摘要:惡性黑色素瘤是一種侵襲性強(qiáng)且預(yù)后不良的腫瘤類型,其預(yù)后和療效很大程度上取決于診斷時疾病的臨床分期。PET/CT是一種放射性核素示蹤醫(yī)學(xué)影像技術(shù),利用癌細(xì)胞的特異性標(biāo)志來獲取有關(guān)腫瘤的信息,用于區(qū)分腫瘤組織和正常組織。18F-FDG PET已廣泛應(yīng)用于腫瘤原發(fā)及轉(zhuǎn)移灶的顯像,然而其對惡性黑色素瘤的微小轉(zhuǎn)移灶和非代謝活性病灶的檢出率低且其為泛腫瘤探針。進(jìn)一步開發(fā)新型的惡性黑色素瘤特異性PET分子影像探針仍然具有較高的臨床價值。本文基于惡性黑色素瘤的發(fā)生率、預(yù)后信息及診療現(xiàn)狀,對現(xiàn)有報道的惡性黑色素瘤新型PET分子影像探針的研究進(jìn)展做一綜述。
關(guān)鍵詞:惡性黑色素瘤;PET;分子影像探針;黑色素;黑皮質(zhì)素-1受體
Advances in PET molecular imaging probes for malignant melanoma
XUE Yan1, 2, WANG Ling1, 2, HUANG Zhihong1, 2, ZHU Xue1, 2, WANG Ke1, 2
1Department of Radiopharmaceuticais, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; 2NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
Abstract: Malignant melanoma is an aggressive tumor type with a poor prognosis. The prognosis and treatment outcome largely depend on the clinical stage of the disease at the time of diagnosis. PET/CT is a medical imaging technique that uses radionuclide tracers to identify specific markers of cancer cells and gather information about the tumor. It is used to differentiate between tumor tissue and normal tissue. Although 18F-FDG PET has been widely used to for imaging of primary and metastatic tumor foci, which still has limitations on the detection of microscopic metastases and non-metabolically active lesions in malignant melanoma as a pan-tumor tracer. Therefore, further development of the novel PET molecular imaging probes to improve the detection rate and diagnostic accuracy of malignant melanoma is still of high clinical value. Based on the incidence of malignant melanoma, prognostic information and the current status of diagnosis and treatment, this paper reviews the progress of existing novel PET molecular imaging probes for early diagnosis and clinical staging of malignant melanoma.
Keywords: malignant melanoma; PET; molecular imaging probe; melanin; melanocortin-1 receptor
惡性黑色素瘤(MM)是侵襲性最強(qiáng)的腫瘤類型之一,其預(yù)后不良、易轉(zhuǎn)移擴(kuò)散,存活率較低[1, 2],給公眾健康帶來了巨大的負(fù)擔(dān)[1, 3]。近年來,轉(zhuǎn)移性黑色素瘤的發(fā)生率和死亡率呈上升趨勢,多數(shù)早期黑色素瘤患者可通過手術(shù)切除治愈,5年相對生存率達(dá)99%[4]。相比之下,晚期或轉(zhuǎn)移性黑色素瘤患者的5年相對生存率則明顯下降,區(qū)域轉(zhuǎn)移性黑色素瘤的5 年相對生存率為 68%,而遠(yuǎn)處轉(zhuǎn)移性黑色素瘤的5年相對生存率僅為30%[5]。在轉(zhuǎn)移情況下,黑色素瘤可通過血管和/或淋巴擴(kuò)散到身體的遠(yuǎn)處器官。此外,50%~80%有局部轉(zhuǎn)移的黑色素瘤患者會復(fù)發(fā),幾乎所有存在遠(yuǎn)處轉(zhuǎn)移的患者都會復(fù)發(fā)[6]。雖然新治療策略的出現(xiàn),如靶向治療和免疫治療改善了轉(zhuǎn)移性黑色素瘤患者的預(yù)后,但其有效性仍然受到內(nèi)在或獲得性耐藥的限制[7]。MM的全球負(fù)擔(dān)日益加重,新型療法的情況錯綜復(fù)雜,因此,早期診斷并進(jìn)行干預(yù)對于提高惡性MM患者的生存期至關(guān)重要[8]。
PET成像技術(shù)可以利用分子成像探針可視化黑色素瘤疾病過程的特定通路或生物標(biāo)志物[7],特別是在惡性黑色素瘤的初始分期、疾病復(fù)發(fā)和治療反應(yīng)評估中,18F-FDG PET/CT被認(rèn)為是首選成像方式[9, 10],是對黑色素瘤患者進(jìn)行分期、評估局部擴(kuò)展、結(jié)節(jié)受累和遠(yuǎn)處轉(zhuǎn)移的可靠而有效的工具[11]。目前,18F-FDG被用于評估原發(fā)性黑色素瘤及其潛在的小結(jié)節(jié)和內(nèi)臟轉(zhuǎn)移瘤的代謝和解剖特征,然而其在檢測結(jié)節(jié)微轉(zhuǎn)移(lt;5 mm)和非代謝活躍病灶方面的作用有限,且18F-FDG的腫瘤靶向能力涉及葡萄糖代謝,在感染性和炎癥性病變中的高積累可能與腫瘤沉積物相似[4, 12, 13];另外,18F-FDG PET成像時組織中可能存在大量的背景活動,容易造成假陽性或假陰性結(jié)果,假陽性結(jié)果可能導(dǎo)致不必要的侵入性手術(shù),而假陰性結(jié)果則可能導(dǎo)致診斷和治療的延誤。一項針對154例接受 CT 或 PET-CT 監(jiān)測的 III 期黑色素瘤患者的研究顯示其假陽性率為 53%,其中 88% 的病變?yōu)榱夹裕?, 14, 15],因此,由于18F-FDG PET成像在隱匿性轉(zhuǎn)移病灶檢出、腫瘤靶向能力和背景活動區(qū)分方面的局限性,迫切需要開發(fā)在原發(fā)性和轉(zhuǎn)移性黑色素瘤的診斷和準(zhǔn)確分期方面發(fā)揮關(guān)鍵作用的具有高度腫瘤特異性和靶向性的PET分子影像探針[16],這種策略可解決目前成像的許多局限性,提供預(yù)后信息和腫瘤異質(zhì)性圖譜,并有助于檢測低于 CT 成像分辨率的病灶[17]。本文基于MM的發(fā)生率、預(yù)后信息及診療現(xiàn)狀,對MM新型PET分子影像探針的研究進(jìn)展展開綜述,以期進(jìn)一步完善這些探針并促進(jìn)有前景的探針的臨床轉(zhuǎn)化,更好地治療黑色素瘤患者。
1" 靶向腫瘤代謝的PET分子影像探針
與正常細(xì)胞相比,腫瘤細(xì)胞生長速度快,可無限增殖,需要消耗更多的能量,比如葡萄糖、氨基酸等,因此,靶向腫瘤代謝在MM的診斷和分期中發(fā)揮著重要作用。其中,臨床上最常用的分子探針是靶向葡萄糖代謝的18F-FDG,在MM的診斷分期中發(fā)揮重要作用,近些年來靶向腫瘤代謝的其他分子成像探針的研究開發(fā)也在不斷進(jìn)行[18]。有學(xué)者發(fā)展了通過光氧化還原放射性氟化來獲取新型色氨酸基PET試劑的簡單方法,通過該方法可以很容易的合成4-F-5-OMe-色氨酸和6-F-5-OMe-色氨酸,并在B16F10荷瘤小鼠模型中進(jìn)行PET成像,為免疫治療監(jiān)測和進(jìn)一步研究藥物的代謝提供潛在的應(yīng)用價值[19]。結(jié)果表明,靶向腫瘤色氨酸代謝的分子探針在MM的診斷成像中發(fā)揮著重要作用。
2" 靶向腫瘤新生血管的PET分子影像探針
血管生成是癌癥進(jìn)展的基礎(chǔ),對腫瘤的生長和惡化至關(guān)重要,并促進(jìn)轉(zhuǎn)移病灶的形成[20, 21],是包括惡性黑色素瘤在內(nèi)的各種實體瘤的腫瘤增殖、存活和遠(yuǎn)處轉(zhuǎn)移的重要指標(biāo)[22]。這一復(fù)雜的機(jī)制受促血管生成因子和抗血管生成因子之間的平衡調(diào)節(jié)。根據(jù)已有研究,在惡性黑色素瘤中發(fā)現(xiàn)了血管內(nèi)皮生長因子A[23]、胎盤生長因子[24]、白細(xì)胞介素-8[25]、原發(fā)性成纖維細(xì)胞生長因子[26]、血小板源性生長因子[27]、血管生成素[28]、尿激酶纖溶酶原激活劑[29]以及整合素和基質(zhì)金屬蛋白酶[30, 31]等多種促血管生成因子的過度表達(dá)。因此,對血管生成這一過程的非侵入性成像監(jiān)測在MM的早期診斷中具有重要意義[32]。其中,對于特異性PET成像而言,與腫瘤血管生成相關(guān)的生物標(biāo)志物整合素受體已成為主要靶點[8]。
整合素是由一個α亞基和一個β亞基組成的異源二聚體跨膜受體,可與細(xì)胞外基質(zhì)蛋白結(jié)合,并介導(dǎo)從細(xì)胞外部到細(xì)胞質(zhì)的信號,在腫瘤誘導(dǎo)的血管生成、轉(zhuǎn)移形成和耐藥性以及炎癥、愈合和細(xì)菌/病毒感染等方面發(fā)揮了至關(guān)重要的作用,因此已被確定為癌癥和相關(guān)疾病中極具吸引力的生物標(biāo)記物[33, 34]。特別是整合素αVβ3,它在正常組織中的分布相對有限,但在多種實體瘤(如黑色素瘤、膠質(zhì)瘤、骨瘤等)中高表達(dá),是腫瘤進(jìn)展的主要血管生成標(biāo)志物,在腫瘤的生長、侵襲和轉(zhuǎn)移中起關(guān)鍵作用[33, 35]。精氨酸-甘氨酸-天冬氨酸的三肽序列(RGD)是一個細(xì)胞識別位點,可以選擇性地與整合素αVβ3結(jié)合。近年來,多種放射性標(biāo)記的RGDs已被開發(fā)為惡性黑色素瘤的PET示蹤劑[35, 36]。有研究為驗證SHARPIN蛋白的缺失會導(dǎo)致整合素活性增加,以68Ga標(biāo)記的DOTA-E[c(RGDfK)]2作為分子探針,比較野生型和SHARPIN缺失型小鼠PET成像,發(fā)現(xiàn)SHARPIN與癌癥生長和轉(zhuǎn)移增加有關(guān),且可能在控制腫瘤微環(huán)境方面也具有重要的調(diào)節(jié)作用[37]。有研究發(fā)現(xiàn)了一種基于JWA蛋白活性片段的功能性多肽(JP1),對JP1進(jìn)行放射性標(biāo)記得到分子探針18F-NFP-JP1并在黑色素瘤小鼠模型中進(jìn)行PET成像,結(jié)果顯示JP1在體內(nèi)可特異性靶向黑色素瘤細(xì)胞并抑制黑色素瘤的生長、轉(zhuǎn)移并延長小鼠的存活時間[37],因此,JP1是一種新型多肽,可通過NEDD4L-SP1-Integrin αvβ3信號轉(zhuǎn)導(dǎo)對黑色素瘤的增殖和轉(zhuǎn)移起到治療作用。
既往研究在包括黑色素瘤在內(nèi)的癌癥中發(fā)現(xiàn)了晚期抗原-4(VLA-4,又稱整合素α4β1)。LLP2A是VLA-4的一種高親和力擬肽配體,它是從一珠一化合物文庫中發(fā)現(xiàn)的,已被用于癌癥成像和治療[38]。具體來說,VLA-4在侵襲性和轉(zhuǎn)移性黑色素瘤中高表達(dá),是黑色素瘤成像和放射性核素靶向治療的理想靶點。有學(xué)者以靶向VLA-4的177Lu-DOTA-PEG4-LLP2A為分子探針,在B16F10荷瘤小鼠中進(jìn)行PET成像,研究177Lu-LLP2A單獨使用和聯(lián)合免疫檢查點抑制劑(ICI)在黑色素瘤小鼠中的療效。結(jié)果表明,單獨使用靶向放射療法顯示出與雙免疫療法相當(dāng)?shù)寞熜В邢蚍派浏煼?lián)合免疫療法可以同時靶向腫瘤細(xì)胞和免疫細(xì)胞,具有作為轉(zhuǎn)移性黑色素瘤治療藥物的潛力,顯著提高了生存率[39]。
3" 靶向黑色素標(biāo)志物的PET分子影像探針
3.1" 黑色素
黑色素是黑色素細(xì)胞產(chǎn)生的一種不規(guī)則聚合物,是包括人類皮膚在內(nèi)的許多器官中無處不在的天然色素[7, 38]。在MM中,由于酪氨酸酶活性的升高會加速黑色素的生物合成,黑色素的濃度會大幅增加[7, 40]。黑色素存在于大多數(shù)黑色素瘤病灶中,在黑色素瘤的進(jìn)展、轉(zhuǎn)移、治療反應(yīng)和患者的總生存期中起著重要作用。因此,黑色素是黑色素瘤診斷和療效評估中極具吸引力的靶點[41, 42]。目前已開發(fā)出多種放射性標(biāo)記的黑色素靶向探針,用于惡性黑色素瘤成像或放射性核素治療[41]。
既往研究已經(jīng)發(fā)現(xiàn)苯甲酰胺類似物對黑色素有選擇性的親和力。近年有學(xué)者研制合成了18F-PFPN,它能夠特異性的識別和結(jié)合黑色素,作為新型PET分子探針,在識別原發(fā)性黑色素瘤及轉(zhuǎn)移性黑色素瘤方面優(yōu)于傳統(tǒng)的18F-FDG PET[43]。有研究報道了一種基于18F-FPDA的新型苯甲酰胺衍生物[18F]DMFB,與18F-FDG和18F-P3BZA相比,[18F]DMFB在B16F10異種移植物中的蓄積率較高(24.8%ID/g,1 h),腫瘤與背景的對比度也更好。此外,[18F]DMFB還能清晰顯示肺部和淋巴結(jié)的轉(zhuǎn)移病灶,結(jié)果表明,黑色素靶向探針[18F]DMFB有望用于臨床診斷原發(fā)性和轉(zhuǎn)移性黑色素瘤[44]。有研究使用808 nm 激光對黑色素瘤小鼠進(jìn)行光熱治療,隨后通過18F-5-FPN和18F-FDG PET成像進(jìn)行反應(yīng)監(jiān)測研究,進(jìn)一步評估18F-5-FPN與18F-FDG在評估MM光熱療法反應(yīng)的可行性,結(jié)果表明,與18F-FDG PET成像相比,18F-5-FPN PET成像能夠估計MM的光熱療法療效,成功監(jiān)測治療后的隱匿性復(fù)發(fā),并通過對黑色素的高敏感度將MM與腫瘤和其他癌癥很好地區(qū)分開來[45]。這種潛在的探針可為精確有用的反應(yīng)評估、及時的治療方案管理和靈敏的隨訪提供一種新方法。根據(jù)放射性示蹤劑的合成過程、黑色素特異性靶向能力和生物分布特征,發(fā)現(xiàn)18F-P3BZA具有很高的臨床應(yīng)用潛力,因此被選作人體的進(jìn)一步研究對象[4]。有研究首次在6例健康志愿者體內(nèi)進(jìn)行靜脈注射18F-P3BZA后的全身PET成像,顯示18F-P3BZA在人體各器官和全身的生物分布和有效輻射劑量;隨后,對5例疑似黑色素瘤患者同時進(jìn)行18F-P3BZA和18F-FDG PET/CT成像,并經(jīng)病理確診,初步探討了18F-P3BZA的臨床價值,結(jié)果表明黑色素瘤的首次人體臨床應(yīng)用顯示患者的腫瘤分界良好,證明了18F-P3BZA在黑色素瘤的臨床診斷和療效評估方面的潛力[46]。有學(xué)者研究了一種基于固相萃取的純化方法,進(jìn)一步優(yōu)化了18F-P3BZA的合成過程,在40 min內(nèi)即可完成高放射性、高純度18F-P3BZA的自動化放射合成過程[47]。這種便捷高效的18F-P3BZA 純化方法可應(yīng)用于不同場景,促進(jìn)了18F-P3BZA的廣泛應(yīng)用。
3.2" 黑皮質(zhì)素-1受體(MC1R)
MC1R又稱α-黑色素細(xì)胞刺激素(α-MSH)受體,是一種由317個氨基酸組成的7層跨膜G蛋白偶聯(lián)受體[4, 48],在包括晚期葡萄膜黑色素瘤在內(nèi)的大多數(shù)黑色素瘤中都有特異性表達(dá),而在正常組織中卻沒有明顯的表達(dá)水平,是黑色素瘤特異性成像和選擇性遞送治療藥物的重要靶點[49, 50]。α-MSH(一種13氨基酸的線性肽,Ac-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH2)是一種由POMC(原絨毛膜促皮質(zhì)素)編碼的神經(jīng)肽,它與MC1R的結(jié)合親和力很高(KD=1.35±0.5 nmol/L)。但與許多其他內(nèi)源性肽一樣,它在人體內(nèi)不穩(wěn)定,在體內(nèi)的生物半衰期不到3 min。為了提高肽的穩(wěn)定性、特異性和親和性,根據(jù)α-MSH對MC1R的最小活性序列(His6-Phe7-Arg8-Trp9)開發(fā)了各種α-MSH類似物[4, 38]。
68Ga-DOTA-GGNle-CycMSHhex首次在2例黑色素瘤患者身上進(jìn)行了評估,用于可視化黑色素瘤轉(zhuǎn)移病灶。與18F?FDG PET/CT相比,68Ga-DOTA-GGNle-CycMSHhex的圖像代表了不同轉(zhuǎn)移灶中MC1R的表達(dá)水平[48]。64Cu是PET中另一種常用的放射性同位素。既往已有研究證明了64Cu?NOTA?GGNle-CycMSHhex比64Cu-DOTA-GGNle-CycMSHhex具有更好的腫瘤特異性成像性能[51]。最近有學(xué)者進(jìn)一步研究了NOTA與CycMSHhex之間的連接物,與64Cu-NOTA?AocNle?CycMSHhex相比,64Cu?NOTA-PEG2Nle-CycMSHhex顯示出更高的腫瘤攝取率、腫瘤/腎臟比值和腫瘤/肝臟比值[52]。有研究根據(jù)Nle-CycMSHhex 的結(jié)構(gòu)合成了3種靶向MC1R的成像探針[18F]CCZ01064、[18F]CCZ01070、[18F]CCZ01071,并在攜帶 B16F10 腫瘤的C57BL/6J小鼠身上進(jìn)行PET成像,結(jié)果表明,這3種18F標(biāo)記的肽都能產(chǎn)生極佳的腫瘤顯像效果,然而在這些探針中,[18F]CCZ01064顯示出最高的腫瘤積累,在正常器官中的攝取同樣低,是一種適合用于黑色素瘤PET成像的有前途的候選藥物[50]。有研究采用Fmoc固相法合成NOTA-GGNle-CycMSHhex,再通過Al18F進(jìn)行放射性標(biāo)記,以Al18F-NOTA-GGNle-CycMSHhex作為分子探針進(jìn)行生物發(fā)光成像和PET成像,結(jié)果顯示,Al18F-NOTA-GGNle-CycMSHhex在黑色素瘤小鼠中顯示出高腫瘤積累和非靶器官的快速清除,并清晰地觀察到非常小的腫瘤[53]。這些研究表明,對Nle-CycMSHhex進(jìn)行放射性標(biāo)記以進(jìn)行黑色素瘤特異性成像是一種重要的策略,并具有很大的臨床轉(zhuǎn)化潛力。
4" "靶向免疫檢查點的PET分子影像探針
免疫檢查點是細(xì)胞表面蛋白(如細(xì)胞毒性T淋巴細(xì)胞抗原-4和程序性細(xì)胞死亡-1),其功能是控制免疫反應(yīng)的啟動、持續(xù)時間和程度。由于癌癥免疫療法領(lǐng)域在過去十年中經(jīng)歷了巨大的發(fā)展,無創(chuàng)分子成像策略已被用于繪制免疫檢查點分子的生物分布圖、監(jiān)測療效和潛在毒性,以及識別可能從免疫療法中獲益的患者[54]。
有研究構(gòu)建了一種高親和力的PD-L1靶向探針18F-BMS986192,用來研究轉(zhuǎn)移性黑色素瘤患者在接受ICI治療前和治療期間的18F-BMS986192 PET成像,結(jié)果顯示黑色素瘤患者腦轉(zhuǎn)移灶和肺轉(zhuǎn)移灶的PD-L1表達(dá)存在異質(zhì)性,可以用于評估腫瘤病灶中PD-L1的表達(dá)和預(yù)測ICI治療反應(yīng)[55]。有學(xué)者研發(fā)了一種新型基于多肽的PD-L1成像劑[18F]DK222,利用來自3種非小細(xì)胞肺癌和3種尿路上皮癌的細(xì)胞系和異種移植物來驗證[18F]DK222對PD-L1的特異性,并在攜帶A375黑色素瘤異種移植物的人源化小鼠中通過PET成像研究[18F]DK222區(qū)分針對黑色素瘤不同通路的聯(lián)合免疫療法的藥效學(xué)反應(yīng)的能力,研究結(jié)果表明,[18F]DK222-PET在治療過程中跟蹤PD-L1具有潛在的實用性[56]。
5" 其他PET靶向探針
有研究開發(fā)一種新型靶向CD54的免疫PET探針64Cu-NOTA-ICAM-1,并評估其在黑色素瘤和甲狀腺未分化癌模型中的診斷價值。研究結(jié)果表明,細(xì)胞間粘附分子-1(ICAM-1,CD54)是一種很有前景的黑色素瘤和甲狀腺未分化癌生物標(biāo)志物,64Cu-NOTA-ICAM-1免疫PET成像是對這兩種實體瘤中ICAM-1表達(dá)情況進(jìn)行成像的一種很有前途的技術(shù)[57]。
6" 總結(jié)與展望
黑色素瘤是一種致命的癌癥,具有高度轉(zhuǎn)移性。最初診斷時的準(zhǔn)確分期以及對新發(fā)或進(jìn)展性疾病的監(jiān)測對于指導(dǎo)治療決策至關(guān)重要。傳統(tǒng)診斷成像模式比如18F-FDG PET/CT對轉(zhuǎn)移性MM的低分辨率給臨床帶來了巨大挑戰(zhàn)。近年來,分子靶向和放射化學(xué)領(lǐng)域的快速進(jìn)展使得新型MM PET 分子影像探針的開發(fā)成為熱點,然而其應(yīng)用于臨床仍需要更大規(guī)模的研究來驗證其臨床價值。另外,新型MM PET 分子影像探針的出現(xiàn)可以在 CT 成像分辨率的基礎(chǔ)上提供有關(guān)疾病進(jìn)展、治療反應(yīng)、腫瘤異質(zhì)性和疾病范圍的信息,從而改變MM的診斷和治療方式[17]。
總之,在精準(zhǔn)醫(yī)療時代,開發(fā)新型、敏感、特異性的分子成像探針以克服18F-FDG的局限性仍然是分子影像學(xué)領(lǐng)域的目標(biāo)。本綜述基于已有研究,對應(yīng)用于MM早期診斷和分期的新型PET分子探針的最新進(jìn)展進(jìn)行了總結(jié)。雖然黑色素、MC1R和整合素是黑色素瘤檢測和治療的傳統(tǒng)和最常見靶點,但近年來也出現(xiàn)了許多基于腫瘤代謝和免疫微環(huán)境的分子成像探針[38]。目前,隨著MM發(fā)病機(jī)制中涉及的許多重要致癌信號通路和生物標(biāo)志物的闡明,已經(jīng)開發(fā)了大量具有出色腫瘤靶向和體內(nèi)生物分布特性的放射性示蹤劑,進(jìn)一步的研究可能集中在將放射性示蹤劑應(yīng)用于更多的臨床轉(zhuǎn)化研究,并開發(fā)更多的放射性藥物用于MM患者的可視化和治療[4, 58]。
參考文獻(xiàn):
[1]" "Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014[J]. CA Cancer J Clin, 2014, 64(1): 9-29.
[2]" "Li Z, Wang YF, Zhang X, et al. A tyrosinase?triggered oxidative reaction-based “Turn?on” fluorescent probe for imaging in living melanoma cells [J]. Sens Actuators B Chem, 2017, 242: 189-94.
[3]" "Ramogida CF, Robertson AKH, Jermilova U, et al. Evaluation of polydentate picolinic acid chelating ligands and an α?melanocyte-stimulating hormone derivative for targeted alpha therapy using ISOL?produced 225Ac[J]. EJNMMI Radiopharm Chem, 2019, 4(1): 21.
[4]" "Shi H, Cheng Z. MC1R and melanin?based molecular probes for theranostic of melanoma and beyond[J]. Acta Pharmacol Sin, 2022, 43(12): 3034-44.
[5]" "Liu ZY, Pei SR, Wen KK, et al. MC1R-targeted NIR-II aggregation-induced emission nanoparticles for melanoma imaging[J]. Sci China Mater, 2023, 66(10): 4100-8.
[6]" "Wright CL, Miller ED, Contreras C, et al. Precision nuclear medicine: the evolving role of PET in melanoma[J]. Radiol Clin North Am, 2021, 59(5): 755-72.
[7]" "Pyo A, Kim HS, Kim HS, et al. N-(2-(dimethylamino)ethyl)-4-18F-fluorobenzamide: a novel molecular probe for high?contrast PET imaging of malignant melanoma[J]. J Nucl Med, 2019, 60(7): 924-9.
[8]" "Wright CL, Miller ED, Contreras C," et al. Precision nuclear medicine: The evolving role of PET in melanoma[J]. Radiol Clin North Am, 2021, 59(5): 755-72.
[9]" "Petersen H, Holdgaard PC, Madsen PH, et al. FDG PET/CT in cancer: comparison of actual use with literature?based recommendations[J]. Eur J Nucl Med Mol Imaging, 2016, 43(4): 695-706.
[10]Swetter SM, Thompson JA, Albertini MR, et al. NCCN guidelines? insights: melanoma: cutaneous, version 2.2021[J]. J Natl Compr Canc Netw, 2021, 19(4): 364-76.
[11]" Annunziata S, Laudicella R, Caobelli F, et al. Clinical value of PET/CT in staging melanoma and potential new radiotracers[J]. Curr Radiopharm, 2020, 13(1): 6-13.
[12]" Gai YK, Yuan LJ, Sun LY, et al. Comparison of Al 18F?and 68Ga-labeled NOTA-PEG4-LLP2A for PET imaging of very late antigen-4 in melanoma[J]." Biol Inorg Chem, 2020, 25(1): 99-108.
[13]" Gyuricza B, Sz?cs á, Szabó JP, et al. The synthesis and preclinical investigation of lactosamine?based radiopharmaceuticals for the detection of galectin?3?expressing melanoma cells[J]. Pharmaceutics, 2022, 14(11): 2504.
[14] Rahmim A, Lodge MA, Karakatsanis NA, et al. Dynamic whole-body PET imaging: principles, potentials and applications[J]. Eur J Nucl Med Mol Imag, 2019, 46(2): 501-18.
[15]" Nijhuis AAG, Dieng M, Khanna N, et al. False-positive results and incidental findings with annual CT or PET/CT surveillance in asymptomatic patients with resected stage III melanoma[J]. Ann Surg Oncol, 2019, 26(6): 1860-8.
[16]" 馮洪燕, 蘭曉莉, 張永學(xué). 用于惡性黑色素瘤診斷及靶向治療的核素標(biāo)記分子探針研究進(jìn)展[J]. 中華核醫(yī)學(xué)與分子影像雜志, 2016, 36(5): 470-3.
[17]" Vercellino L, de Jong D, Dercle L, et al. Translating molecules into imaging?the development of new PET tracers for patients with melanoma[J]. Diagnostics, 2022, 12(5): 1116.
[18] Dilsizian V, Chandrashekhar Y. Molecular imaging: new promises[J]. JACC Cardiovasc Imaging, 2022, 15(11): 2019-21.
[19]" Wu XD, Ma XR, Zhong YF, et al. Development of 18F?5-OMe-tryptophans through photoredox radiofluorination: a new method to access tryptophan?based PET agents[J]. J Med Chem, 2023, 66(5): 3262-72.
[20] Dénes N, Kis A, Szabó JP, et al. In vivo preclinical assessment of novel 68Ga?labelled peptides for imaging of tumor associated angiogenesis using positron emission tomography imaging[J]. Appl Radiat Isot, 2021, 174: 109778.
[21] Quaresmini D, Guida M. Neoangiogenesis in melanoma: an issue in biology and systemic treatment[J]. Front Immunol, 2020, 11: 584903.
[22]" Watnick RS. The role of the tumor microenvironment in regulating angiogenesis[J]. Cold Spring Harb Perspect Med, 2012, 2(12): a006676.
[23]Lacal PM, Graziani G. Therapeutic implication of vascular endothelial growth factor receptor?1 (VEGFR?1) targeting in cancer cells and tumor microenvironment by competitive and non-competitive inhibitors[J]. Pharmacol Res, 2018, 136: 97-107.
[24]Chen MX, Liu YM, Li Y, et al. Elevated VEGF?A amp; PLGF concentration in aqueous humor of patients with uveal melanoma following Iodine?125 plaque radiotherapy[J]. Int J Ophthalmol, 2020, 13(4): 599-605.
[25] Filimon A, Preda IA, Boloca AF, et al. Interleukin-8 in melanoma pathogenesis, prognosis and therapy-an integrated view into other neoplasms and chemokine networks[J]. Cells, 2021, 11(1): 120.
[26]" Zhang XP, Li NL, Guo C, et al. A vaccine targeting basic fibroblast growth factor elicits a protective immune response against murine melanoma[J]. Cancer Biol Ther, 2018, 19(6): 518-24.
[27]" Czarnecka AM, Bartnik E, Fiedorowicz M, et al. Targeted therapy in melanoma and mechanisms of resistance[J]. Int J Mol Sci, 2020, 21(13): 4576.
[28]Ten Voorde AMW, Wierenga APA, Nell RJ, et al. In uveal melanoma, angiopoietin?2 but not angiopoietin?1 is increased in high-risk tumors, providing a potential druggable target[J]. Cancers, 2021, 13(16): 3986.
[29] Laurenzana A, Chillà A, Luciani C, et al. uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells[J]. Int J Cancer, 2017, 141(6): 1190-200.
[30] Zhang L, Chen C, Duanmu JX, et al. Cryptotanshinone inhibits the growth and invasion of colon cancer by suppressing inflammation and tumor angiogenesis through modulating MMP/TIMP system, PI3K/Akt/mTOR signaling and HIF-1α nuclear translocation[J]. Int Immunopharmacol, 2018, 65: 429-37.
[31] Pekkonen P, Alve, Balistreri G, et al. Lymphatic endothelium stimulates melanoma metastasis and invasion via MMP14-dependent Notch3 and β1?integrin activation[J]. Elife, 2018, 7: e32490.
[32] Kazerounian S, Lawler J. Integration of pro?and anti?angiogenic signals by endothelial cells[J]. J Cell Commun Signal, 2018, 12(1): 171-9.
[33] Bolzati C, Salvarese N, Carpanese D, et al. 99mTc(N)PNP43]-labeled RGD peptides As new probes for a selective detection of αvβ3 integrin: synthesis, structure?activity and pharmacokinetic studies[J]. J Med Chem, 2018, 61(21): 9596-610.
[34] Siitonen R, Peuhu E, Autio A, et al. 68Ga?DOTA?E[c(RGDfK)]2 PET imaging of SHARPIN-regulated integrin activity in mice[J]. J Nucl Med, 2019, 60(10): 1380-7.
[35] Zheng JL, Miao WB, Huang C, et al. Evaluation of 99mTc?3PRGD2 integrin receptor imaging in hepatocellular carcinoma tumour-bearing mice: comparison with 18F?FDG metabolic imaging[J]. Ann Nucl Med, 2017, 31(6): 486-94.
[36] Panait ME. Evaluation of the cytotoxic effects induced by 68Ga-nodaga?c(rgdfk) and 68Ga-dota-c(rgdfk) in murine malignant melanoma[J]. FARMACIA, 2021, 69(5): 878-82.
[37] Cui JH, Shu CJ, Xu J, et al. JP1 suppresses proliferation and metastasis of melanoma through MEK1/2 mediated NEDD4L-SP1-Integrin αvβ3 signaling[J]. Theranostics, 2020, 10(18): 8036-50.
[38] Wei WJ, Ehlerding EB, Lan XL, et al. PET and SPECT imaging of melanoma: the state of the art[J]. Eur J Nucl Med Mol Imaging, 2018, 45(1): 132-50.
[39] Choi J, Beaino W, Fecek RJ, et al. Combined VLA?4?targeeted radionuclide therapy and immunotherapy in a mouse model of melanoma[J]. J Nucl Med, 2018, 59(12): 1843-9.
[40] Ma XW, Cheng Z. PET imaging of melanoma using melanin-targeted probe[J]. Methods Mol Biol, 2021, 2265: 407-16.
[41] Xu XD, Yuan LJ, Gai YK, et al. Targeted radiotherapy of pigmented melanoma with 131I-5-IPN[J]. J Exp Clin Cancer Res, 2018, 37(1): 306.
[42] Rouanet J, Quintana M, Auzeloux P, et al. Benzamide derivative radiotracers targeting melanin for melanoma imaging and therapy: Preclinical/clinical development and combination with other treatments[J]. Pharmacol Ther, 2021, 224: 107829.
[43] Zhang X, Li M, Gai Y, et al. 18F-PFPN PET: a new and attractive imaging modality for patients with malignant melanoma[J]. J Nucl Med, 2022, 63(10): 1537-43.
[44] Pyo A, Kim DY, Kim H, et al. Ultrasensitive detection of malignant melanoma using PET molecular imaging probes[J]. Proc Natl Acad Sci USA, 2020, 117(23): 12991-9.
[45] Wang YC, Li MT, Zhang X, et al. 18F-5-FPN: a specific probe for monitoring photothermal therapy response in malignant melanoma[J]. Mol Pharm, 2023, 20(1): 572-81.
[46] Ma X, Wang S, Wang S, et al. Biodistribution, radiation dosimetry, and clinical application of a melanin?targeted PET probe, 18F-P3BZA, in patients[J]. J Nucl Med, 2019, 60(1): 16-22.
[47] Hong ZY, Yu B, Xiao JC, et al. A convenient and efficient solid phase extraction?based pathway for purification of melanin-targeted probe 18F-P3BZA[J]. Microchem J, 2021, 164: 106008.
[48]Yang JQ, Xu JL, Gonzalez R, et al. 68Ga?DOTA?GGNle-CycMSHhex targets the melanocortin-1 receptor for melanoma imaging[J]. Sci Transl Med, 2018, 10(466): eaau4445.
[49]" Chen F, Zhang XL, Ma K, et al. Melanocortin-1 receptor-targeting ultrasmall silica nanoparticles for dual-modality human melanoma imaging[J]. ACS Appl Mater Interfaces, 2018, 10(5): 4379-93.
[50]" Zhang CC, Zhang ZX, Lin KS, et al. Melanoma imaging using 18F-labeled α?melanocyte?stimulating hormone derivatives with positron emission tomography[J]. Mol Pharm, 2018, 15(6): 2116-22.
[51] Guo HX, Miao YB. Cu-64-labeled lactam bridge-cyclized α-MSH peptides for PET imaging of melanoma[J]. Mol Pharm, 2012, 9(8): 2322-30.
[52] Qiao Z, Xu JL, Gonzalez R, et al. Novel 64Cu-labeled NOTA-conjugated lactam?cyclized alpha-melanocyte?stimulating hormone peptides with enhanced tumor to kidney uptake ratios[J]. Mol Pharm, 2022, 19(7): 2535-41.
[53] Qiao Z, Xu JL, Gonzalez R, et al. Novel Al 18F?NOTA-conjugated lactam?cyclized α-melanocyte?stimulating hormone peptides with enhanced melanoma uptake[J]. Bioconjug Chem, 2022, 33(5): 982-90.
[54] Carlino MS, Larkin J, Long GV. Immune checkpoint inhibitors in melanoma[J]. Lancet, 2021, 398(10304): 1002-14.
[55]Nienhuis PH, Antunes IF, Glaudemans AWJM, et al. 18F-BMS986192 PET imaging of PD?L1 in metastatic melanoma patients with brain metastases treated with immune checkpoint inhibitors: a pilot study[J]. J Nucl Med, 2022, 63(6): 899-905.
[56] Mishra A, Gupta K, Kumar D, et al. Non-invasive PD-L1 quantification using [18F]DK222-PET imaging in cancer immunotherapy[J]. J Immunother Cancer, 2023, 11(10): e007535.
[57] Wei WJ, Jiang DW, Lee HJ, et al. Development and characterization of CD54-targeted immunoPET imaging in solid tumors[J]. Eur J Nucl Med Mol Imaging, 2020, 47(12): 2765-75.
[58] Kaleem A, Patel N, Chandra SR, et al. Imaging and laboratory workup for melanoma[J]. Oral Maxillofac Surg Clin North Am, 2022, 34(2): 235-50.
(編輯:林" 萍)