999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

納米短纖維復(fù)合水凝膠的制備及其生物醫(yī)學(xué)應(yīng)用

2024-12-31 00:00:00于楊鄒玉姣趙毅麗李妮
絲綢 2024年11期

Preparation of short nanofiber composite hydrogels and their biomedical applications

摘要:

水凝膠以高水含量、卓越的生物相容性和藥物包封性能而備受矚目,由于其在力學(xué)性能與模擬細(xì)胞外基質(zhì)(ECM)等方面存在不足,從而限制了其生物醫(yī)學(xué)應(yīng)用。引入具備高比表面積、高長(zhǎng)徑比和良好單分散性的納米短纖維,是彌補(bǔ)這些局限并擴(kuò)展其應(yīng)用潛力的有效方法之一。為促進(jìn)納米短纖維復(fù)合水凝膠的開發(fā)和應(yīng)用,本文綜述了納米短纖維的功能化方法及其與水凝膠的復(fù)合方式,并分類介紹了復(fù)合水凝膠在組織工程、藥物遞送及生物傳感與檢測(cè)這3個(gè)方面的生物醫(yī)學(xué)應(yīng)用。最后,結(jié)合短纖維復(fù)合水凝膠當(dāng)前發(fā)展分析了其在生物醫(yī)學(xué)領(lǐng)域應(yīng)用中所面臨的挑戰(zhàn)和未來的發(fā)展前景。

關(guān)鍵詞:

納米纖維;功能化短纖維;水凝膠;組織工程;藥物遞送;傳感與檢測(cè)

中圖分類號(hào):

TS102.65

文獻(xiàn)標(biāo)志碼:

A

文章編號(hào): 1001-7003(2024)11-0056-12

DOI: 10.3969/j.issn.1001-7003.2024.11.007

收稿日期:

20240302;

修回日期:

20241009

基金項(xiàng)目:

中華人民共和國(guó)商務(wù)部繭絲綢發(fā)展專項(xiàng)一般項(xiàng)目(23070148-C)

作者簡(jiǎn)介:

于楊(1997),男,碩士研究生,研究方向?yàn)槔w維增強(qiáng)水凝膠復(fù)合材料的制備及其抗腫瘤應(yīng)用。通信作者:趙毅麗,講師,yzhao@zstu.edu.cn。

高分子材料科學(xué)和納米成形技術(shù)的迅速發(fā)展推動(dòng)了水凝膠和納米纖維在生物醫(yī)學(xué)領(lǐng)域的廣泛應(yīng)用。水凝膠由親水性聚合物交聯(lián)形成,具備高含水量和孔隙率、良好的生物相容性及藥物包封能力。通過設(shè)計(jì)控制其組成結(jié)構(gòu),可以創(chuàng)造出不同機(jī)械性能、降解速率和刺激—響應(yīng)能力的智能水凝膠。然而,傳統(tǒng)水凝膠在模擬細(xì)胞外基質(zhì)(ECM)方面存在局限,且單一的物理化學(xué)交聯(lián)常使其力學(xué)性能不足。因此,研究者借鑒宏觀復(fù)合材料的纖維增強(qiáng)策略,將直徑在數(shù)十至數(shù)百納米內(nèi)的納米纖維整合入水凝膠中。這些納米纖維具有較大的長(zhǎng)徑比和比表面積,可模擬細(xì)胞外基質(zhì)的微結(jié)構(gòu),形成的納米纖維復(fù)合水凝膠在藥物遞送和組織工程等生物醫(yī)學(xué)應(yīng)用中表現(xiàn)出卓越性能。如Jang等[1]通過將聚己內(nèi)酯(PCL)與乙醇進(jìn)行同軸靜電紡絲,實(shí)現(xiàn)了納米纖維在接收器表面的海藻酸鈉/CaCO3凝膠薄層上逐層堆疊。這一方法有效地分散了納米纖維,并將其整合入水凝膠之中,從而顯著提升了最終復(fù)合材料的抗壓強(qiáng)度和剛度。Zhang等[2]采用模具對(duì)聚乳酸—羥基乙酸共聚(PLCL)納米纖維進(jìn)行三維塑形,并利用負(fù)壓技術(shù)實(shí)現(xiàn)角蛋白凝膠與纖維的緊密結(jié)合,創(chuàng)造了具有優(yōu)良界面黏附力的雙層結(jié)構(gòu)。

然而,納米纖維增強(qiáng)水凝膠仍面臨幾個(gè)關(guān)鍵挑戰(zhàn)。首先,以靜電紡絲為主的連續(xù)納米纖維氈/膜,孔隙小,密度大,限制了氣液物質(zhì)交換[3]。其次,二維納米纖維膜既難以模擬ECM復(fù)雜的微/納結(jié)構(gòu),也無(wú)法應(yīng)用于對(duì)材料三維形態(tài)有要求的領(lǐng)域。此外,將纖維穩(wěn)定而均勻地分散于凝膠網(wǎng)絡(luò)中,是構(gòu)建穩(wěn)定的納米纖維復(fù)合水凝膠的一項(xiàng)技術(shù)挑戰(zhàn)[4]。最后,納米纖維長(zhǎng)絲于水凝膠內(nèi)部形成的聚集體會(huì)限制材料的可注射性,影響微創(chuàng)治療應(yīng)用[5]。

近年來,制備納米短纖維并用于增強(qiáng)水凝膠的研究備受關(guān)注。通過施加高剪切應(yīng)力來切割并制備均質(zhì)化的納米短纖維,是獲取短纖維的基本方法之一[6-9]。為了提高長(zhǎng)度一致性,研究者們進(jìn)一步探索了冷凍切割法[10-12]和超聲破碎法[13-15]。研究表明,均勻分散于水凝膠中的納米短纖維,不僅改善了其分布不均和流動(dòng)性受限的問題,也使三維構(gòu)型纖維復(fù)合水凝膠具備可3D打印與可注射的性能[16,17]。然而,目前對(duì)納米短纖維復(fù)合水凝膠材料的理解尚不全面。本文綜述了納米短纖維的功能化方法及其與水凝膠的復(fù)合方式對(duì)材料性能的影響,并概括了其在生物醫(yī)學(xué)領(lǐng)域的應(yīng)用局限性和未來發(fā)展前景。

1" 短纖維功能化

功能化的短纖維在水凝膠材料中扮演著多重角色,從藥物或納米顆粒物理?yè)诫s、纖維表面改性、成纖聚合物改性,到特殊工藝制備的本征功能化短纖維,這些方法在提高水凝膠性能、模擬特定組織微結(jié)構(gòu)、促進(jìn)醫(yī)學(xué)應(yīng)用等方面發(fā)揮關(guān)鍵作用。

1.1" 物理?yè)诫s

利用靜電紡絲技術(shù)的高可拓展性,將納米藥物負(fù)載于納米短纖維中作為水凝膠的次級(jí)負(fù)載平臺(tái),賦予水凝膠特定的功能。Ghaderinejad等[18]采用離心紡絲/冷凍切割技術(shù),將含有超順磁氧化鐵磁性納米顆粒(SPIONs)的PCL納米短纖維混入海藻酸鹽可注射水凝膠中,制得一種在外部磁場(chǎng)下可實(shí)現(xiàn)取向排列的復(fù)合材料,磁場(chǎng)取向后的磁性納米纖維顯著提高了水凝膠的模量,并加速了嗅黏膜間充質(zhì)干細(xì)胞(OE-MSCs)的定向神經(jīng)分化。

此外,功能化的納米短纖維能更有效地模擬特定生理組織的胞外微結(jié)構(gòu)。Cheng等[19]設(shè)計(jì)了一種旨在治療骨缺損的酶催化交聯(lián)絲素蛋白(SF)水凝膠,其中包含了負(fù)載硅納米顆粒的絲素蛋白納米短纖維(SiNPs@NFs)以增強(qiáng)其性能與模仿天然骨細(xì)胞ECM的結(jié)構(gòu),如圖1所示,SiNPs@NFs(5%)的添加將水凝膠的壓縮模量從30.9 kPa顯著增加至234.6 kPa,同時(shí)還促進(jìn)了細(xì)胞的黏附、增殖和成骨分化,為治療大型顱骨缺損提供了一種新方法。

同時(shí),靜電紡絲技術(shù)可實(shí)現(xiàn)在短纖維內(nèi)負(fù)載多種藥物,在同一凝膠中發(fā)揮組合功效。Wei等[20]經(jīng)靜電紡絲/冷凍切割技術(shù)制備了含有軟骨分化誘導(dǎo)劑KGN和抗炎藥Celecoxib的聚乙二醇聚乳酸(PELA)短纖維(Fk,F(xiàn)c),隨后與骨髓間充質(zhì)干細(xì)胞(MSC)共同培養(yǎng)組裝形成細(xì)胞球體(CS),加入到透明質(zhì)酸(HA)水凝膠中,形成Fk-CS@HA-FC纖維復(fù)合水凝膠。加入短纖維后,水凝膠的力儲(chǔ)能模量從860 Pa增加至2 150 Pa,并為MSC分化、ECM沉積和軟骨再生提供了必要的生化和機(jī)械條件,展現(xiàn)了治療骨軟骨缺損和骨關(guān)節(jié)炎的潛力。

納米顆粒、生物及化學(xué)等藥物被直接摻入納米纖維,這種方法直觀、簡(jiǎn)便,制備過程易于操作且具有高度的可擴(kuò)展性,該技術(shù)對(duì)于纖維材料的選擇具有較大的靈活性。然而,其局限性包括藥物釋放缺乏可控性和短纖維處理后藥物負(fù)載量減少,這些問題需要在未來的研究中得到深入研究和改進(jìn)。

1.2" 纖維表面改性

高比表面積是納米纖維材料的顯著優(yōu)勢(shì)之一,其在轉(zhuǎn)化為短纖維時(shí)仍然保留,并且由于擺脫了連續(xù)結(jié)構(gòu)的限制,短纖維可均勻分散并與水凝膠自由結(jié)合。Li等[21]通過等離子體

活化/冷凍切割制備了表面羧基密度和長(zhǎng)度分布可控的PCL納米短纖維,纖維表面引入馬來酰亞胺(MAL)后與巰基化透明質(zhì)酸(HA-SH)水凝膠結(jié)合形成MAL-PCL@HA纖維復(fù)合凝膠,顯著改善其結(jié)構(gòu)均一性與機(jī)械性能。此外,Wang等[22]通過靜電紡絲/均質(zhì)化技術(shù)得到的聚乳酸—甘醇酸(PLGA)短纖維在氨基化處理后(APLGA),親水性提高、長(zhǎng)度更短、直徑略小,并且其表面的氨基與明膠甲基丙烯酸酯/氧化右旋糖酐(GM/ODex)水凝膠基質(zhì)的醛基反應(yīng),使其分散性得以改善。

此外,將細(xì)胞因子藥物偶聯(lián)于納米纖維表面是提高其穩(wěn)定性、留存性并延緩失效的一種方法。Bruggeman等[23]將腦源性神經(jīng)生長(zhǎng)因子(brain-derived neuotrophyic factor,BDNF)分別以物理?yè)诫s和胺—巰基共價(jià)固定兩種方式負(fù)載于聚乳酸(PLA)短纖維上,摻入自組裝肽(SAP)中制成短纖維復(fù)合凝膠支架,浸泡6 d后,共價(jià)固定的BDNF釋放量?jī)H有物理共混的1/12,凸顯了該方法的長(zhǎng)期穩(wěn)定性。類似地,Wang等[24]同樣利用胺—巰基共價(jià)固定將膠質(zhì)細(xì)胞源性神經(jīng)營(yíng)養(yǎng)因子(glialcellline-derived neurotrophic factor,GDNF)固定在聚左旋乳酸(PLLA)納米短纖維表面,加入到木聚糖水凝膠中形成復(fù)合支架,顯著改善了多巴胺祖細(xì)胞(dopaminergic progenitors cells)的移植效果,提高了2倍存活率,促進(jìn)軸突生長(zhǎng),展現(xiàn)出在神經(jīng)退行性疾病治療領(lǐng)域的巨大潛力。

表面功能化的短纖維,不僅可以實(shí)現(xiàn)細(xì)胞因子等藥物的穩(wěn)定負(fù)載,還能改善纖維—水凝膠的界面相互作用,提高了水凝膠的機(jī)械性能。然而,短纖維的功能化表面被水凝膠包裹,不與外界環(huán)境直接接觸,在一定程度上限制了其功能的發(fā)揮。

1.3" 成纖聚合物改性

由于制造技術(shù)的限制,對(duì)纖維進(jìn)行后續(xù)的復(fù)雜化學(xué)轉(zhuǎn)化或加工可能面臨一些實(shí)際困難。為應(yīng)對(duì)這一問題,利用靜電紡絲工藝的簡(jiǎn)便性和易成型性,通過對(duì)納米纖維的基體材料進(jìn)行選擇、設(shè)計(jì)和預(yù)處理,有望創(chuàng)造出具有特定本征性能的功能化纖維。Zhang等[25]將環(huán)氧開環(huán)聚合(ROP)和原子轉(zhuǎn)移自由基聚合(ATRP)合成的聚(2-二甲氨基)甲基丙烯酸乙酯(PDMAEMA)嵌段共聚物進(jìn)行季銨鹽化,得到PDMAEMA-Q,然后通過靜電紡絲/均質(zhì)化方法制備了PLA/PDMAEMA-Q納米短纖維。季銨鹽改性后的短纖維在羧甲基纖維素(CMC)水凝膠中表現(xiàn)出更強(qiáng)的親水性和分散性,增強(qiáng)了相互作用,使復(fù)合水凝膠的儲(chǔ)能模量G′從390 Pa提高至960 Pa。

1.4" 本征功能納米短纖維

靜電紡絲并不是制造納米纖維的唯一方法,相比“由大變小”地將纖維長(zhǎng)絲短切,利用生物合成[26-28]、大分子組裝[29-31]或無(wú)機(jī)材料[32-34]生長(zhǎng)等自然界中“由小變大”形成納米纖維結(jié)構(gòu)的反應(yīng)與現(xiàn)象,開發(fā)具有本征功能性的納米短纖維是一種新的思路。如Zhi等[35]通過大腸桿菌培養(yǎng)獲得了大量長(zhǎng)約900 nm的絲狀噬菌體M13病毒纖維,在其表面偶聯(lián)苯硼酸衍生物(DOCPBA),構(gòu)建了對(duì)多元醇敏感的納米纖維狀生物偶合物PBA-M13,加入PVA溶液中通過硼酸酯動(dòng)態(tài)共價(jià)鍵交聯(lián),制備了一種葡萄糖觸發(fā)胰島素釋放的可注射水凝膠。Lee等[36]通過PCR擴(kuò)增與重組蛋白技術(shù)制造了基于酵母Sup35和SSB/La蛋白的Sup35-SSB/La融合蛋白,經(jīng)超聲破碎、自組裝后形成100~400 nm的管狀SuPNPs蛋白纖維探針,通過生物素化或乙烯基化分散于鏈霉親和素/丙烯酰胺水凝膠中復(fù)合,構(gòu)建了可以檢測(cè)SSB/La抗體標(biāo)記的SuPNPs纖維復(fù)合水凝膠免疫檢測(cè)平臺(tái)。此外,無(wú)機(jī)納米線也是常見的一種功能短纖維,Xue等[37]采用甲基丙烯酸化明膠(GelMA)作為水凝膠基質(zhì),以還原法制備的銀納米線(AgNW)作為導(dǎo)電摻雜劑,通過定向冷凍技術(shù)制備了一種用于肌肉缺損修復(fù)的各向異性導(dǎo)電水凝膠支架。

特殊工藝制備的納米短纖維是靜電紡絲技術(shù)的一個(gè)重要補(bǔ)充,通過將所得短纖維應(yīng)用于水凝膠中,成功提高了整體性能,為實(shí)現(xiàn)具有特定性能的納米復(fù)合材料提供了一種可行途徑。

2" 復(fù)合方法

水凝膠與納米短纖維的復(fù)合豐富了生物醫(yī)學(xué)材料的設(shè)計(jì)與制備。水凝膠以三維結(jié)構(gòu)、生物相容性和藥物包封能力而著稱,而納米短纖維則具備微納結(jié)構(gòu)、高比表面積和各向異性,能夠模擬細(xì)胞基質(zhì)微環(huán)境。通過物理混合、共價(jià)交聯(lián)等手段,巧妙地組合兩者,充分發(fā)揮各自優(yōu)勢(shì),為材料性能和應(yīng)用提供新可能。

2.1" 物理共混

納米短纖維復(fù)合水凝膠常使用簡(jiǎn)單物理共混實(shí)現(xiàn)納米短纖維在水凝膠中的均勻分散。Poveda等[38]通過靜電紡絲和湍流凝固域法分別制備了PLLA納米纖維(PLLA-ES和PLLA-HT),均質(zhì)短纖維化后超聲分散于氨化明膠溶液中,經(jīng)戊二醛交聯(lián)得到短纖維復(fù)合凝膠。對(duì)比分析顯示,PLLA-ES纖維比PLLA-HT結(jié)構(gòu)更細(xì)致,比表面積更大,表現(xiàn)出更佳的分散性和增強(qiáng)效應(yīng),能夠更好地嵌入凝膠基質(zhì)以支持細(xì)胞生長(zhǎng)。Regev等[39]在載玻片上均勻涂布明膠溶液,靜電紡絲沉積牛血清白蛋白(BSA)納米纖維,多次重復(fù)形成纖維明膠分層復(fù)合結(jié)構(gòu),冷凍切割成小方塊后熔化,葡聚糖交聯(lián)形成凝膠,制備了短纖維長(zhǎng)度、濃度可調(diào)的復(fù)合水凝膠,提高了其彈性模量和凝膠化速度,同時(shí)保留了可注射性,適用于心肌、軟骨等柔軟組織再生。光刻技術(shù)在形成微觀精細(xì)結(jié)構(gòu)上有一定的優(yōu)勢(shì),Matera等[40]將摻雜光引發(fā)劑I2959的乙烯基磺化改性葡聚糖(DexVS)靜電紡納米纖維沉積在玻璃板上,利用柵式光掩膜紫外交聯(lián)得到定制長(zhǎng)度的DexVS短纖維,分散在甲基丙烯酸酯—明膠(GelMA)溶液中,紫外輻照下形成DexVS/GelMA復(fù)合凝膠,豐富了凝膠支持微結(jié)構(gòu),提升了細(xì)胞的有序性和傳播速率,如圖2所示。

物理共混作為一種簡(jiǎn)單的結(jié)合方法,操作方便、易于實(shí)施,快速獲得復(fù)合材料。然而,纖維與水凝膠之間的結(jié)合相對(duì)較弱,容易發(fā)生纖維團(tuán)聚的現(xiàn)象,不僅降低了共混材料的均勻性,還可能破壞凝膠的結(jié)構(gòu),從而影響整體性能。

2.2" 共價(jià)交聯(lián)

共價(jià)交聯(lián)可在短纖維與凝膠基質(zhì)間形成穩(wěn)定的化學(xué)鍵,從而提高整體穩(wěn)定性和耐久性。Wang等[22]通過在明膠甲基丙烯酸酯/氧化右旋糖酐(GM/ODex)水凝膠中引入氨基化PLGA短纖維(APLGA),與富含醛基的ODex發(fā)生席夫堿反應(yīng),制得了GM/ODex-APLGA原位水凝膠,展現(xiàn)出良好的纖維分散性和更均勻的孔隙,大幅提升了壓縮模量。類似地,Juan等[41]以2,2,6,6-四甲基哌啶氧化物和碘酸鹽對(duì)纖維素納米纖維(CNFs)氧化改性,得到含醛基的纖維素納米纖維(MCNFs),以該纖維作為交聯(lián)劑與乙二醇?xì)ぞ厶牵℅C)之間發(fā)生席夫堿反應(yīng)交聯(lián)形成高自愈合效率、良好注射性及良好生物相容與降解性的GC-MCNF水凝膠。

共價(jià)作用在將短纖維與水凝膠結(jié)合方面提供了可靠的手段,形成更緊密的整體結(jié)構(gòu),使得復(fù)合材料在一些特定應(yīng)用中表現(xiàn)出色。然而,這一方法的選材受到限制,需要選擇能夠有效形成共價(jià)鍵的材料,增加了研究和生產(chǎn)的復(fù)雜性。

2.3" 非共價(jià)作用

除了共價(jià)交聯(lián),非共價(jià)作用也廣泛應(yīng)用于納米短纖維復(fù)合水凝膠的制備。利用氫鍵、范德華力等非共價(jià)相互作用手段,使納米纖維與水凝膠基質(zhì)發(fā)生相互作用,從而調(diào)控水凝膠的結(jié)構(gòu)與性能。Li等[42]通過均質(zhì)化處理將天然桑蠶絲短纖維化(SNF)并分散在殼聚糖(CS)溶液中,冷凍干燥制成SNF/CS復(fù)合支架。在添加SNF后,CS水凝膠的羥基紅外吸收峰發(fā)生了位移,證明了氫鍵的形成。相較于純CS支架,添加短纖維的多孔SNF/CS支架在干態(tài)和濕態(tài)下均表現(xiàn)出壓縮模量和強(qiáng)度的顯著提高。

仿生學(xué)為研究工作提供了豐富的啟示。一些生物分子相互作用,由于其強(qiáng)烈的親和力和特異性,被應(yīng)用于新材料的開發(fā)。Lee等[36]通過基因技術(shù)構(gòu)建編碼Sup35-SSB/La融合蛋白的質(zhì)粒表達(dá)載體,轉(zhuǎn)化大腸桿菌以合成生物素化的bt-SuPNPs融合蛋白,自組裝為短纖維后加入鏈霉親和素/丙烯酰胺水凝膠中,利用鏈霉親和素與生物素的特異結(jié)合使蛋白短纖維非共價(jià)固定在凝膠內(nèi),提高了SSB/La抗體檢測(cè)的靈敏度與穩(wěn)定性。

雖然在材料和功能化的選擇上有所限制,但生物體內(nèi)常見的生物基材料,如生物素、多糖和肽類物質(zhì),天然地以非共價(jià)作用結(jié)合,展現(xiàn)出高度特異性和生物親和,為纖維復(fù)合水凝膠在生物醫(yī)學(xué)領(lǐng)域的應(yīng)用提供了有利特性。

2.4" 外界作用輔助混合

同樣是一維納米材料,短纖維相比長(zhǎng)絲納米纖維有著更大的可活動(dòng)空間,在外界作用輔助下納米短纖維聚合體能在水凝膠內(nèi)部形成特殊的微環(huán)境。Islam等[43]開發(fā)了一種利用磁性納米纖維水凝膠實(shí)現(xiàn)對(duì)干細(xì)胞分化動(dòng)態(tài)調(diào)控的方法,如圖3所示。首先通過靜電紡絲/超聲破碎制備了負(fù)載Fe3O4磁性顆粒的明膠納米短纖維,將其與干細(xì)胞(ADSCs)混合注入丙烯酸改性明膠—甲基丙烯酸酐水凝膠基質(zhì)中,光交聯(lián)形成了短纖維/干細(xì)胞—水凝膠復(fù)合材料,可在磁場(chǎng)作用下,增強(qiáng)纖維間相互作用,形成取向結(jié)構(gòu),提升水凝膠的剛度并增強(qiáng)細(xì)胞多核化和肌管形成,從而促進(jìn)成骨分化。

此外,磁性材料在外加磁場(chǎng)中的有序排列使得納米顆粒聚集并在納米尺度上展現(xiàn)出連續(xù)線性結(jié)構(gòu),在物理性質(zhì)和功能上表現(xiàn)出一維材料,即納米纖維的典型特征。Kim等[44]采用共沉淀法合成了Fe3O4磁性納米顆粒,通過配位作用和酰胺化與膠原蛋白纖維偶聯(lián),投入膠原蛋白水凝膠中,在外加磁場(chǎng)下,磁性顆粒取向排列形成類似納米纖維的一維線性結(jié)構(gòu),帶動(dòng)蛋白纖維在水凝膠中組裝為高度取向的微結(jié)構(gòu),如圖4所示。相較于未取向的水凝膠,成纖維細(xì)胞在這種取向水凝膠中展現(xiàn)出更顯著的延伸性,生長(zhǎng)方向往往平行于顆粒鏈方向,這表明納米顆粒在三維基質(zhì)中形成的取向結(jié)構(gòu)為細(xì)胞生長(zhǎng)提供了引導(dǎo)。

納米短纖維不僅可以增強(qiáng)水凝膠,其本身也可作為水凝膠的主體材料。生物大分子,如肽和蛋白質(zhì),借助其自組裝能力及鹽析效應(yīng),往往可以直接與水結(jié)合形成各種結(jié)構(gòu)的水凝膠,為在納米尺度上設(shè)計(jì)制備具有特定功能的水凝膠提供了一種高效途徑。Zhang等[45]利用固相肽合成技術(shù)成功合成了一種溫度敏感的羧端基兩親多肽,其在特定離子環(huán)境下能夠自組裝成納米短纖維。通過升溫—冷卻處理,多肽溶液的黏度顯著增加,再經(jīng)機(jī)械拉伸注入含鹽溶液中,可形成均勻雙折射性的面條狀凝膠。在室溫下,溶液中的多肽分子呈薄片結(jié)構(gòu),直接鹽析會(huì)形成隨機(jī)糾纏的凝膠結(jié)構(gòu),而加熱誘導(dǎo)的脫水和自組裝過程會(huì)使其形成有序排列的納米纖維束,可促進(jìn)干細(xì)胞在三維環(huán)境中的取向和遷移。類似地,Mredha等[46]將魚鰾膠原蛋白溶液注入磷酸氫二鈉溶液,借助注射流剪切力與鹽擴(kuò)散的協(xié)同作用,構(gòu)建出兼具縱向排列和同心定向納米纖維結(jié)構(gòu),通過在體系中引入聚(N,N′-二甲基丙烯酰胺)(PDMAAm)作為第二交聯(lián)網(wǎng)絡(luò),顯著增強(qiáng)了膠原凝膠的韌性,最終得到一種基于膠原纖維的新型雙網(wǎng)絡(luò)(DN)水凝膠,具備作為體內(nèi)承重材料的應(yīng)用潛力。本文對(duì)納米短纖維功能化方法及其與水凝膠復(fù)合方式進(jìn)行了總結(jié),如表1所示。

3" 生物醫(yī)學(xué)應(yīng)用

3.1" 組織工程

將納米短纖維引入水凝膠,在組織工程中發(fā)揮協(xié)同作用,顯著提升了水凝膠的力學(xué)性能和穩(wěn)定性,同時(shí)模擬細(xì)胞外基質(zhì)微環(huán)境,為細(xì)胞的黏附、增殖和分化提供了理想支持。Kosik等[47]通過XanoShear工藝,在黏性分散介質(zhì)(甘油/水)

中,利用Poiseuille剪切流,拉伸PLA溶液滴,沉淀收集亞微米短纖維,添加到海藻酸鹽溶液中,形成纖維增強(qiáng)的3D打印墨水,應(yīng)用于軟骨組織工程,顯著提高了3D支架的強(qiáng)度,并在為期14 d的體外培養(yǎng)中實(shí)現(xiàn)了約80%的細(xì)胞存活。此外,Shen等[48]將靜電紡絲/均質(zhì)化得到的PLGA短纖維(Fib)分散于甲殼素/檸檬酸(CC)溶液中,形成Fib/CC混合液(圖5),隨

后將軟骨脫細(xì)胞(CDM)分散到Fib/CC中,通過凍融循環(huán)形成凝膠,再冷凍干燥制備成仿生殼聚糖支架。短纖維和CDM的引入不僅提升了其力學(xué)性能,還促進(jìn)了軟骨細(xì)胞的黏附和增殖,支持成熟軟骨組織的形成。

此外,對(duì)于神經(jīng)、心肌等天然取向組織,在設(shè)計(jì)組織工程材料時(shí)對(duì)其有序性提出要求,水凝膠中的短纖維能夠在一系列外部引導(dǎo)下有序排列,創(chuàng)造了一種引導(dǎo)神經(jīng)細(xì)胞定向生長(zhǎng)的有效方式。Omidinia等[49]通過靜電紡絲/冷凍切片制備了負(fù)載SPIONs的PLGA短纖維,經(jīng)熒光聚乙二醇涂層標(biāo)記后,加入纖維蛋白凝膠中,可在注射后外加磁場(chǎng)形成原位取向的短纖維復(fù)合水凝膠(Anisogel),熒光標(biāo)記便于追蹤纖維位置,如圖6所示。與隨機(jī)纖維水凝膠相比,Anisogel中神經(jīng)細(xì)胞在外加磁場(chǎng)下呈現(xiàn)更協(xié)調(diào)同步的鈣信號(hào)和更有序的生長(zhǎng)活動(dòng)。

類似地,Karimi等[50]通過濕法靜電紡絲/超聲破碎制備含有SPIONs的明膠磁性納米短纖維(M.SNF),與OE-MSCs一同加入海藻酸鈉溶液中,CaCl2交聯(lián)形成磁性短纖維/海藻酸鹽水凝膠(M.SNF/Alg),可在外加磁場(chǎng)下使OE-MSCs表現(xiàn)出更高的神經(jīng)樣分化和細(xì)胞增殖率,有助于促進(jìn)神經(jīng)細(xì)胞

的存活、分化和各向異性生長(zhǎng)。同樣,心肌組織也對(duì)定向的細(xì)胞黏附有著一定的需求。Zhang等[45]研發(fā)了一種溫度敏感的兩親性多肽,經(jīng)加熱—冷卻處理后可自組裝成納米短纖維,將心肌細(xì)胞(HL-1)加入其中并牽拉取向形成干細(xì)胞—凝膠線,HL-1沿凝膠軸向延伸遷移,細(xì)胞體和偽足與納米纖維束取向相同,并展現(xiàn)了自發(fā)的電活動(dòng),有望恢復(fù)組織電通信與治療心律失常。

3.2" 藥物遞送

在藥物遞送領(lǐng)域,納米短纖維復(fù)合水凝膠以其可注射的形態(tài)靈活性在微創(chuàng)領(lǐng)域得到了廣泛應(yīng)用。Wang等[51]利用靜電紡絲/冷凍切割制備了載有阿霉素(DOX)的PELA納米短纖維(FDOX),均勻分散在負(fù)載血管抑制劑(CA4P)的PLGA-PEG-PLGA水凝膠中,構(gòu)建了一種可注射的雙重載藥短纖維復(fù)合水凝膠(GCA4P/FDOX)。CA4P水溶性好,其釋放過程主要受到擴(kuò)散控制,在5 d內(nèi)以爆發(fā)式迅速的釋放完成,而DOX的釋放不僅取決于擴(kuò)散,還受到復(fù)合基質(zhì)降解的影響,最終在30 d內(nèi)釋放了87%的藥物。類似地,李慧娟等[52]通過靜電紡絲/表面涂覆制備了多巴胺(PDA)涂層的PLCL納米纖維,均質(zhì)化制成短纖維,與淫羊藿苷(ICA)混合于CC溶液中,冷凍循環(huán)得到ICA-PDA@PLCL/CC水凝膠,短纖維表面的多巴胺和凝膠基質(zhì)中的殼聚糖發(fā)生氫鍵作用,增強(qiáng)了支架的力學(xué)性能,同時(shí)緩慢釋放的ICA展現(xiàn)出顯著的抗纖維化和抗炎癥效果。

盡管水凝膠是三維結(jié)構(gòu),但通常不能提供細(xì)胞附著底物,導(dǎo)致干細(xì)胞移植后存活率較低,而納米短纖維構(gòu)建的微環(huán)境則可以實(shí)現(xiàn)更高的存活率。Hsieh等[53]利用靜電紡絲/超聲破碎制備了聚(ε-己內(nèi)酯-co-D,L-乳酸)納米短纖維(P(CL:DLLA)),將其與神經(jīng)干細(xì)胞/祖細(xì)胞(neural stem/progenitor cell,NSPC)混合加入透明質(zhì)酸/甲基纖維素(HAMC)溫敏凝膠前體液中,可在37 ℃下迅速凝膠化,形成適用于受損脊髓干細(xì)胞傳遞的可注射纖維復(fù)合水凝膠。短纖維的引入有效減少了細(xì)胞凝聚和壞死,促進(jìn)了NSPC向神經(jīng)元和少突膠質(zhì)細(xì)胞表型(oligodendrocytic phenotypes)分化。

總的來說,短纖維復(fù)合凝膠在藥物遞送領(lǐng)域表現(xiàn)出色,保留了可注射性,增強(qiáng)了穩(wěn)定性,能夠避免藥物突釋,還具備細(xì)胞活性封裝的功能。然而,有時(shí)納米短纖維的釋放動(dòng)力學(xué)不夠可控,導(dǎo)致藥物釋放不穩(wěn)定,影響治療效果的精細(xì)調(diào)控。

3.3" 生物傳感與檢測(cè)

納米短纖維復(fù)合水凝膠材料通過其大比表面積和優(yōu)越的生物相容性,可用于構(gòu)建高靈敏的生物傳感器,實(shí)現(xiàn)對(duì)生物信號(hào)快速、精準(zhǔn)地傳感與檢測(cè)。銀納米線(AgNWs)是十分常見的導(dǎo)電填料[54-56],Ding等[57]研發(fā)了一種復(fù)合水凝膠,利用疏水改性聚丙烯酰胺(HMPAM)構(gòu)建非共價(jià)鍵網(wǎng)絡(luò),同時(shí)通過N,N-雙丙烯酰胱胺(BACA)修飾AgNWs形成可逆Ag-S配位鍵,并借助PAM與葡聚糖的氫鍵作用形成三重網(wǎng)絡(luò)結(jié)構(gòu),有效改善了剛性納米線與聚合物基質(zhì)間的力學(xué)匹配問題,在人體運(yùn)動(dòng)和肌電信號(hào)檢測(cè)方面表現(xiàn)突出。Jeong等[58]將與病毒標(biāo)靶對(duì)應(yīng)的引物DNA以硫—金鍵修飾到金納米線表面,一旦接觸到目標(biāo)靶點(diǎn)就能通過DNA聚合酶驅(qū)動(dòng)的高效滾環(huán)擴(kuò)增(RCA)產(chǎn)生大量與引物DNA互補(bǔ)的長(zhǎng)鏈DNA,形成密集的DNA網(wǎng)絡(luò)水凝膠,實(shí)現(xiàn)對(duì)特定病毒的靈敏檢測(cè)。此外,Wu等[59]利用多巴胺誘導(dǎo)效應(yīng)并控制反應(yīng)溫度,成功地將多巴胺包覆在雙金屬AuPt材料表面,形成了具有三維多孔納米線網(wǎng)絡(luò)結(jié)構(gòu)的水凝膠,可用于固定乙酰膽堿酯酶(AChE)并構(gòu)建用于高靈敏有機(jī)磷檢測(cè)的酶基生物傳感器。憑借獨(dú)特的各向異性構(gòu)造,納米短纖維在應(yīng)對(duì)諸如運(yùn)動(dòng)、應(yīng)變等涉及空間異質(zhì)性的精密傳感任務(wù)中展現(xiàn)出顯著優(yōu)勢(shì),而其出眾的高比表面積特性則進(jìn)一步賦能于生物信號(hào)的高效捕獲與精確探測(cè)。

4" 結(jié)" 論

將納米短纖維整合入水凝膠網(wǎng)絡(luò),其一維結(jié)構(gòu)與高自由度既增強(qiáng)了材料的機(jī)械性能又不損失可注射性,納米材料的高比表面積拓展了檢測(cè)靈敏度,纖維的各向異性在模擬細(xì)胞外基質(zhì)的同時(shí)引導(dǎo)細(xì)胞定向生長(zhǎng)。然而,當(dāng)前的復(fù)合凝膠仍面對(duì)一些挑戰(zhàn):1) 納米短纖維制備流程復(fù)雜、長(zhǎng)度均一性差,目前形成納米短纖維的方法多為“由大變小”的破碎法或剝離法,需要開發(fā)更加高效的納米短纖維制備方法,同時(shí)提高所得短纖維的長(zhǎng)度均一性;2) 短纖維在凝膠中是隨機(jī)分布的,即使能通過各種外加磁場(chǎng)或熱處理等方法使短纖維在水凝膠中取向,但其控制精度不足,這限制了復(fù)合凝膠性能的提高,需要進(jìn)一步研究?jī)烧叩慕Y(jié)合機(jī)制,更精細(xì)地操控短纖維;3) 雖然水凝膠基質(zhì)與納米短纖維的結(jié)合在一定程度上提高了復(fù)合材料的力學(xué)強(qiáng)度,但仍不足以滿足臨床應(yīng)用的高要求,在保證短纖維生物相容性的前提下尋找更高強(qiáng)的材料是一種選擇。相信隨著短纖維制造和水凝膠復(fù)合技術(shù)的不斷發(fā)展,納米短纖維復(fù)合水凝膠有望大規(guī)模應(yīng)用于藥物遞送、組織工程等醫(yī)學(xué)領(lǐng)域中,助力于人類的健康與幸福生活。

《絲綢》官網(wǎng)下載

中國(guó)知網(wǎng)下載

參考文獻(xiàn):

[1]JANG J, LEE J, SEOL Y-J, et al. Improving mechanical properties of alginate hydrogel by reinforcement with ethanol treated polycaprolactone nanofibers[J]. Composites Part B: Engineering, 2013, 45(1): 1216-1221.

[2]ZHANG M, XU S, DU C, et al. Novel PLCL nanofibrous/keratin hydrogel bilayer wound dressing for skin wound repair[J]. Colloids and Surfaces B: Biointerfaces, 2023, 222: 113119.

[3]張蓓蕾, 沈明武, 史向陽(yáng). 靜電紡短纖維的制備及其生物醫(yī)學(xué)應(yīng)用[J]. 紡織學(xué)報(bào), 2021, 42(5): 1-8.

ZHANG B L, SHEN M W, SHI X Y. Preparation and biomedical applications of electrospun short fibers[J]. Journal of Textile Research, 2021, 42(5): 1-8.

[4]CHOI C, YUN E, CHA C. Emerging technology of nanofiber-composite hydrogels for biomedical applications[J]. Macromolecular Bioscience, 2023, 23: 2300222.

[5]ZHANG M, XU S, WANG R, et al. Electrospun nanofiber/hydrogel composite materials and their tissue engineering applications[J]. Journal of Materials Science amp; Technology, 2023, 162: 157-178.

[6]RAJA C, SAWAWI M, SAHARI S, et al. A review on electrospun short fiber production[J]. International Journal of Integrated Engineering, 2023, 15(5): 28-34.

[7]CHEN W, MA J, ZHU L, et al. Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering[J]. Colloids and Surfaces B: Biointerfaces, 2016, 142: 165-172.

[8]YE K, LIU D, KUANG H, et al. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration[J]. Journal of Colloid and Interface Science, 2019, 534: 625-636.

[9]YUAN Z, REN Y, SHAFIQ M, et al. Converging 3D printing and electrospinning: Effect of poly(l-lactide)/gelatin based short nanofibers aerogels on tracheal regeneration[J]. Macromolecular Bioscience, 2022, 22(1): 2100342.

[10]BODA S, CHEN S, CHU K, et al. Electrospraying electrospun nanofiber segments into injectable microspheres for potential cell delivery[J]. Acs Applied Materials amp; Interfaces, 2018, 10(30): 25069-25079.

[11]LIAO X, HU P, AGARWAL S, et al. Impact of the fiber length distribution on porous sponges originating from short electrospun fibers made from polymer yarn[J]. Macromolecular Materials and Engineering, 2020, 305(2): 1900629.

[12]WEI J, LEI D, CHEN M, et al. Engineering HepG2 spheroids with injectable fiber fragments as predictable models for drug metabolism and tumor infiltration[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2020, 108(8): 3331-3344.

[13]NIEMCZYK-SOCZYNSKA B, DULNIK J, JEZNACH O, et al. Shortening of electrospun PLLA fibers by ultrasonication[J]. Micron, 2021, 145: 103066.

[14]SAWAWI M, RAJA C, TANJUNG S, et al. Effects of uv irradation on electrospun PLLA and PAN in the production of short electropun fibres using ultrasonication method[J]. Pertanika Journal of Science and Technology, 2023, 31(5): 2441-2451.

[15]SAWAWI M, WANG T, NISBET D, et al. Scission of electrospun polymer fibres by ultrasonication[J]. Polymer, 2013, 54(16): 4237-4252.

[16]TULADHAR S, CLARK S, AHASAN H. Tuning shear thinning factors of 3D bio-printable hydrogels using short fiber[J]. Materials, 2023, 16(2): 572.

[17]TULADHAR S, CLARK S, HABIB M. Controlling rheological properties of hybrid hydrogel using short fiber for extrusion-based 3D bioprinting process[C]//Proceedings of the ASME 2023 International Manufacturing Science and Engineering Conference. New Brunswick, New Jersey: American Society of Mechanical Engineers, 2023: MSEC2023-104233, V001T03A006.

[18]GHADERINEJAD P, NAJMODDIN N, BAGHER Z, et al. An injectable anisotropic alginate hydrogel containing oriented fibers for nerve tissue engineering[J]. Chemical Engineering Journal, 2021, 420: 130465.

[19]CHENG Y, CHENG G, XIE C, et al. Biomimetic silk fibroin hydrogels strengthened by silica nanoparticles distributed nanofibers facilitate bone repair[J]. Advanced Healthcare Materials, 2021, 10(9): 2001646.

[20]WEI J, RAN P, LI Q, et al. Hierarchically structured injectable hydrogels with loaded cell spheroids for cartilage repairing and osteoarthritis treatment[J]. Chemical Engineering Journal, 2022, 430: 132211.

[21]LI X, CHO B, MARTIN R, et al. Nanofiber-hydrogel composite-mediated angiogenesis for soft tissue reconstruction[J]. Science Translational Medicine, 2019, 11(490): aau6210.

[22]WANG M, DU J, LI M, et al. In situ forming double-crosslinked hydrogels with highly dispersed short fibers for the treatment of irregular wounds[J]. Biomaterials Science, 2023, 11(7): 2383-2394.

[23]BRUGGEMAN K, WANG Y, MACLEAN F, et al. Temporally controlled growth factor delivery from a self-assembling peptide hydrogel and electrospun nanofibre composite scaffold[J]. Nanoscale, 2017, 9(36): 13661-13669.

[24]WANG T, BRUGGEMAN K, KAUHAUSEN J, et al. Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of parkinson’s disease[J]. Biomaterials, 2016, 74: 89-98.

[25]ZHANG X, MEGONE W, PEIJS T, et al. Functionalization of electrospun PLA fibers using amphiphilic block copolymers for use in carboxy-methyl-cellulose hydrogel composites[J]. Nanocomposites, 2020, 6(3): 85-98.

[26]LIU M, ZHENG H, CHEN J, et al. Chitosan-chitin nanocrystal composite scaffolds for tissue engineering[J]. Carbohydrate Polymers, 2016, 152: 832-840.

[27]陳楚楚, 吳啟靜, 王怡仁, 等. 仿生高強(qiáng)度甲殼素納米纖維/明膠水凝膠的制備與性能[J]. 高分子材料科學(xué)與工程, 2020, 36(8): 152-157.

CHEN C C, WU Q J, WANG Y R, et al. Synthesis and characterization of bioinspired chitin nanofiber/gelatin hydrogels with high mechanical properties[J]. Polymer Materials Science amp; Engineering, 2020, 36(8): 152-157.

[28]YIN K, DIVAKAR P, WEGST U. Plant-derived nanocellulose as structural and mechanical reinforcement of freeze-cast chitosan scaffolds for biomedical applications[J]. Biomacromolecules, 2019, 20(10): 3733-3745.

[29]KAUR H, SHARMA P, PATEL N, et al. Accessing highly tunable nanostructured hydrogels in a short ionic complementary peptide sequence via pH trigger[J]. Langmuir, 2020, 36(41): 12107-12120.

[30]LIGORIO C, ZHOU M, WYCHOWANIEC J, et al. Graphene oxide containing self-assembling peptide hybrid hydrogels as a potential 3D injectable cell delivery platform for intervertebral disc repair applications[J]. Acta Biomaterialia, 2019, 92: 92-103.

[31]POPESCU M-T, LIONTOS G, AVGEROPOULOS A, et al. Injectable hydrogel: Amplifying the pH sensitivity of a triblock copolypeptide by conjugating the N-termini via dynamic covalent bonding[J]. ACS Applied Materials amp; Interfaces, 2016, 8(27): 17539-17548.

[32]YU S, ZHANG W, AN J, et al. Flexible, multifunctional aerogel films based on PBO nanofibers and their application in wearable electronic devices[J]. Electrochimica Acta, 2023, 441: 141802.

[33]郭秋艷, 劉牛, 張凡, 等. 3D打印可拉伸、自愈合型水凝膠的制備及應(yīng)用研究[J]. 現(xiàn)代化工, 2023, 43(3): 177-182.

GUO Q Y, LIU N, ZHANG F, et al. Preparation and application of stretchable self-healing hydrogel based on 3D printing[J]. Modern Chemical Industry, 2023, 43(3): 177-182.

[34]史杰中, 賈昊旸, 劉冬生. 單根DNA短鏈構(gòu)筑pH響應(yīng)超分子水凝膠[J]. 高分子學(xué)報(bào), 2017(1): 135-142.

SHI J Z, JIA H Y, LIU D S. pH-responsive supramolecular hydrogel based on one short strand DNA[J]. Acta Polymerica Sinica, 2017(1): 135-142.

[35]ZHI X, ZHENG C, XIONG J, et al. Nanofilamentous virus-based dynamic hydrogels with tunable internal structures, injectability, self-healing, and sugar responsiveness at physiological pH[J]. Langmuir, 2018, 34(43): 12914-12923.

[36]LEE D, PARK J, LEE E, et al. A protein nanofiber hydrogel for sensitive immunoassays[J]. Analyst, 2013, 138(17): 4786-4794.

[37]XUE Y, LI J, JIANG T, et al. Biomimetic conductive hydrogel scaffolds with anisotropy and electrical stimulation for in vivo skeletal muscle reconstruction[J]. Advanced Healthcare Materials, 2024, 13(4): 2302180.

[38]POVEDA-REYES S, MELLERA-OGLIALORO L, MARTNEZ-HAYA R, et al. Reinforcing an injectable gelatin hydrogel with PLLA microfibers: Two routes for short fiber production[J]. Macromolecular Materials and Engineering, 2015, 300(10): 977-988.

[39]REGEV O, REDDY C, NSEIR N, et al. Hydrogel reinforced by short albumin fibers: Mechanical characterization and assessment of biocompatibility[J]. Macromolecular Materials and Engineering, 2013, 298(3): 283-291.

[40]MATERA D, WANG W, SMITH M, et al. Fiber density modulates cell spreading in 3D interstitial matrix mimetics[J]. ACS Biomaterials Science amp; Engineering, 2019, 5(6): 2965-2975.

[41]JUAN L-T, LIN S-H, WONG C-W, et al. Functionalized cellulose nanofibers as crosslinkers to produce chitosan self-healing hydrogel and shape memory cryogel[J]. ACS Applied Materials amp; Interfaces, 2022, 14(32): 36353-36365.

[42]LI L, YANG H, LI X, et al. Natural silk nanofibrils as reinforcements for the preparation of chitosan-based bionanocomposites[J]. Carbohydrate Polymers, 2021, 253: 117214.

[43]ISLAM M, MOLLEY T, HUNG T, et al. Magnetic nanofibrous hydrogels for dynamic control of stem cell differentiation[J]. ACS Applied Materials amp; Interfaces, 2023, 15(44): 50663-50678.

[44]KIM J, STAUNTON J, TANNER K. Independent control of topography for 3D patterning of the ECM microenvironment[J]. Advanced Materials, 2016, 28(1): 132-137.

[45]ZHANG S, GREENFIELD M, MATA A, et al. A self-assembly pathway to aligned monodomain gels[J]. Nature Materials, 2010, 9(7): 594-601.

[46]MREDHA M, KITAMURA N, NONOYAMA T, et al. Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone[J]. Biomaterials, 2017, 132: 85-95.

[47]KOSIK-KOZIOL A, COSTANTINI M, BOLEK T, et al. PLA short sub-micron fiber reinforcement of 3D bioprinted alginate constructs for cartilage regeneration[J]. Biofabrication, 2017, 9(4): 044105.

[48]SHEN Y, XU Y, YI B, et al. Engineering a highly biomimetic chitosan-based cartilage scaffold by using short fibers and a cartilage-decellularized matrix[J]. Biomacromolecules, 2021, 22(5): 2284-2297.

[49]OMIDINIA-ANARKOLI A, BOESVELD S, TUVSHINDORJ U, et al. An injectable hybrid hydrogel with oriented short fibers induces unidirectional growth of functional nerve cells[J]. Small, 2017, 13(36): 1702207.

[50]KARIMI S, BAGHER Z, NAJMODDIN N, et al. Alginate-magnetic short nanofibers 3D composite hydrogel enhances the encapsulated human olfactorymucosa stem cells bioactivity for potential nerve regeneration application[J]. International Journal of Biological Macromolecules, 2021, 167: 796-806.

[51]WANG T, YANG L, XIE Y, et al. An injectable hydrogel/staple fiber composite for sustained release of CA4P and doxorubicin for combined chemotherapy of xenografted breast tumor in mice[J]. Journal of Southern Medical University, 2022, 42(5): 625-632.

[52]李慧娟, 王先流, 沈炎冰, 等. 負(fù)載淫羊藿苷的殼聚糖基仿生支架的促軟骨形成和炎癥緩解作用[J]. 生物工程學(xué)報(bào), 2022, 38(6): 2308-2321.

LI H J, WANG X L, SHEN Y B, et al. Chondrogenic and ameliorated inflammatory effects of chitosan-based biomimetic scaffold loaded with icariin[J]. Chinese Journal of Biotechnology, 2022, 38(6): 2308-2321.

[53]HSIEH A, ZAHIR T, LAPITSKY Y, et al. Hydrogel/electrospun fiber composites influence neural stem/progenitor cell fate[J]. Soft Matter, 2010, 6(10): 2227-2237.

[54]HAN Q, CHEN Y, SONG W, et al. Fabrication of agarose hydrogel with patterned silver nanowires for motion sensor[J]. Bio-Design and Manufacturing, 2019, 2(4): 269-277.

[55]ZHANG X, LI Z, LIU C, et al. Silver nanowire/silver/poly(dimethylsiloxane) as strain sensors for motion monitoring[J]. ACS Applied Nano Materials, 2022, 5(10): 15797-15807.

[56]ZOU L, CHANG B, LIU H, et al. Multiple physical bonds cross-linked strong and tough hydrogel with antibacterial ability for wearable strain sensor[J]. ACS Applied Polymer Materials, 2022, 4(12): 9194-9205.

[57]DING J, QIAO Z, ZHANG Y, et al. NIR-responsive multi-healing HMPAM/dextran/AgNWs hydrogel sensor with recoverable mechanics and conductivity for human-machine interaction[J]. Carbohydrate Polymers, 2020, 247: 116686.

[58]JEONG J, KIM H, LEE J. Enzymatic polymerization on DNA modified gold nanowire for label-free detection of pathogen DNA[J]. International Journal of Molecular Sciences, 2015, 16(6): 13653-13660.

[59]WU Y, JIAO L, XU W, et al. Polydopamine-capped bimetallic AuPt hydrogels enable robust biosensor for organophosphorus pesticide detection[J]. Small, 2019, 15(17): 1900632.

Preparation of short nanofiber composite hydrogels and their biomedical applications

ZHANG Chi, WANG Xiangrong

YU Yang, ZOU Yujiao, ZHAO Yili, LI Ni

(College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China)

Abstract:

Nanofiber hydrogel composites integrate the high water content and biocompatibility of hydrogels with the high surface area-to-volume ratio, nano-scale dimensions, and ability to mimic the extracellular matrix (ECM). This convergence presents promising applications in biomedicine. Advances in biomedical engineering have spurred high expectations for the performance and functionality of composite hydrogels, notably in biomimetic materials, drug delivery, and tissue engineering. Nonetheless, traditional nanofiber membranes struggle to replicate complex three-dimensional micro-nano environments. Their small pore sizes and high densities restrict nutrient transport. Furthermore, the inadequate dispersion of continuous nanofibers hampers the materials’ minimally invasive use. To address these limitations, researchers have progressively introduced controllable-length short nanofibers into hydrogel networks. These nanofibers offer superior dispersibility, enhancing their integration with hydrogels and the emulation of complex physiological conditions.

To comprehensively understand the research status and performance advantages of short nanofiber composite hydrogels, and to promote their development and application, this paper reviews recent progress. It focuses on the functionalization and composite methods of short nanofibers, summarizing their applications in the biomedical field, and proposing current challenges and future directions. Functionalized short nanofibers serve crucial roles in composite hydrogels. Firstly, by encapsulating cytokines or nanoparticles, these fibers create a microenvironment within the hydrogel, enhancing cell growth. Secondly, surface modifications that immobilize therapeutic or monitoring agents on the fiber surface can prevent drug loss, thereby enhancing therapeutic efficacy. Additionally, these modifications increase the contact area between the drug and its environment, improving detection sensitivity. Furthermore, by modifying precursor materials prior to electrospinning, short fibers can be functionally customized, imparting specific properties and improving compatibility with the hydrogel matrix. The application of biotechnology, such as the self-assembly of large molecules like DNA and peptides into short nanofibers, not only endows them with specific biological functionality but also enables interaction with hydrogels, enhancing their effects and further expanding the potential applications of short fibers in hydrogels. The binding mechanisms between short fibers and hydrogels are crucial. Besides simple physical blending, the interfacial interaction between the two can be strengthened through a series of interactions including covalent bonding, hydrogen bonding, biotin interaction, etc. Furthermore, methods such as heat treatment, mechanical stretching, solvent diffusion, and magnetic field control can orderly arrange short fibers in gels, forming oriented structures, which aid in mimicking the microstructure of natural oriented tissues such as muscles and nerves, promoting tissue regeneration.

The enhancement and functionalization of hydrogels become a significant research focus in biomedical materials science, with the innovative incorporation of short fibers offering new pathways for improving hydrogel performance. This approach not only enhances the mechanical properties of hydrogels but also introduces new functionalities in a simple and effective manner. Short fiber-reinforced hydrogels demonstrate extensive potential applications in regulating cellular behavior, optimizing drug delivery mechanisms, and enhancing biosensing capabilities. These advancements provide a new material foundation and therapeutic strategy for regenerative medicine and precision medicine.

However, current research on composite hydrogels faces several significant challenges. Firstly, the primary fabrication techniques for short nanofibers suffer from scalability issues and inconsistent fiber morphology. Innovative fabrication methods that enhance production efficiency and achieve uniform fiber dimensions are urgently needed. Secondly, the precise control of the three-dimensional distribution and orientation of short fibers within the gel matrix is critical for optimizing the performance of composite hydrogels. This necessitates a deeper understanding of interfacial interactions and the development of advanced fiber assembly strategies. Lastly, while the incorporation of short nanofibers improves the mechanical properties of composite materials, they still fall short of the high-strength requirements for applications such as bone and joint repair. Thus, advanced composite strategies that can match or exceed the mechanical properties of natural tissues are essential to ensure long-term stability and functionality in complex biomechanical environments.

Key words:

nanofibers; functionalized short nanofibers; hydrogel; tissue engineering; drug delivery; biosensing and diagnostics

主站蜘蛛池模板: 丁香五月亚洲综合在线| 久久香蕉欧美精品| a欧美在线| 国产成人无码播放| 尤物精品国产福利网站| 老熟妇喷水一区二区三区| 伊大人香蕉久久网欧美| 欧美一级99在线观看国产| 久久精品亚洲热综合一区二区| 国产高清国内精品福利| 亚洲一区二区三区国产精华液| 免费jjzz在在线播放国产| 日本人真淫视频一区二区三区| 中文字幕在线播放不卡| 国产性生大片免费观看性欧美| a毛片基地免费大全| 亚洲国产中文综合专区在| 亚洲一级无毛片无码在线免费视频| 成人一区在线| 国产爽歪歪免费视频在线观看 | 四虎成人在线视频| 男女精品视频| 日日拍夜夜操| 久久综合丝袜日本网| 亚洲妓女综合网995久久| 亚洲国产天堂久久综合| 欧美日韩中文国产| 亚洲精品成人福利在线电影| 日韩免费无码人妻系列| 国产喷水视频| 精品久久人人爽人人玩人人妻| 国产成人av大片在线播放| 日韩精品久久久久久久电影蜜臀| 国产成人永久免费视频| 亚洲男人的天堂久久香蕉| 国产中文一区a级毛片视频| 中国一级毛片免费观看| 精品综合久久久久久97| 亚洲欧美激情小说另类| 国产成人一区在线播放| 青草精品视频| 国产白浆视频| 亚洲成人网在线播放| 天堂成人在线| 欧美综合一区二区三区| 国产精品亚洲一区二区在线观看| 久久精品最新免费国产成人| 国产美女91视频| 青青操国产| 精品视频在线一区| 五月婷婷综合网| 午夜精品久久久久久久99热下载 | 亚洲人成网址| 国产成人精品男人的天堂| 精品综合久久久久久97超人| 激情爆乳一区二区| 日韩不卡免费视频| 在线观看欧美精品二区| 欧美中日韩在线| 99久久国产自偷自偷免费一区| 国产区精品高清在线观看| 无码aaa视频| 国产美女精品一区二区| 国产精品嫩草影院av| 日韩av高清无码一区二区三区| 国产av一码二码三码无码| 色悠久久综合| 亚洲欧美成人综合| 四虎精品黑人视频| 日韩欧美国产中文| 亚洲国产精品日韩专区AV| 最新国产网站| 欧美性精品| 日韩人妻精品一区| 久久免费看片| a毛片在线| 亚洲成人在线免费观看| www.狠狠| 国产欧美在线观看一区| 成年片色大黄全免费网站久久| 国产免费黄| 国产高潮流白浆视频|