摘要:多囊卵巢綜合征(PCOS)是育齡婦女常見的生殖和內分泌疾病之一,機制未明,但胰島素抵抗、高雄激素血癥、肥胖是其重要的病理生理基礎。葡萄糖依賴性促胰島素多肽(GIP)是一種參與調控胰島素分泌的胃腸激素,與胰島素抵抗、高雄激素血癥、肥胖等PCOS的特征性改變具有相關性,可能通過影響下丘腦-垂體-卵巢軸的功能促進PCOS的發生與發展,提示GIP與PCOS相關。就GIP與PCOS相關性的研究現狀進行綜述。
關鍵詞:多囊卵巢綜合征;肥胖癥;胰島素抵抗;葡萄糖依賴性促胰島素多肽;高雄激素血癥;下丘腦-垂體-卵巢軸
中圖分類號:R711.75,R588.6 文獻標志碼:A DOI:10.11958/20240051
Advances in the study of the correlation between incretin hormone GIP and
polycystic ovary syndrome
FAN Zhehua1, LIU Jianrong2△
1 The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030000, China;
2 Reproductive Medical Center, Shanxi Provincial People’s Hospital
△Corresponding Author E-mail: liujianrong3@sina.com
Abstract: Polycystic ovary syndrome (PCOS) is one of the most common reproductive and endocrine disorders in women of childbearing age, and the pathogenesis is unknown. Insulin resistance, hyperandrogenism and obesity are important pathophysiological basis. Glucose-dependent insulinotropic peptide (GIP) is a gastrointestinal hormone involved in the regulation of insulin secretion. Literature studies have shown that GIP is correlated with insulin resistance, hyperandrogenism, obesity and other characteristic changes of PCOS, and it may contribute to the onset and progression of PCOS by affecting the function of hypothalamic-pituitary-ovarian axis, suggesting that GIP is associated with PCOS. This paper reviews the research progress of the correlation between GIP and PCOS.
Key words:polycystic ovary syndrome; obesity; insulin resistance; glucose-dependent insulinotropic polypeptide; hyperandrogenism; hypothalamic-pituitary-ovarian axis
多囊卵巢綜合征(polycystic ovary syndrome,PCOS)是一種常見的代謝和內分泌疾病,全球患病率為6%~20%[1],發病年齡有降低的趨勢[2]。PCOS患者常表現為排卵障礙/月經不規律、高雄激素血癥(hyperandrogenism)及卵巢多囊樣改變,以及胰島素抵抗(insulin resistance,IR)、高胰島素血癥、肥胖、糖脂代謝紊亂等代謝異常。葡萄糖依賴性促胰島素多肽(glucose-dependent insulinotropic peptide,GIP)是一種腸促胰島素,可以增加葡萄糖依賴性胰島素的釋放和脂肪的生成,并具有骨保護[3-4]和神經保護[5]的特性。目前,GIP與PCOS的關聯機制尚未明確,本文就兩者相關性的研究現狀綜述如下。
1 GIP
GIP是主要由十二指腸和空腸K細胞產生的具有42個氨基酸的多肽,食物中的葡萄糖和脂肪能有效刺激GIP分泌,進食30~45 min后GIP水平達到峰值[6],進入循環系統后被二肽基肽酶-4滅活,半衰期為4 min。
GIP受體(GIP receptor,GIPR)主要存在于胰島β細胞中,也存在于胃、腸、脂肪、腎上腺皮質、垂體、心臟、血管內皮細胞、骨和中樞神經系統中。GIP在全身各系統疾病中均能發揮作用,如帕金森病、阿爾茨海默癥[7]、甲狀腺髓樣癌[8]、自身免疫性甲狀腺疾病[9]、肢端肥大癥[10]、骨質疏松癥[3]、心血管疾病[11]等。研究證明,GIPR在小鼠卵巢、子宮角均有表達[12],大鼠卵巢中亦存在GIPR、胰高血糖素樣肽-1(glucagon like peptide-1,GLP-1)受體。在GIP和GLP-1的共同作用下,大鼠卵巢顆粒細胞、膜細胞中促卵泡激素(follicle stimulating hormone,FSH)、孕酮和雌二醇的合成被顯著抑制[13]。
GIP通過與GIPR結合增加環磷酸腺苷(cyclic adenosine monophosphate,cAMP)水平,通過蛋白激酶A(protein kinase A,PKA)和cAMP直接激活的交換蛋白2(exchange protein directly activated by cAMP,EPAC2)機制激活細胞內鈣離子的轉運,促進胰島素原基因的轉錄,從而有助于增加β細胞的胰島素分泌[14]。一方面可引起葡萄糖依賴性胰島素的釋放,對胰腺β細胞具有促進增殖和抗凋亡的作用;另一方面,GIP具有抑制胃液分泌和胃腸蠕動的作用,延遲胃排空。GIP還能增加脂肪生成,對骨和神經具有保護作用。
2 PCOS
PCOS是育齡期婦女中常見的內分泌疾病,無排卵、少排卵和高雄激素血癥是其主要特征。此外,PCOS患者還常表現為多毛、閉經以及代謝紊亂,如IR、2型糖尿病(T2DM)、心血管疾病等。顆粒細胞芳香化酶的功能障礙、過量的黃體生成素(luteinizing hormone,LH)刺激卵巢產生雄激素、LH/FSH失衡導致卵巢細胞增殖,類固醇生成增多,最終導致PCOS女性高雄激素血癥,臨床表現為痤瘡、多毛、黑棘皮病。IR與高雄激素血癥常相伴發生,75%~95%的PCOS女性受到IR的影響,表現出高胰島素血癥[15]。由于個體對胰島素的敏感性降低,最終可能導致糖耐量受損及T2DM。PCOS患者會出現體質量增加,肥胖患者的脂肪細胞數量增加,并伴隨著脂質代謝紊亂。高雄激素血癥、IR、肥胖三者互相促進,進一步加重PCOS的病理生理學改變,形成惡性循環[16]。PCOS患者因代謝紊亂加劇了生殖和心理方面的功能紊亂而嚴重影響生活質量[17-18]。
3 GIP與肥胖的關系
肥胖會極大增加T2DM、子宮內膜癌、心血管系統疾病的患病風險。肥胖是PCOS患者常見的特征表現之一,常通過身體質量指數(BMI)、腰臀比、腰圍等指標進行評估[19]。馬良坤[20]發現育齡期PCOS患者肥胖發生率為59%,青春期PCOS肥胖發生率為78.2%;不同BMI患者的IR程度、高雄激素水平具有明顯差異。
GIP/GIPR信號通路在肥胖的發病機制中起著重要作用。McClean等[21]對高脂飲食誘導的肥胖(DIO)小鼠使用GIPR拮抗劑(pro3)GIP后,小鼠的體質量、體脂均明顯下降。Clements等[22]通過外科手術使食物繞過GIP合成及分泌的部位,患者術后GIP水平顯著下降,體質量減輕。張宏偉[23]對比了肥胖合并T2DM患者行腹腔鏡胃旁路手術前后的BMI和相關生化指標,發現術后6個月時患者的BMI顯著降低,空腹或餐后1 h的血清GIP水平均明顯降低,空腹血糖、空腹胰島素水平顯著下降。Lyu等[24]發現紅花黃色素可以通過抑制GIP轉錄調節因子減少小腸黏膜GIP的表達和分泌,同時抑制皮下脂肪組織中GIPR及其受體后信號通路,顯著減輕體質量。徐丹鳳等[25]發現高脂飼料喂養的肥胖T2DM模型小鼠的體質量、血清GIP水平均顯著高于正常小鼠,添加亞麻籽油繼續喂養至24周的小鼠體質量、血清GIP水平、空腹血糖和脂肪組織質量降低,但是瘦體組織質量增高,表明GIP與體質量呈正相關。
相反,Svendsen等[26]根據BMI≥25 kg/m2和BMI<25 kg/m2將受試人群分為肥胖組和非肥胖組,發現肥胖PCOS患者的血清GIP水平顯著低于非肥胖PCOS患者,證實GIP與BMI呈負相關。但另有研究發現肥胖型和非肥胖型PCOS患者的血清GIP水平無明顯差異[27]。張紅裔等[28]為40例T2DM患者實施了空回腸側側吻合術,術后1年,患者空腹及餐后2 h的血清GIP水平較術前明顯降低,BMI無明顯變化,該術式使未消化的食物提前進入回腸末端,但并未避開刺激GIP分泌的十二指腸和上段小腸,GIP水平的降低可能是由于小腸遠端內分泌細胞的食物刺激增強導致GLP-1的上調,并間接影響小腸近端的K細胞分泌GIP,與體質量無明顯相關性。
隨著藥物研究的進展,GIP在糖尿病治療中的優勢逐漸突顯。Thomas等[29]發現GLP-1/GIP雙受體激動劑替西帕肽相較GLP-1單受體激動劑而言具有更顯著的降糖和減輕體質量的效果,且胃腸道不良反應更小。替西帕肽已獲得美國食品藥品監督管理局的批準,應用于超重、高血壓或T2DM等疾病,從治療學來看,GIP與體質量具有明顯的相關性。
4 GIP與IR的關系
IR是一種代謝紊亂,指個體對外源性或內源性胰島素的敏感性降低,導致血糖升高。最初有學者發現IR與PCOS的患者都可表現為黑棘皮病,逐漸將兩者聯系起來,為IR和PCOS的關聯機制開辟了一個新的研究領域[30]。徐晶等[31]發現柚皮素可以通過促進磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(AKT)通路的活化,促進該通路相關蛋白胰島素受體底物-1(IRS-1)、糖原合成酶激酶-3β(GSK-3β)、葡萄糖轉運蛋白因子-4(GLUT4)的表達,降低血脂、血糖,改善IR和生殖激素紊亂,表明PCOS的治療與改善IR密切相關。另有研究顯示,與對照組小鼠相比,GIP過表達的轉基因小鼠對胰島素的敏感性增加,GIP具有改善IR的作用[32]。Thomas等[29]對316例2型糖尿病患者分別應用GLP-1/GIP雙受體激動劑替西帕肽和選擇性GLP-1受體激動劑度拉魯肽,發現替西帕肽降低了空腹胰島素水平和穩態模型胰島素抵抗指數(homa insulin resistance index,HOMA-IR),同時多個與改善胰島素敏感性相關的標志物表達水平升高,雖然研究者將替西帕肽的胰島素增敏作用部分歸因于體質量減輕,但是仍舊可以證明GIPR激動劑有助于改善IR。張紅裔等[28]發現空回腸側側吻合術后T2DM患者的空腹血糖、餐后2 h血糖、HOMA-IR均較術前明顯降低,同時血清GIP水平顯著降低,表明GIP與IR有關。
5 GIP與高雄激素血癥的關系
高雄激素血癥是PCOS最顯著的特征。Svendsen等[33]發現超重女性連續8周攝入極低熱量的飲食后,體質量、皮下脂肪、腹部脂肪明顯減少,游離睪酮水平顯著降低;同時,全身胰島素敏感性顯著增加,GIP增加,表明GIP可能與雄激素的變化有關。游離雄激素指數(free androgen index,FAI)是反映雄激素異常升高狀態的指標,一般FAI≥5即可診斷為PCOS。Milewicz等[34]將50例BMI正常的PCOS患者根據FAI分為PCOS組和對照組,給予標準膳食后,2組血清GIP分泌均增強,PCOS組的GIP升高更明顯,且FAI與脫氫表雄酮(dehydroepiandrosterone,DHEA),DHEA與GIP之間均呈正相關;可見睪酮可能影響PCOS患者GIP的分泌,但也不能排除因GIP升高引起PCOS的高雄激素血癥。
6 GIP與下丘腦-垂體-卵巢(HPO)軸的關系
下丘腦和垂體是調節生殖內分泌的重要器官,下丘腦通過神經傳導及垂體門脈系統將信息傳遞至垂體,使垂體分泌相應的激素,這些激素再作用到生殖腺的靶細胞,使其產生甾體激素,維持正常生殖功能,這一系統在女性為HPO軸。腸道、大腦與代謝之間存在高度相關性已受到廣泛認可。胃腸肽是腸內分泌細胞對營養和能量攝入做出的反應,通過傳入神經或直接在中樞神經系統內調節食物攝入[35],腸內分泌激素調節下丘腦核和背迷走神經復合體的穩態控制中心,通過調節神經系統影響食物攝入和(或)偏好方面的其他作用逐漸被闡明,外周和中樞的胃腸肽都可能有助于中樞受體的激活。Adriaenssens等[36]發現下丘腦室旁核、弓形核和背內側核以及迷走背復合體的后腦區和孤束核均有表達GIPR的細胞,阿片類藥物、乙酰膽堿、5-羥色胺等神經遞質可能有助于GIPR神經元的調節,通過中樞神經系統GIPR的急性刺激可以有效地減少食物攝入量,進而將下丘腦中樞GIP信號軸確定為控制能量穩態的重要機制。
Fu等[37]發現腦室內GIP刺激影響最大的下丘腦通路與炎癥反應有關,外周或中央給藥均會使下丘腦炎性因子升高,而下丘腦GIPR缺乏會引起促炎細胞因子(如白細胞介素-6、白細胞介素-1β)和細胞因子信號傳導抑制因子3顯著降低;此外,在小鼠側腦室注射GIP顯著損害了下丘腦細胞的胰島素信號,減少了胰島素誘導的下丘腦蛋白激酶B和GSK-3β的磷酸化,抑制了胰島素誘導的厭食反應。Liskiewicz等[38]發現,長效GIPR激動劑主要依賴于抑制下丘腦中的GABA能神經元中的GIPR信號來減少小鼠的體質量和食物攝入。不僅如此,母代的代謝異常可以顯著影響子代大腦的發育,特別是下丘腦的形成。Cantacorps等[39]進一步探索了大腦發育過程中GIPR的表達,發現新生小鼠出生后第7天至第21天,下丘腦GIPR表達水平顯著下降,體質量顯著增加,GIPR表達水平與體質量變化呈顯著負相關,這表明GIP對整個生物體有局部和長期的影響,通過與大腦中相應受體結合,參與調節食物攝入等行為,并可以改變代謝參數。
PCOS患者腎上腺功能亢進,下丘腦-垂體-腎上腺(HPA)軸分泌的糖皮質激素通過損害胰島素敏感性和糖耐量、抑制胰島素分泌、增加肝臟葡萄糖生成和促進脂肪分解來控制代謝[40]。糖皮質激素水平的長期升高會刺激IR、脂肪沉積、貪食等。胰島素通過刺激細胞色素P450c17增加腎上腺中17-OH孕酮向DHEA的轉化,高胰島素血癥可能導致PCOS患者HPA軸活性升高,使雄激素進一步增多,卵泡發生減少。可見,GIP與HPO軸在PCOS的發病過程中具有相關性。
7 小結
隨著對GIP及其受體研究的深入,GIP在各系統疾病中的作用逐漸被人們了解。雖然GIP的具體作用機制及其在相關代謝途徑中的作用尚未完全明了,但可以肯定的是,GIP與IR、高雄激素血癥、肥胖之間均具有相關性,而這些改變正是PCOS的特征性改變。同時,GIP可以通過作用于HPO軸影響機體的代謝,因此GIP與PCOS的發生發展必定相關,有望成為治療PCOS的新方法,最終提高廣大育齡期婦女的生活質量。
參考文獻
[1] ESCOBAR-MORREALE H F. Polycystic ovary syndrome:definition,aetiology,diagnosis and treatment[J]. Nat Rev Endocrinol,2018,14(5):270-284. doi:10.1038/nrendo.2018.24.
[2] YU O,CHRIST J P,SCHULZE-RATH R,et al. Incidence,prevalence,and trends in polycystic ovary syndrome diagnosis:a United States population-based study from 2006 to 2019[J]. Am J Obstet Gynecol,2023,229(1):39.e1-39.e12. doi:10.1016/j.ajog.2023.04.010.
[3] GABE M,SKOV-JEPPESEN K,GASBJERG L S,et al. GIP and GLP-2 together improve bone turnover in humans supporting GIPR-GLP-2R co-agonists as future osteoporosis treatment[J]. Pharmacol Res,2022,176:106058. doi:10.1016/j.phrs.2022.106058.
[4] VASTO S,AMATO A,PROIA P,et al. Is the secret in the gut? SuperJump activity improves bone remodeling and glucose homeostasis by GLP-1 and GIP peptides in eumenorrheic women[J]. Biology (Basel),2022,11(2):296. doi:10.3390/biology11020296.
[5] ZHANG Z Q,H?LSCHER C. GIP has neuroprotective effects in Alzheimer and Parkinson's disease models[J]. Peptides,2020,125:170184. doi:10.1016/j.peptides.2019.170184.
[6] AHRéN B. Glucose-dependent insulinotropic polypeptide secretion after oral macronutrient ingestion:the human literature revisited and a systematic study in model experiments in mice[J]. J Diabetes Investig,2022,13(10):1655-1665. doi:10.1111/jdi.13836.
[7] H?LSCHER C. Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer's and Parkinson's disease models[J]. Neuropharmacology,2018,136(Pt B):251-259. doi:10.1016/j.neuropharm.2018.01.040.
[8] REGAZZO D,BERTAZZA L,GALLETTA E,et al. The GIP/GIPR axis in medullary thyroid cancer:clinical and molecular findings[J]. Endocr Relat Cancer,2022,29(5):273-284. doi:10.1530/ERC-21-0258.
[9] ROMITTI M,FABRIS V C,ZIEGELMANN P K,et al. Association between PCOS and autoimmune thyroid disease:a systematic review and meta-analysis[J]. Endocr Connect,2018,7(11):1158-1167. doi:10.1530/EC-18-0309.
[10] SHEKHAWAT V S,BHANSALI S,DUTTA P,et al. Glucose-dependent insulinotropic polypeptide(GIP)resistance and β-cell dysfunction contribute to hyperglycaemia in acromegaly[J]. Sci Rep,2019,9(1):5646. doi:10.1038/s41598-019-41887-7.
[11] HEIMBüRGER S M,BERGMANN N C,AUGUSTIN R,et al. Glucose-dependent insulinotropic polypeptide(GIP)and cardiovascular disease[J]. Peptides,2020,125:170-174. doi:10.1016/j.peptides.2019.170174.
[12] KHAN D,OJO O O,WOODWARD O R,et al. Evidence for involvement of GIP and GLP-1 receptors and the gut-gonadal axis in regulating female reproductive function in mice[J]. Biomolecules,2022,12(12):1736. doi:10.3390/biom12121736.
[13] NISHIYAMA Y,HASEGAWA T,FUJITA S,et al. Incretins modulate progesterone biosynthesis by regulating bone morphogenetic protein activity in rat granulosa cells[J]. J Steroid Biochem Mol Biol,2018,178:82-88. doi:10.1016/j.jsbmb.2017.11.004.
[14] DHANKHAR S,CHAUHAN S,MEHTA D K,et al. Novel targets for potential therapeutic use in diabetes mellitus[J]. Diabetol Metab Syndr,2023,15(1):17. doi:10.1186/s13098-023-00983-5.
[15] STEPTO N K,CASSAR S,JOHAM A E,et al. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp[J]. Hum Reprod,2013,28(3):777-784. doi:10.1093/humrep/des463.
[16] CENA H,CHIOVATO L,NAPPI R E. Obesity,polycystic ovary syndrome,and infertility:a new avenue for GLP-1 receptor agonists[J]. J Clin Endocrinol Metab,2020,105(8):e2695-2709. doi:10.1210/clinem/dgaa285.
[17] THANNICKAL A,BRUTOCAO C,ALSAWAS M,et al. Eating,sleeping and sexual function disorders in women with polycystic ovary syndrome (PCOS):a systematic review and meta-analysis[J]. Clin Endocrinol(Oxf),2020,92(4):338-349. doi:10.1111/cen.14153.
[18] WILLIAMS S,FIDO D,SHEFFIELD D. Polycystic ovary syndrome(PCOS)and non-suicidal self-injury(NSSI):a community-based study[J]. Healthcare (Basel),2022,10(6):1118. doi:10.3390/healthcare10061118.
[19] 袁瑩瑩,趙君利. 多囊卵巢綜合征流行病學特點[J]. 中國實用婦科與產科志,2019,35(3):261-264. YUAN Y Y,ZHAO J L. Epidemiological features of polycystic ovary syndrome[J]. Chinese Journal of Practical Gynecology and Obstetrics,2019,35(3):261-264. doi:10.19538/j.fk2019030102.
[20] 馬良坤. 多囊卵巢綜合征的胰島素增敏治療[D]. 北京:中國協和醫科大學,2008. MA L K. Insulin sensitizing treatment of polycystic ovarian syndrome[D]. Beijing:Peking Union Medical College,2008.
[21] McCLEAN P L,IRWIN N,CASSIDY R S,et al. GIP receptor antagonism reverses obesity,insulin resistance,and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet[J]. Am J Physiol Endocrinol Metab,2007,293(6):E1746-E1755. doi:10.1152/ajpendo.00460.2007.
[22] CLEMENTS R H,GONZALEZ Q H,LONG C I,et al. Hormonal changes after Roux-en Y gastric bypass for morbid obesity and the control of type-II diabetes mellitus[J]. Am Surg. 2004,70(1):1-5.
[23] 張宏偉. 腹腔鏡胃旁路手術對肥胖型Ⅱ型糖尿病的臨床研究[D]. 長春:吉林大學,2019. ZHANG H W. Clinical research of laparoscopic gastric bypass operation in promoting the type 2 diabetes mellitus[D]. Changchun:Jilin University,2019.
[24] LYU X,YAN K,HU W,et al. Safflower yellow and its main component hydroxysafflor yellow A alleviate hyperleptinemia in diet-induced obesity mice through a dual inhibition of the GIP-GIPR signaling axis[J]. Phytother Res,2023 March 21. doi:10.1002/ptr.7788. [Epub ahead of print].
[25] 徐丹鳳,謝華,陳敏,等. 亞麻籽油對肥胖2型糖尿病小鼠體質量、血糖、胃腸激素水平的影響[J]. 山東醫藥,2019,59(32):5-7. XU D F,XIE H,CHEN M,et al. Effects of linseed oil on body weight,blood glucose and gastrointestinal hormone secretion in obese type 2 diabetic mice[J]. Shandong Medical Journal,2019,59(32):5-7.
[26] SVENDSEN P F,NILAS L,MADSBAD S,et al. Incretin hormone secretion in women with polycystic ovary syndrome:roles of obesity,insulin sensitivity,and treatment with metformin[J]. Metabolism,2009,58(5):586-593. doi:10.1016/j.metabol.2008.11.009.
[27] 李萍,沙艷偉,丁露,等. PCOS患者腸促胰素水平變化及其在發病中的作用研究[J]. 中國婦幼保健,2015,30(31):5421-5423. LI P,SHA Y W,DING L,et al. Changes of incretin levels in PCOS patients and its role in pathogenesis of PCOS[J]. Maternal and Child Health Care of China,2015,30(31):5421-5423.
[28] 張紅裔,呂洪亮,谷洋,等. 非肥胖型2型糖尿病空腸回腸側側吻合術后血糖與GIP變化的相關性研究[J]. 中國實驗診斷學,2023,27(7):821-824. ZHANG H Y,LYU H L,GU Y,et al. Correlation between blood glucose and GIP changes after lateral jejuno-ileal anastomosis in non-obese type 2 diabetes mellitus[J]. Chinese Journal of Laboratory Diagnosis,2023,27(7):821-824.
[29] THOMAS M K,NIKOOIENEJAD A,BRAY R,et al. Dual GIP and GLP-1 receptor agonist Tirzepatide improves beta-cell function and insulin sensitivity in type 2 diabetes[J]. J Clin Endocrinol Metab,2021,106(2):388-396. doi:10.1210/clinem/dgaa863.
[30] DIAMANTI-KANDARAKIS E,DUNAIF A. Insulin resistance and the polycystic ovary syndrome revisited:an update on mechanisms and implications[J]. Endocr Rev,2012,33(6):981-1030. doi:10.1210/er.2011-1034.
[31] 徐晶,申麗媛,屈清華. 基于PI3K/AKT通路探究柚皮素改善多囊卵巢綜合征大鼠胰島素抵抗的作用機制[J]. 天津醫藥,2022,50(3):270-275. XU J,SHEN L Y,QU Q H. Study on the mechanism of naringenin improving insulin resistance in rats with polycystic ovary syndrome based on PI3K/AKT pathway[J]. Tianjin Med J,2022,50(3):270-275. doi:10.11958/20212367.
[32] KIM S J,NIAN C,KARUNAKARAN S,et al. GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis,and improved glucose homeostasis[J]. PLoS One,2012,7(7):e40156. doi:10.1371/journal.pone.0040156.
[33] SVENDSEN P F,JENSEN F K,HOLST J J,et al. The effect of a very low calorie diet on insulin sensitivity,beta cell function,insulin clearance,incretin hormone secretion,androgen levels and body composition in obese young women[J]. Scand J Clin Lab Invest,2012,72(5):410-419. doi:10.3109/00365513.201 2.691542.
[34] MILEWICZ T,MIGACZ K,KIA?KA M,et al. Basic and meal stimulated plasma GIP levels are higher in lean PCOS women with FAI over 5[J]. Exp Clin Endocrinol Diabetes,2016,124(2):77-81. doi:10.1055/s-0042-101165.
[35] WOODWARD O R M,GRIBBLE F M,REIMANN F,et al. Gut peptide regulation of food intake-evidence for the modulation of hedonic feeding[J]. J Physiol,2022,600(5):1053-1078. doi:10.1113/JP280581.
[36] ADRIAENSSENS A E,BIGGS E K,DARWISH T,et al. Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake[J]. Cell Metab,2019,30(5):987-996.e6. doi:10.1016/j.cmet.2019.07.013.
[37] FU Y,KANEKO K,LIN H Y,et al. Gut hormone GIP induces inflammation and insulin resistance in the hypothalamus[J]. Endocrinology,2020,161(9):bqaa102. doi:10.1210/endocr/bqaa102.
[38] LISKIEWICZ A,KHALIL A,LISKIEWICZ D,et al. Glucose-dependent insulinotropic polypeptide regulates body weight and food intake via GABAergic neurons in mice[J]. Nat Metab,2023,5(12):2075-2085. doi:10.1038/s42255-023-00931-7.
[39] CANTACORPS L,COULL B M,FALCK J,et al. Gut-derived peptide hormone receptor expression in the developing mouse hypothalamus[J]. PLoS One,2023,18(8):e0290043. doi:10.1371/journal.pone.0290043
[40] MOFFETT R C,NAUGHTON V. Emerging role of GIP and related gut hormones in fertility and PCOS[J]. Peptides,2020,125:170233. doi:10.1016/j.peptides.2019.170233.
(2023-01-09收稿 2024-02-25修回)
(本文編輯 胡小寧)