[摘要] 目的利用生物信息學方法分析阿爾茨海默病(Alzheimer’s disease,AD)和血管性癡呆(vascular dementia,VD)與正常對照組的差異表達基因(differentially expressed genes,DEGs),篩選關鍵基因并驗證它們與這兩種癡呆的關系。方法 從基因表達綜合數據庫(Gene Expression Omnibus,GEO)獲取基因芯片數據集GSE122063,用GEO2R工具篩選AD、VD與正常對照組的DEGs,利用STRING數據庫建立蛋白相互作用網絡,使用Cytoscape篩選關鍵基因;利用DAVID數據庫分析有網絡連接的DEGs的基因本體(gene ontology,GO)富集和京都基因與基因組百科全書(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路,預測DEGs的生物學功能;最后驗證關鍵基因的表達,采用受試者操作特征曲線檢測診斷效果。結果 AD和VD組分別篩選出1099個和505個DEGs,其中69個在蛋白相互作用網絡中有關聯。根據GO分析,DEGs主要存在于細胞的外側質膜、表面和質膜,它們通過影響信號傳導、炎癥應答等生物過程和具有受體結合、信號受體活性等功能,共同導致癡呆的發生。根據KEGG分析,DEGs在微生物感染、類風濕關節炎、系統性紅斑狼瘡、炎癥性腸病等免疫相關信號通路中有顯著富集。鑒定4個關鍵基因:CCR5、CCL2、FCGR2A和ITGB2,它們在AD和VD組中均有高表達,這些基因的曲線下面積表明它們可能對癡呆的診斷有價值。結論通過生物信息學方法分析AD和VD,發現富集的信號通路和關鍵基因與免疫和炎癥有關。
[關鍵詞] 阿爾茨海默病;血管性癡呆;生物信息學分析;差異表達基因
[中圖分類號] R741.02 [文獻標識碼] A [DOI] 10.3969/j.issn.1673-9701.2024.26.003
Screening and identification of key pathogenic genes for Alzheimer’s disease and vascular dementia
1.Department of Laboratory Medicine, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang, China; 2.Department of Laboratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, China
[Abstract]Objective This study utilizes bioinformatics methods to analyze differentially expressed genes (DEGs) between Alzheimer’s disease (AD) and vascular dementia (VD) compared to normal controls. The aim is to identify key genes and validate their relevance to both types of dementia. Methods Gene chip dataset GSE122063 were obtained from the Gene Expression Omnibus (GEO) database. Using the GEO2R tool, DEGs in AD, VD, and normal control group were screened. We constructed a protein-protein interaction network using the STRING database and identified key genes through Cytoscape. Subsequently, DAVID database were used to analyze gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with interconnected DEGs, predicting their biological functions. Finally, diagnostic performance were validated and assessed by using receiver operating characteristic curves. Results In the AD and VD groups, we identified 1099 and 505 DEGs, respectively, with 69 genes showing associations in the protein-protein interaction network. GO analysis revealed that DEGs are primarily located in the extracellular matrix, cell surface, and plasma membrane. They influence biological processes such as signal transduction and inflammatory responses, with functions related to receptor binding and signal receptor activity, collectively contributing to dementia development. KEGG analysis indicated significant enrichment of DEGs in immune-related signaling pathways, including microbial infections, rheumatoid arthritis, systemic lupus erythematosus, and inflammatory bowel disease. Four key genes—CCR5, CCL2, FCGR2A, and ITGB2—with significantly elevated expression in both AD and VD groups were indentified. The area under the curve suggests their potential diagnostic value for dementia.ConclusionThrough bioinformatics analysis of AD and VD, the enriched signaling pathways and key genes associated with immunity and inflammation were discovered. These findings may play a crucial role in dementia progression and provide new insights for early diagnosis.
[Key words]Alzheimer’s disease; Vascular dementia; Bioinformatics analysis; Differentially expressed genes
癡呆是一種逐漸剝奪人類記憶力、思維能力和社會能力的神經系統疾病,隨著中國及全球人口老齡化的加劇,其發病率不斷攀升,成為公共衛生領域的一大挑戰[1]。癡呆的發病機制尚未明確,這在某種程度上阻礙了疾病的早期識別和精準治療。阿爾茨海默病(Alzheimer’s disease,AD)和血管性癡呆(vascular dementia,VD)是癡呆的兩種主要類型,AD占所有類型癡呆的60%~80%,VD是最常見的非變性病癡呆[2-4]。AD的病理學研究主要集中在兩種蛋白質的異常沉積:β-淀粉樣蛋白(amyloid β-protein,Aβ)和tau蛋白[5]。Aβ在細胞外形成斑塊,tau蛋白在細胞內形成纖維纏結。這些病理變化與神經炎癥、突觸損傷和神經元死亡相關,導致認知功能喪失。VD主要與小血管疾病、動脈粥樣硬化、多發性梗死、血管性白質腦病和海馬壞死等因素有關。盡管AD和VD在臨床和病理上有所不同,但都會導致認知能力嚴重下降[6-8]。盡管現有研究已開始關注AD和VD的發病機制,但對其分子機制的理解仍不足。本研究利用在線數據庫的組學數據,分析AD和VD患者與正常人間的差異表達基因(differentially expressed genes,DEGs),并進一步研究導致AD和VD發病的關鍵基因,為癡呆癥的早期識別和干預提供理論支持。
1 資料與方法
1.1 獲取基因數據
從基因表達綜合數據庫(Gene Expression Omnibus,GEO)下載GSE122063的基因微陣列數據集,該數據集基于GPL16699平臺,包括56個AD樣本、36個VD樣本和44個非癡呆對照組樣本。
1.2 篩選差異基因
GEO2R是一個在線工具,可比較GEO系列中的多個樣品組并篩選出差異基因,將AD組和VD組與對照組比較。DEGs的甄選標準:調整后<0.05且|log FC|≥1.0。
1.3 構建蛋白網絡
STRING數據庫著力于構建與分析蛋白質間既有的及預測的交互網絡,采用結合分值超過0.4的閾值表示中等及以上強度的蛋白-蛋白相互作用(protein-protein interaction,PPI)。利用Cytoscape軟件3.10.0對獲取的PPI網絡進行可視化展示。
1.4 基因集富集分析
利用DAVID Version 6.8(https://david.ncifcrf. gov/)對篩選的DEGs進行基因本體(gene ontology,GO)功能富集和京都基因與基因組百科全書(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路分析。設定值和FDR值均<0.05作為篩選閾值,<0.05為差異有統計學意義。
1.5 驗證關鍵基因
GSE122063數據經log2處理,利用R(4.3.0)preprocessCore包進行數據標準化,對多個探針計算對應基因的平均值。使用ggpubr包和Wilcoxon test比較兩組的表達差異。使用受試者操作特征曲線(receiver operating characteristic,ROC曲線)分析評估關鍵基因在癡呆癥診斷中的有效性。
2 結果
2.1 篩選顯著DEGs
使用GEO2R工具繪制差異基因火山圖,AD組篩選出1099個DEGs,包括402個上調和697個下調。VD組篩選出505個DEGs,包括165個上調和340個下調。通過VENN工具得到兩組DEGs的255個重疊基因,見圖1。
2.2 構建PPI網絡并篩選關鍵基因
從255個DEGs中剔除非編碼RNA(non-coding RNA,ncRNA),專注于編碼蛋白的DEGs,利用STRING數據庫和Cytoscape進行關聯構建和可視化。網絡中的139個節點代表剔除ncRNA后的139個DEGs,這些被STRING數據庫識別并用于構建PPI網絡,網絡中的69個DEGs通過209條邊形成緊密的蛋白網絡關系,見圖2。使用Cytoscape的cytoHubba插件對網絡進行基于4種拓撲分析算法的分析:最大團中心性(maximal clique centrality, MCC)、最大鄰域組件密度(density of maximum neighborhood component,DMNC)、最大鄰域組件(maximum neighborhood component,MNC)、度中心性,分別可視化4種算法下位居前10的關鍵基因,并用韋恩圖取交集篩選得到4個重疊的關鍵基因:CCR5、CCL2、FCGR2A、ITGB2。
2.3 DEGs功能及通路分析
利用DAVID在線數據庫對上述69個具有蛋白交互關系的DEGs進行GO和KEGG分析。GO分析表明,DEGs 在生物過程(biology process,BP)方面主要涉及細胞間信號傳導、炎癥應答等;在細胞組分(cellular component,CC)方面主要分布于外側質膜、血小板微粒等部位;在分子功能(moleclar function,MF)層面主要集中在受體結合、跨膜信號受體活性、信號受體活性等功能上。KEGG通路分析顯示,DEGs涉及多種與微生物感染相關的通路(如冠狀病毒和弓形蟲感染)及其他通路(如類風濕關節炎和炎癥性腸病等),見圖3。
2.4 驗證關鍵基因的表達和診斷效果
分析CCR5、CCL2、FCGR2A、ITGB2在癡呆疾病中的表達差異,發現AD和VD患者組織中的這些基因的mRNA表達上調,見圖4。采用ROC曲線對CCR5、CCL2、FCGR2A、ITGB2的診斷效率進行評價,結果顯示CCR5、CCL2、FCGR2A、ITGB2的曲線下面積(area under the curve,AUC)分別為0.840、0.795、0.804、0.809,均>0.75,見圖5。
3 討論
隨著全球人口老齡化的加速,癡呆(特別是AD和VD)已成為全球健康的主要挑戰之一[9]。盡管癡呆癥的病理機制已有一定的研究,但其分子層面的復雜性仍是一個未解之謎,迫切需要更多的生物標志物來輔助診斷和治療策略的發展。
本研究選取GSE122063數據集,分析其基因表達數據,尋找癡呆癥相關基因。首先分析AD、VD和對照組的差異基因,AD組1099個DEGs,VD組505個DEGs。其次,鑒定并驗證關鍵基因CCR5、CCL2、FCGR2A、ITGB2在AD和VD中的高表達, AUC值均>0.75,具有良好診斷價值。這些基因與免疫和炎癥反應有關,與癡呆的炎性發病機制是一致的[10]。CCR5是一種趨化因子受體,可調節免疫細胞的遷移和活化。研究表明CCR5與AD的發展有著緊密的聯系,是一種關鍵的炎癥受體家族成員,且在AD的發展中起加速作用[11-12]。CCL2是一種趨化因子,可招募免疫細胞到炎癥部位。一項系統性回顧分析發現,CCL2在AD患者的血液和腦脊液中的濃度顯著增加[13-14];也有研究報道CCL2在大腦中的過表達可加速Tau蛋白病理學的發展[15]。FCGR2A是一種免疫球蛋白受體,可介導免疫細胞的吞噬和活化,這暗示FCGR2A在免疫反應中的作用可能與癡呆癥的發病機制有關。ITGB2是一種整合素,可調節細胞的黏附和遷移,其表達增加與微膠質細胞的激活有關。微膠質細胞作為大腦內主導的免疫細胞,在AD的神經炎癥及神經退行性進程中扮演核心角色,ITGB2的微膠質細胞亞群在能量代謝、細胞周期、血管生成、神經髓磷脂形成和修復等方面具有特定功能,在AD患者的血液和腦脊液中的濃度顯著增加,這或可揭示ITGB2在癡呆癥病理生理過程中的潛在影響,表明其在疾病機制中扮演重要角色[16-20]。這些基因的高表達可導致癡呆患者的神經系統出現過度的免疫反應和炎癥反應,從而導致神經細胞的損傷和死亡。在未來的研究中,需要進一步探索這些基因在不同類型癡呆癥中的具體作用及其如何與其他已知的病理過程發生關系。
最后,KEGG通路富集分析揭示與微生物感染的關聯,這與廣泛討論的AD病理機制的微生物假說一致,微生物參與維持中樞神經系統的穩態,可能是中樞神經系統功能障礙的潛在原因。這些DEGs顯著富集于冠狀病毒、弓形蟲感染、類風濕關節炎、系統性紅斑狼瘡、炎癥性腸病等信號通路上。研究發現新冠病毒可導致類似AD的癡呆,這種關聯可能通過神經炎癥和腦微血管損傷機制[21]。弓形蟲感染可導致宿主行為的改變,這種行為改變被認為是弓形蟲在大腦中引起的免疫反應,潛在影響人類的行為,導致認知功能下降[22]。同時有相關文獻報道類風濕關節炎、系統性紅斑狼瘡、炎癥性腸病可能與認知障礙和癡呆有關[23]。這些通路都與免疫反應和炎癥反應有關,這進一步支持本研究的假設,即免疫系統與神經系統的交互作用可能構成癡呆癥進展中的一個關鍵驅動因素,這種神經炎癥可歸因于微生物感染,如新冠病毒和弓形蟲感染,這些感染可加劇或觸發癡呆癥狀。此外,這些通路也可能是癡呆的潛在治療靶點,通過調控這些通路,可減輕癡呆患者的癥狀,甚至阻止癡呆的發展。
總之,本研究可為進一步闡明癡呆的發病機制提供新的線索。但本研究仍存在一定的局限性,如樣本集的規模較為有限,故亟需在更大規模的樣本集中復現研究,以確保研究成果的可靠性。此外,鑒于當前研究主要依賴生物信息學的理論分析,未來有必要開展體內外實驗,對研究結論進行實證性的補充與確認。本研究采用計算生物信息學方法分析癡呆患者中的DEGs,表明CCR5、CCL2、FCGR2A、ITGB2是上調基因,同時具有較高的診斷價值,可能在癡呆癥中發揮重要作用,為癡呆癥的早期診斷和治療提供新的可能性。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] RAZ L, KNOEFEL J, BHASKAR K. The neuro- pathology and cerebrovascular mechanisms of dementia[J]. J Cereb Blood Flow Metab, 2016, 36(1): 172–186.
[2] WILBUR J. Dementia: Dementia types[J]. FP Essent, 2023, 534: 7–11.
[3] ROSTAGNO A A. Pathogenesis of Alzheimer’s disease[J]. Int J Mol Sci, 2022, 24(1): 107.
[4] O’BRIEN J T, THOMAS A. Vascular dementia[J]. Lancet, 2015, 386(10004): 1698–1706.
[5] SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer’s disease[J]. Lancet, 2021, 397(10284): 1577–1590.
[6] SPIRES-JONES T L, HYMAN B T. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease[J]. Neuron, 2014, 82(4): 756–771.
[7] AMAR K, WILCOCK G. Vascular dementia[J]. BMJ, 1996, 312(7025): 227–231.
[8] CAVALIERI M, ENZINGER C, PETROVIC K, et al. Vascular dementia and Alzheimer’s disease-Are we in a dead-end road?[J]. Neurodegener Dis, 2010, 7(1-3): 122–126.
[9] PRINCE M, ALI G C, GUERCHET M, et al. Recent global trends in the prevalence and incidence of dementia, and survival with dementia[J]. Alzheimers Res Ther, 2016, 8(1): 23.
[10] KINNEY J W, BEMILLER S M, MURTISHAW A S, et al. Inflammation as a central mechanism in Alzheimer’s disease[J]. Alzheimers Dement (N Y), 2018, 4: 575–590.
[11] POWER C A, MEYER A, NEMETH K, et al. Molecular cloning and functional expression of a novel CC chemokine receptor cDNA from a human basophilic cell line[J]. J Biol Chem, 1995, 270(33): 19495–19500.
[12] LI T, ZHU J. Entanglement of CCR5 and Alzheimer’s disease[J]. Front Aging Neurosci, 2019, 11: 209.
[13] LIN Z, SHI J L, CHEN M, et al. CCL2: An important cytokine in normal and pathological pregnancies[J]. Front Immunol, 2022, 13: 1053457.
[14] ZHOU F, SUN Y, XIE X, et al. Blood and CSF chemokines in Alzheimer’s disease and mild cognitive impairment: A systematic review and Meta-analysis[J]. Alzheimers Res Ther, 2023, 15(1): 107.
[15] JOLY-AMADO A, HUNTER J, QUADRI Z, et al. CCL2 overexpression in the brain promotes glial activation and accelerates tau pathology in a mouse model of tauopathy[J]. Front Immunol, 2020, 11: 997.
[16] ALBERICI F, BONATTI F, MARITATI F, et al. Association of a polymorphism of the Fcγ-receptor 2A (FCGR2A) gene with chronic periaortitis[J]. Clin Exp Rheumatol, 2018, 37(2): 222–226.
[17] DAI Y, CHEN W, HUANG J, et al. FCGR2A could function as a prognostic marker and correlate with immune infiltration in head and neck squamous cell carcinoma[J]. Biomed Res Int, 2021, 2021: 8874578.
[18] SEGUIN L, DESGROSELLIER J S, WEIS S M, et al. Integrins and cancer: Regulators of cancer stemness, metastasis, and drug resistance[J]. Trends Cell Biol, 2015, 25(4): 234–240.
[19] ZENG F, CAO J, HONG Z, et al. Single-cell analyses reveal the dynamic functions of Itgb2+ microglia subclusters at different stages of cerebral ischemia-reperfusion injury in transient middle cerebral occlusion mice model[J]. Front Immunol, 2023, 14: 1114663.
[20] KAMALIAN A, HO S G, PATEL M, et al. Exploratory assessment of proteomic network changes in cerebrospinal fluid of mild cognitive impairment patients: A pilot study[J]. Biomolecules, 2023, 13(7): 1094.
[21] PE?A-BAUTISTA C, áLVAREZ-SáNCHEZ L, FERRER-CAIROLS I, et al. Assessment of COVID-19 lockdown effect on early Alzheimer’sdisease progression[J]. J Neurol, 2023, 270(10): 4585–4592.
[22] FABIANI S, PINTO B, BONUCCELLI U, et al. Neurobiological studies on the relationship between toxoplasmosis and neuropsychiatric diseases[J]. J Neurol Sci, 2015, 351(1-2): 3–8.
[23] SHARMA S R, CHEN Y. Rheumatoid arthritis and cognitive impairment or dementia: An updated review of epidemiological data[J]. J Alzheimers Dis, 2023, 95(3): 769–783.
(收稿日期:2024–06–12)
(修回日期:2024–07–16)