors[J]. Journal of Textile Research, 2018, 39(5): 170-176.
[12]LI G, LI C L, LI G D, et al. Development of conductive hydrogels for fabricating flexible strain sensors[J]. Small, 2022, 18(5): 2101518.
[13]LI Y Q, GONG Q, HAN L, et al. Carboxymethyl cellulose assisted polyaniline in conductive hydrogels for high-performance self-powered strain sensors[J]. Carbohydrate Polymers, 2022(298): 120060.
[14]YU J, PANG Z Y, ZHANG J, et al. Conductivity and antibacterial properties of wool fabrics finished by polyaniline/chitosan[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018(548): 117-124.
[15]MA Z H, WANG W, YU D. Assembled wearable mechanical sensor prepared based on cotton fabric[J]. Journal of Materials Science, 2020, 55(2): 796-805.
[16]WANG T, REN X Y, BAI Y, et al. Adhesive and tough hydrogels promoted by quaternary chitosan for strain sensor[J]. Carbohydrate Polymers, 2021(254): 117298.
[17]ZHANG H D, SHEN H, LAN J N, et al. Dual-network polyacrylamide/carboxymethyl chitosan-grafted-polyaniline conductive hydrogels for wearable strain sensors[J]. Carbohydrate Polymers, 2022(295): 119848.
[18]WU G Z, PANAHI S M, XIAO X L, et al. Fabrication of capacitive pressure sensor with extraordinary sensitivity and wide sensing range using PAM/BIS/GO nanocomposite hydrogel and conductive fabric[J]. Composites Part A: Applied Science and Manufacturing, 2021(145): 106373.
[19]LIU Y P, WANG L L, MI Y Y, et al. Transparent stretchable hydrogel sensors: Materials, design and applications[J]. Journal of Materials Chemistry C, 2022(10): 13351-13371.
[20]GAO Y, WEI C L, ZHAO S L, et al. Conductive double-network hydrogel for a highly conductive anti-fatigue flexible sensor[J]. Journal of Applied Polymer Science, 2023, 140(3): 53327.
[21]龔桂勝, 劉景勃, 鐘玉鵬, 等. 聚乙烯醇水凝膠自修復性能[J]. 化工進展, 2016, 35(8): 2507-2512.
GONG G S, LIU J B, ZHONG Y P, et al. Self-healing properties of polyvinyl alcohol hydrogel[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2507-2512.
[22]YEON C, KIM G, LIM J W, et al. Highly conductive PEDOT: PSS treated by sodium dodecyl sulfate for stretchable fabric heaters[J]. Rsc Advances, 2017, 7(10): 5888-5897.
[23]XIA S ZHAGN Q, SONG S X, et al. Bioinspired dynamic cross-linking hydrogel sensors with skin-like strain and pressure sensing behaviors[J]. Chemistry of Materials, 2019, 33(22): 9522-9531.
[24]QI J B, WANG A C, YANG W F, et al. Hydrogel-based hierarchically wrinkled stretchable nanofibrous membrane for high performance wearable triboelectric nanogenerator[J]. Nano Energy, 2020, 67: 104206.
[25]李延順, 于躍芹. 溫度和pH值對智能水凝膠溶脹行為的影響[J]. 膠體與聚合物, 2009, 27(4): 9-12.
LI Y S, YU Y Q. The effect of temperature and pH on the swelling behavior of smart hydrogels[J]. Chinese Journal of Colloid & Polymer, 2009, 27(4): 9-12.
[26]VAEAN N Y, CAYDAMLI Y. Calcium chloride treated highly elastane cotton fabrics as antibacterial, comfortable and environmentally friendly materials[J]. Fibers, 2021, 9(11): 1-15.
[27]韓永萍, 李可意, 楊宏偉, 等. 殼聚糖的抗菌機理及其化學改性研究[J]. 化學世界, 2012, 53(4): 248-252.
HAN Y P, LI K Y, YANG H W, et al. Research on antibacterial mechanism of chitosan and its chemical modification[J]. Chemical World, 2012, 53(4): 248-252.
A study on the preparation and performance of polyaniline composite conductivefabric-enhanced hydrogel sensors
ZHANG Chi, WANG Xiangrong
XIA Juana,b, ZHU Xiaoyanga,b, MAO Yingb, L Wangyanga,b, LI Nana,b
(a.College of Textile Science and Engineering; b.National Engineering Lab for Textile Fiber Materials and Processing Technology,Zhejiang Sci-Tech University, Hangzhou 310018, China)
Abstract:
Wearable sensors can output various external stimuli (such as pressure, temperature, and humidity) as electrical signals, and are receiving attention in fields such as health monitoring, disease diagnosis, and artificial intelligence. Among sensor materials, hydrogels are widely used because of their excellent flexibility and stretchability. However, most hydrogels cannot meet the requirements of high mechanical strength and high electrical conductivity at the same time, which hinders their development to some extent. Textiles have good flexibility, tensile strength and tensile recovery, and are suitable substrates for the preparation of strain sensors. Compared with traditional rigid sensors, flexible conductive fabric-based sensors prepared with the combination of hydrogel and conductive fabrics are soft, thin, ductile, sensitive and able to fit the human body movement, which can effectively enhance the mechanical properties and sensitivity of the hydrogel, make the detection more accurate and convenient, and provide a new way for solving this problem. Flexible sensors prepared with fabric as a substrate require the selection of a suitable conductive material. The bond between the metal-based conductive material and the polymer fiber layer is usually poor and easily detached due to mechanical deformation. After the carbon-based conductive material is bonded to the fabric, the fabric-based strain sensors obtained have poor conductivity and cannot monitor small deformations during application due to the lack of a continuous contact conductive mechanism. Therefore, it is necessary to select a conductive material that can be firmly bonded with the fabric substrate and has excellent electrical conductivity, so as to develop a fabric-based flexible sensor with high sensitivity and large strain range. The introduction of conductive polymers into fabrics results in conductive fabric sensors with human motion monitoring functions. Common conductive polymers include polypyrrole (Ppy), polyaniline (PANI), and poly(3, 4-ethylenedioxythiophene) (PEDOT), among which PANI is widely used in the field of fabric-based flexible sensors due to its advantages of good stability, simple synthesis process, and high conductivity.
In this paper, a high-strength and high-fatigue-resistant polyester-spandex blend fabric (containing 92% polyester and 8% spandex) was used as the substrate material for the flexible sensor, and PANI was polymerized on the surface of the fabric by in-situ polymerization to prepare a PANI conductive fabric. Then the multifunctional hydrogel (PAC hydrogel) prepared by blending PVA, CaCl2 and CS solution was coated on its surface to obtain the PANI conductive fabric-enhanced multifunctional hydrogel sensor. The prepared conductive hydrogel fabrics were analyzed for scanning electron microscopy, mechanical properties, frost resistance, water retention, swelling, antimicrobial and sensing properties. The results showed that the best performance of the prepared 13%-PAC conductive hydrogel fabrics was achieved when the mass fraction of PVA was 13%, and its mechanical strength was as high as 8.2 MPa, which was about 4. 56 times of that of pure hydrogels. Under 100% tensile strain, the 13%-PAC conductive fabric-based hydrogel showed recoverable energy dissipation and high fatigue resistance. The hydrogen bond formed between PVA, EG and water molecules hindered the evaporation of water molecules, so that the hydrogel exhibited excellent frost resistance and water retention, respectively, and did not undergo a phase transition at -70 ℃, and the residual mass ratio reached 68. 69% after 7 days of placing. The 13%-PAC conductive fabric-based hydrogels showed good water swelling properties at different temperatures (20 ℃, 30 ℃ and 40 ℃) and good swelling-shrinkage reversibility at different pH (pH=4 and pH=10) buffers. The incorporation of CS gave the 13%-PAC hydrogels strong antimicrobial properties against Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus), with bactericidal rates as high as 92.55% and 99.49%, respectively. In addition, the 13%-PAC sensing fabric exhibited high sensitivity (GF=0.461), stability and fast response to different strains. When monitoring human movement, the 13%-PAC sensing fabric can monitor human facial micro-expressions and movement states, showing different resistivity changes for different movement amplitudes and realizing a graded response. The technology based on the combination of conductive fabric-based hydrogel flexible sensors and electronic information is expected to provide new ideas for the development of a new generation of smart textiles in the field of wearable electronics such as medical diagnostic and health monitoring devices.
Key words:
flexible wearable sensors; in-situ polymerization; PANI composite conductive fabric; hydrogel; human movement monitoring