




摘要:通過設計有效的時滯反饋控制器和開環控制器,研究帶耦合時滯分數階社團網絡的聚類滯后同步問題。網絡中不同社團的節點動力學是不同的,且與同步目標的滯后性也是不同的。基于Lyapunov函數方法和分數階系統穩定性理論,給出了網絡實現聚類滯后同步的充分條件。最后,通過數值與仿真實例驗證理論結果的正確性和有效性。
關鍵詞:耦合時滯;分數階;社團網絡;聚類滯后同步
中圖分類號:O231.5;N94文獻標識碼:A
基金項目:國家自然科學基金(61963019);江西省杰出青年人才資助計劃(20171BCB23031)
第一作者:吳聰玲(1999-),女,江西吉安人,碩士,主要研究方向為動力系統與混沌控制。
通信作者:吳召艷(1979-),男,江蘇徐州人,博士,教授,主要研究方向為復雜網絡的建模、分析與控制。
Cluster Lag Synchronization in Fractional-order Community Networks with Coupling Delay
WU Congling,WU Zhaoyan
(College of Mathematics and Statistics,Jiangxi Normal University,Nanchang 330022,China)
Abstract:Through designing effective delayed feedback and open-loop controllers, the cluster lag synchronization problem of fractional order community network is studied. For different communities of the network, both the node dynamics and the lags with synchronization goals are nonidentical. Based on the Lyapunov function method and the stability theory of fractional order system, the sufficient condition for achieving the cluster lag synchronization is derived. Finally, the correctness and effectiveness of the theoretical results are verified by numerical and simulation examples.
Keywords: coupling delay;fractional-order;community network;cluster lag synchronization
0 引言
在自然界和人類社會中,復雜網絡無處不在,例如,社交網絡、電力網絡、流行病傳播網絡、生物網絡等[1-4]。在復雜網絡的各種動態行為中,同步是最重要的集群行為之一,指所有的節點相互同步或達到期望的軌道[5],其在數字通信、安全通信和圖像加密[6-9]中都得到了廣泛應用。從同步的類型來看,同步分為聚類同步、滯后同步、完全同步、投影同步、反同步等[10-14]。其中,聚類同步廣泛存在于社團網絡中。在社團網絡中,節點被劃分為若干個社團,同一個社團中的節點有著相同的動力學行為且相互之間聯系比較緊密,而不同社團的節點具有不同的動力學行為且相互之間聯系較為稀疏。當同一個社團中的節點實現同步,不同社團的節點不相互同步時,就說網絡實現了聚類同步。
在現實世界中,時滯是不可避免的。例如神經元之間的信息交換、安全通信和動力系統的電子實現等。一方面,復雜網絡的節點與節點之間在進行信息交換時存在通信(耦合)時滯,另一方面,有時不希望兩個節點在同一時刻達到同步,而是一個節點達到某個狀態后,另一個節點在一段時間后也達到此狀態,通常把這種帶有時滯的同步定義為滯后同步[15]。 文獻[16]研究了帶有通信(耦合)時滯的復雜動力學網絡上的滯后同步。文獻[17]采用間歇控制實現變時滯混沌系統滯后同步。由于社團網絡的特性,不同的社團不僅實現的目標可能不同,實現目標的時間點也可能不同,即不同社團實現不同的滯后同步,將其稱為聚類滯后同步。文獻[18]用間歇牽制控制方法研究了整數階社團網絡的聚類滯后同步問題,但是帶有耦合時滯的分數階社團網絡的聚類滯后同步卻少有研究。
分數階微積分將經典微積分的階數由整數拓展到了實數。分數階微積分幾乎是和經典微積分同時提出來的,但直到1984年Mandelbort提出客觀世界中有許多分數維的現象,分數階微積分才迎來了新的發展。由于分數階微積分特有的記憶性,分數階系統更能有效描述物理和工程中的遺傳和記憶的性質。分數階系統的實際應用包括粘彈性、分數階電感器、內聚斷裂模型和量子力學等[19-22]。因此,越來越多的研究者開始投入分數階復雜網絡的同步研究。
5 結論
本文考慮了帶有耦合時滯的分數階社團網絡的聚類滯后同步問題,基于Lyapunov函數方法和分數階微積分理論,給出了實現社團網絡聚類滯后同步的充分條件,并給出數值例子驗證了理論結果的正確性。
本文中不同社團實現滯后同步的時滯不同,但其分數階階數和節點動力學的維數相同。對于帶不同階數或維數的分數階社團網絡的同步問題,如何設計有效的控制器是值得研究的一個問題。
參考文獻:
[1]SONG X Y, JIA X J, CHEN N N. Sensitivity analysis of multi-state social network system based on MDD method[J]. IEEE Access,2019,7(12):167714-167725.
[2]ARNDT T,GRUNDMANN J,KUHNERT A, et al. Aspects on HTS applications in confined power grids[J]. Superconductor Science and Technology,2014,27(12):124010.
[3]YANG J X. Epidemic spreading on multilayer homogeneous evolving networks[J]. Chaos,2019,29(10):103146.
[4]YU D,KIM M,XIAO G H,et al. Review of biological network data and Its applications[J]. Genomics amp; Informatics,2013,11(4):200.
[5]汪小帆,李翔,陳關榮.網絡科學導論[M].北京:高等教育出版社,2012.
[6]KARTASCHOFF P. Synchronization in digital communications networks[J]. Proceedings of the IEEE, 1991,79(7):1019-1028.
[7]LIU S T,ZHANG F F. Complex function projective synchronization of complex chaotic system and its applications in secure communication[J]. Nonlinear Dynamics,2017,76(2):1087-1097.
[8]祝曉靜,李科贊,丁勇.相繼投影同步及其在保密通信中的應用[J].復雜系統與復雜性科學,2022,19(1):27-33.
ZHU X J,LI K Z,DING Y. Successive projective synchronization and its application in secure communication[J]. Complex Systems and Complexity Science,2022,19(1):27-33.
[9]CFEN J R,JIAO L C,WU J, et al. Projective synchronization with different scale factors in a drivenresponse complex network and its application in image encryption[J]. Nonlinear Analysis:Real World Applications, 2010,11(4):3045-3058.
[10] HU C, JIANG H J. Cluster synchronization for directed community networks via pinning partial schemes[J]. Chaos,Solitons and Fractals. 2012,45(11):1368-1377.
[11] LI N,CAO J D. Lag Synchronization of memristor-based coupled neural networks via ω-measure[J]. IEEE Transactions on Neural Networks and Learning Systems,2016,27(3):686-697.
[12] LOPES L M,FERNANDES S,GRACIO C. Complete synchronization and delayed synchronization in couplings[J]. Nonlinear Dynamics,2015,79(2):1615-1624.
[13] CHEN S,CAO J D. Projective synchronization of neural networks with mixed time-varying delays and parameter mismatch[J]. Nonlinear Dynamics,2012,67(2):1397-1406.
[14] LI H L,JIANG Y L,WANG Z L. Anti-synchronization and intermittent anti-synchronization of two identical hyperchaotic Chua systems via impulsive control[J]. Nonlinear Dynamics,2015,79(2):919-925.
[15] 王鵬.幾類復雜網絡滯后同步控制研究[D].湖北:中南民族大學,2019.
WANG P. Research on delay synchronous control of several types of complex networks[D].Hubei:Central" South University for Nationalities,2019.
[16] ZHANG X J,WEI A J,LI K Z.Successive lag synchronization on dynamical networks with communication delay[J]. Chinese Physics B,2016,25(3):038901.
[17] 何素蘭,吳召艷.變時滯混沌系統的間歇控制滯后同步[J].江西科學,2017,35(2):239-242.
HE S L,WU Z Y. Intermittent control delay synchronization of chaotic systems with variable time delay[J]. Jiangxi Science,2017,35(2):239-242.
[18] WU Z Y,FU X C. Cluster lag synchronisation in community networks via linear pinning control with local intermittent effect[J]. Physica A: Statistical Mechanics and Its Applications,2014,395:487-498.
[19] GUO J Q,YIN Y J,PENG G. Fractional-order viscoelastic model of musculoskeletal tissues: Correlation with fractals[J]. Proceedings of the Royal Society A: Mathematical,Physical and Engineering Sciences,2021,477(2249):20200990.
[20] KARTCI A,ELWAKIL A. Fractional-order inductor: design,simulation,and implementation[J]. IEEE Access,2021,9(5):73695-73702.
[21] GIRALDO-LONDONO O,PAULINO G H,BUTTLAR W G. Fractional calculus derivation of a rate-dependent PPR-based cohesive fracture model: theory,implementation,and numerical results[J]. International Journal of Fracture,2019,216(1):1-29.
[22] ZHANG X,WEI C Z,LIU W M,et al. Fractional corresponding operator in quantum mechanics and applications: a uniform fractional Schrdinger equation in form and fractional quantization methods[J]. Annals of Physics,2014,350:124-136.
[23] KILBAS A A,SRIVASTAVA H M,TRUJILLO J J. Theory and Applications of Fractional Differential Equations[M].Netherlands:Elsevier,2006.
[24] YANG S,HU C,YU J,et al. Exponential stability of fractional-order impulsive control systems with applications in synchronization[J].IEEE Transactions on Cybernetics,2020,50(7):3157-3168.
[25] WU Q.A new type of the Gronwall-Bellman inequality and its application to fractional stochastic differential equations[J]. Cogent Mathematics,2017,4(1):1279781.
(責任編輯 耿金花)