999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

水楊酸信號參與山荊子MbCCR4基因對腐爛病抗性的正調控過程

2024-12-31 00:00:00蔡敏蕊蔣達吉孫娥鄭艷余宏強杜成龍邢萍左存武
果樹學報 2024年9期

摘" " 要:【目的】鑒定山荊子抗腐爛病類受體激酶基因,為抗病分子育種提供參考。【方法】對MbCCR4的結構域組成、啟動子區域的順式作用元件(cis-elements)和進化關系進行分析。結合蘋果和梨果實瞬時表達和杜梨懸浮細胞穩定表達,分析MbCCR4過表達前后各組織腐爛病抗性的差異。利用qRT-PCR分析該基因過表達對免疫反應相關基因表達的影響。【結果】系統發育關系和結構域組成分析表明,MbCCR4為典型的CRINKLY4(CR4)家族成員,與蘋果MD08G1217500的同源率最高,其在山荊子懸浮細胞中的表達量顯著受腐爛病信號誘導,最高上調至對照的456倍。與對照相比,MbCCR4的過表達顯著降低了煙富3號蘋果和黃冠梨接種腐爛病病菌(Vm和Vp)84 h后病斑的擴散率,病斑大小分別減少了25%和16.9%,即該基因瞬時表達可顯著提高煙富3號蘋果和黃冠梨果實的腐爛病抗性。將其轉入杜梨-G03中并獲得3個過表達細胞系。與野生型細胞系相比,過表達MbCCR4可顯著增強懸浮細胞對腐爛病菌和腐爛病病菌代謝物的抗性。基因表達分析結果表明,過表達MbCCR4可顯著誘導杜梨-G03細胞響應腐爛病信號過程中水楊酸、茉莉酸等免疫信號相關基因的表達。【結論】CR4基因家族成員MbCCR4在腐爛病菌誘導下顯著表達且過表達能夠增強蘋果和梨果實及杜梨懸浮細胞對腐爛病的抗性,水楊酸等多種免疫信號參與了其調控的免疫反應。研究結果對深入理解腐爛病抗性機制具有重要的學術價值。

關鍵詞:黑腐皮殼屬;類受體激酶;腐爛病抗性;水楊酸;免疫反應

中圖分類號:S661.1 文獻標志碼:A 文章編號:1009-9980(2024)09-1746-10

Involvement of salicylic acid signalling in the positive regulation of Valsa canker resistance via the Malus baccata MbCCR4

CAI Minrui, JIANG Daji, SUN E, ZHENG Yan, YU Hongqiang, DU Chenglong, XING Ping, ZUO Cunwu*

(Department of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China)

Abstract: 【Objective】 Valsa canker, caused by necrotrophic fungi in Valsa species, is a destructive disease attacking apple and pear trees in China and even in East Asia. It is difficult to control the disease through traditional practices due to the extension of mycelium into the xylem. For a long time, resistance breeding has been a widely approved approach but is largely limited by delayed progress. At present, it is urgent to identify key genes regulating resistance and related molecular mechanisms. Plants have evolved innate immune systems, including horizontal and vertical resistance. Plant cell membrane-localized pattern recognition receptors (PRRs), responsible for recognizing the signals from pathogens and initiating downstream immune responses, are crucial for plant resistance against the infection of various pathogens. Receptor-like kinases (RLKs) are one of the most important PRRs and play vital roles in plant immunity. CRINKLY4 (CR4), a subfamily of RLK, has been confirmed as a key regulator for plant resistance. Shanjingzi (Malus baccata) is widely used as the rootstock of apples in China due to its strong tolerance against both biotic and abiotic stresses. In the current investigation, we identified a CR4 member, MbCCR4, which positively regulates Valsa canker resistance. We further analyzed potential signals involved in MbCCR4-regulated immune response. 【Methods】 The domain composition and cis-elements in the promoter region of MbCCR4 were detected by using the online software SMART and Plant CARE, respectively. The phylogenetic relationships between MbCCR4 and the homologous gene in other plant species were analyzed using multiple sequence alignment and phylogenetic tree construction. In order to identify potential roles in Valsa canker resistance, the expression patterns of MbCCR4 were assayed while the Shanjingzi suspension cells responded to Valsa canker signals. The CDS of MbCCR4 was cloned into the expression vector pFGC5941. By using the Freeze-thaw method, the recombined plasmids were transformed into Agrobacterium tumefaciens GV3101. To analyze the roles of MbCCR4 in improving Valsa canker resistance, the A. tumefaciens carrying empty vector and recombined plasmids were transiently expressed in fruits of Yanfu-3 (Malus × domestica) and Huangguan (Pyrus bretschneideri) and overexpressed into suspension cells of Duli-G-03 (P. betulifolia). The resistance was evaluated by the test of fruits and suspension cells challenged to both pathogens (Valsa mali or V. pyri) and V. mali or V. pyri metabolisms (VmM or VpM). The immunity-related genes, including the genes involved in the signals of pattern-triggered immunity (PTI), reactive oxygen species (ROS), salicylic acid (SA) and jasmonic acid (JA), were detected in wild type and over-expressed cells during VpM exposure. 【Results】 Sequence BLAST assays revealed that the target gene was homologous with CCR4 (AT5G47850.1) in Arabidopsis and was then named MbCCR4. Based on the phylogenetic tree of 30 homologous genes from 17 plant species, MbCCR4 showed the highest homologousity with MD08G1217500 in Apple. MbCCR4 is a typical member of the CR4 family, which contains an N-terminal signal peptide, a regulator of chromosome condensation 1 (RCC1) domain and a C-terminal kinase domain. Cis-acting regulatory elements (cis-elements) prediction exhibited that MbCCR4 possessed the cis-elements respond to multiple signals such as methyl jasmonate (MeJA), abscisic acid (ABA), and stresses. During Dongbei Shanjingzi (M. baccata) suspension cells responding to signals from Vm, the expression of MbCCR4 was robustly induced at 1 h. Transient expression showed that up-regulation of MbCCR4 significantly enhanced the Valsa canker resistance of both apple and pear fruits compared to the control (empty vector). Expressional assays exhibited that the target gene was successfully expressed in both apple and pear fruits. Furthermore, MbCCR4 was successfully over-expressed in Duli-G03 suspension cells. For the three overexpression cell lines MbCCR4-OE1, MbCCR4-OE2 and MbCCR4-OE6, the expression of MbCCR4 increased to 11.1, 6.8 and 5.8 folds of that in wild type cells. Consistent with transient expression, over-expression of MbCCR4 significantly promoted the tolerance of suspension cells against both Vp and VpM. Compared to the wild type, over-expression of MbCCR4 significantly inhibited the growth ratio of Vp mycelium on suspension cells. At 1 h, 3 h and 6 h of VpM (20%) exposure, the over-expressed cells displayed higher viability than that of wild type cells. We further detected the expression of marker genes that related to multiple immune signals in wild type and over-expressed cell lines that responded to VpM signals. The results displayed that the expression of marker genes associated with multiple signals, such as PTI, ROS, SA and JA, was obviously induced in overexpressed cells. Among these, the expression of SA related gene pathogenesis related protein 1 (PR1) and 4 (PR4) were robustly up-regulated at all time points, indicating the involvement of SA signals in MbCCR4 induced immunity. 【Conclusion】 The above results indicated that MbCCR4 was a key gene that contributed to the Valsa canker resistance of both apples and pears. Moreover, SA was involved in MbCCR4 mediated immune responses. These investigations supplied a valuable gene for further resistant breeding and a theoretical basis for carrying out comprehensive measures to effectively control the occurrence of Valsa canker in apples and pears.

Key words: Valsa; Receptor-like kinases; Valsa canker resistance; Salicylic acid; Immune responses

腐爛病由黑腐皮殼屬(Valsa)致病腐生真菌引起,是蘋果和梨產業的重大真菌病害[1-2]。其病原菌主要侵染主干韌皮組織,也可對新梢和果實致病[2]。目前,主要通過刮除病斑并涂抹藥劑對其進行防控,但該措施用工量大且復發率較高。此外,由于病原菌菌絲可深入到木質部深處,增加了有效防控的難度[3]。抗病育種是持久、有效且環保的措施,但育種進程緩慢,育成的兼具果實優質和抗病性強的品種極為罕見。當下,鑒定關鍵抗病基因并系統研究其抗病機制,是加快抗病育種進程的重要基礎。

在與病原菌長期共進化的過程中,植物形成了復雜且有序的免疫系統,主要包括水平抗性和垂直抗性[4]。植物的水平抗性常由位于細胞膜的模式識別受體(pattern recognition receptor,PRR)激發,在植物對腐生病害的抗性中起至關重要的作用[5]。作為重要的PRRs,類受體激酶(receptor-like kinases,RLKs)在識別病原信號和激發免疫反應中起重要的調控作用[6]。CRINKLY4(CR4)是獨立的RLKs亞家族,N末端存在至少1個染色體聚集調控因子1(regulator of chromosome condensation 1,RCC1)結構域,在擬南芥和蘋果中分別發現5個和8個成員[7-8]。功能分析發現,該基因家族成員在植物生長發育和病原菌抗性中都具有重要作用。對蘋果CR4基因家族進行鑒定和分析,發現部分成員在蘋果響應腐爛病菌信號過程中顯著上調表達[8]。

山荊子(Malus baccata)是中國北方蘋果產區的重要砧木,對多種生物逆境和非生物逆境都具有較強的適應能力。腐爛病抗性評價表明,東北山荊子為抗腐爛病材料,是進行抗病基因挖掘的優良材料[9]。筆者在本研究中從東北山荊子中鑒定出一個正調控腐爛病抗性的CR4家族成員,命名為MbCCR4,并發現水楊酸和茉莉酸信號參與了該基因的功能。

1 材料和方法

1.1 植物材料

東北山荊子(M. baccata)一年生枝條由國家果樹種質興城梨、蘋果圃友情提供。煙富3號蘋果和黃冠梨果實分別采自甘肅省靜寧縣果樹研究所和景泰縣條山農場。東北山荊子和杜梨-G03(Duli-G03,Pyrus betulifolia)懸浮細胞由筆者課題組誘導獲得。

1.2 病原菌和病原菌代謝物獲得

蘋果腐爛病菌(Valsa mali,Vm)菌株Vm-A-003和梨腐爛病菌(Valsa pyri,Vp)菌株Vp-P-007由筆者課題組保存。將菌株在馬鈴薯葡萄糖瓊脂培養基(potato dextrose agar,PDA)中培養3 d后用于后續試驗。Vp代謝物(Vp metabolism,VpM)或Vm代謝物(Vm metabolism,VmM)為10塊直徑為5 mm的Vp-P-007或Vm-A-003菌餅在100 mL馬鈴薯葡萄糖液體培養基(Potato Dextrose Broth,PDB)中培養3 d后過濾獲得濾液,經去離子水稀釋后獲得的不同濃度的代謝物[10]。

1.3 載體構建

設計上游引物F1(CGC GGA TCC ATG GCA ATC AGC AGA AGG,含AscⅠ酶切位點)和下游引物R1(TGC TCT AGA CGG ACA TAC CGT TGG GTT G,含AvrⅡ酶切位點),克隆MbCCR4全長序列,并經雙酶切和連接導入表達載體pFGC5941,將重組質粒轉入大腸桿菌DH5α。提取重組質粒和pFGC5941空載體質粒,并利用凍融法轉入農桿菌GV3101,經PCR驗證獲得攜帶目標基因和空載體的農桿菌轉化子。

1.4 果實瞬時表達

將攜帶目標基因和空載體(對照)的農桿菌活化,并大量擴繁至OD600為0.6~1.0時,離心并重懸于MES-KOH溶液,4 ℃靜置4 h后,吸取0.2 mL重懸液注射至果實,25 ℃培養3 d后用于病原菌接種和注射部位目標基因的表達量分析。將Vm和Vp菌餅分別接種至蘋果和梨果實注射部位,并在發病后36、48、60、72和84 h測量各處理的病斑大小。以上試驗設5次生物學重復。

1.5 杜梨-G03懸浮細胞遺傳轉化和抗病性分析

用細胞過濾器(孔徑40目)過濾并收集杜梨-G03懸浮細胞小細胞團,黑暗、110 r·min-1振蕩培養3 d備用。攜帶目標基因的農桿菌的活化、擴繁和重懸方法同上。將農桿菌懸浮液和杜梨懸浮細胞以體積比1∶10混合,靜置5 min后除去多余的農桿菌,黑暗靜置培養48 h后用頭孢菌素殺滅農桿菌,并轉移至含有抗生素的MS培養基中培養約20 d,挑取新長出的細胞團進行繼代擴繁并利用PCR和實時熒光定量PCR(quantitative real time polymerase chain reaction,qRT-PCR)篩選轉化細胞系[11]。

選取過表達效果理想的3個細胞系,對其進行Vp和VpM的抗性分析。懸浮細胞對Vp的抗性分析:取野生型和過表達細胞系的細胞團1 mL(密實體積)平鋪至MS平板,并在中心位置接種Vp菌餅,分別于接種后36、48、60和72 h測量病斑大小。在接種72 h時,利用MTT染料對接種的細胞進行染色并觀察細胞活性[12]。懸浮細胞對VpM的抗性分析:用上述方法過濾收集各細胞系小細胞團并將濃度(φ)調整至20 μL(密實體積)·mL-1,接種不同濃度的VpM,并于處理后1、3和6 h用于免疫反應相關基因的表達分析和細胞活性測定。各細胞系的細胞活性采用MTT染色法測定。

1.6 基因表達分析

蘋果、梨果實和杜梨-G03懸浮細胞總RNA提取、cDNA反轉錄和qRT-PCR檢測參考田丹等[13]的方法。根據孫娥等[14]的結果,選取模式觸發免疫(PTI)、活性氧(ROS)、茉莉酸(JA)和水楊酸(SA)等免疫反應信號相關的基因共7個,基因名稱和引物序列等信息詳見表1。內參基因Actin序列和引物選取根據Sun等[12]的方法。基因的相對表達量采用2-ΔΔCT法計算[15]。

1.7 生物信息學分析

從美國國家生物技術信息中心(National Center for Biotechnology Information,NCBI;https://www.ncbi.nlm.nih.gov/)、擬南芥基因組數據庫(Arabidopsis information resource,TAIR;http://www.arabidopsis.org)和薔薇科數據庫(Genome Database for Rosaceae,GDR;https://www.rosaceae.org/)下載所需基因組信息,使用Mafft v7.505[16]對17個物種的部分CR4L家族成員氨基酸全長序列進行多序列比對。采用Fast Tree[17]最大似然法構建系統發育樹,利用JTT模型(1000次bootstrap重復)估算遺傳距離。系統發育樹的顯示、操作和注釋使用Interactive Tree of Life(iTOL,http://itol.embl.de/)。利用SMART(http://smart.embl.de/)進行結構域預測[18]。使用TBtools提取MbCCR4基因上游2000 bp序列,使用在線工具PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)預測其啟動子區域的順式作用元件[19]。

1.8 統計分析

采用Microsoft Excel(2016)軟件進行數據的初步整理,采用t-test進行差異顯著性檢測(* p<0.05;** p<0.01)。

2 結果與分析

2.1 MbCCR4是CR4L亞家族成員

將MbCCR4的蛋白序列提交至擬南芥基因組網站,發現其與CCR4(AT5G47850.1)同源,故將其命名為MbCCR4。進一步通過序列比對獲得該基因在17個物種中的30個同源基因,并構建了系統發育樹,發現其與蘋果中MD08G1217500的同源性最高(圖1-A)。結構域分析表明,MbCCR4蛋白在N端含有1個信號肽,1個RCC1_2結構域,1個跨膜區和1個C端的激酶結構域,為典型的CR4L家族成員(圖1-B)。順式作用元件預測分析發現,MbCCR4啟動子區域含有與MeJA、ABA以及信號傳導、脅迫響應相關的元件(圖1-C)。如上所述,MbCCR4是典型的CR4L的家族成員,其表達可能響應多種激素和逆境信號。

2.2 MbCCR4響應腐爛病信號

根據20% VmM處理山荊子懸浮細胞后的轉錄組數據,篩選出MbCCR4基因的表達量(圖2)[20]。與對照相比,20% VmM處理1 h后,MbCCR4的FPKM值由對照的47.37上升至237.08。利用qRT-PCR分析了20% VmM處理后1 h、3 h和6 h山荊子野生型細胞中MbCCR4的表達模式。結果顯示,VmM處理后MbCCR4的表達被顯著激活,處理1、3和6 h后MbCCR4的表達上調至對照的456、202和155倍。以上結果表明,在山荊子響應腐爛病信號過程中,MbCCR4的表達被顯著誘導。

2.3 MbCCR4正調控蘋果和梨果實的腐爛病抗性

利用農桿菌介導的瞬時表達檢測山荊子基因MbCCR4對蘋果和梨腐爛病的抗性(圖3)。結果表明,接種病原菌36 h時,煙富3號蘋果和黃冠梨果實接種部位逐漸發病,60、72和84 h時,過表達蘋果和梨果實(A-pFGC5941-MbCCR4和P-pFGC5941-MbCCR4)的病斑直徑都顯著小于空載體(A-pFGC5941和P-pFGC5941)(圖3-C)。qRT-PCR檢測證實,與空載體相比,MbCCR4在過表達后其表達量顯著上調(圖3-B)。因此,MbCCR4基因的過表達顯著增強了蘋果和梨果實的腐爛病抗性。

2.4 MbCCR4正調控杜梨懸浮細胞對腐爛病菌的抗性

利用農桿菌介導的遺傳轉化,將MbCCR4轉入杜梨-G03懸浮細胞,并獲得3個過表達細胞系,分別命名為MbCCR4-OE1、MbCCR4-OE2和MbCCR4-OE6。與野生型細胞相比,接種Vp 72 h時,過表達細胞的菌落直徑顯著小于野生型細胞(WT),MTT染色獲得了相似的結果(圖4-A)。經病斑統計發現,在接種病原菌48 h時,WT細胞上病斑直徑已達1.48 cm,而過表達細胞系MbCCR4-OE1、MbCCR4-OE2和MbCCR4-OE6的病斑大小分別為0.48、0.25和0.76 cm,且在72 h時病斑差異最為明顯(圖4-B)。qRT-PCR分析發現,過表達細胞系MbCCR4-OE1、MbCCR4-OE2和MbCCR4-OE6中MbCCR4的表達量分別上調至野生型細胞的11.1、6.8和5.8倍(圖4-C)。綜上,過表達MbCCR4顯著提高了杜梨懸浮細胞對Vp的抗性。

2.5 MbCCR4正調控杜梨懸浮細胞對腐爛病菌代謝物的抗性

通過使用細胞活力跟蹤檢測MbCCR4-OE2和WT細胞對VpM的耐受性(圖5),結果表明,與野生型相比,當用20%的VpM處理1、3和6 h時,MbCCR4-OE2的細胞活力顯著高于野生型細胞,分別比對照高出了1.1、1.09和1.21倍。這些結果表明,MbCCR4的過表達顯著增強了杜梨-G03懸浮細胞對VpM的耐受性。

2.6 MbCCR4過表達誘導杜梨懸浮細胞響應腐爛病信號過程中免疫反應相關基因的表達

為了研究MbCCR4激活的信號通路,分析了與植物免疫直接相關的PTI、ROS、JA和SA信號相關的關鍵基因的表達(圖6)。與野生型相比,MbCCR4的過表達導致PTI相關基因WRKY22、ROS相關基因OXI1、SA相關基因PR1和PR4以及JA相關基因CHN50和LOX1的上調表達。其中,在VpM處理后,SA相關基因PR1和PR4的表達在所有時間點都高于野生型細胞。因此,多種免疫信號,包括PTI、ROS、SA和JA參與了MbCCR4調節的防御反應。

3 討 論

通過對山荊子的CR4基因進行生物信息學分析、表達分析及關鍵基因MbCCR4的功能分析,結果表明,MbCCR4與MD08G1217500親緣關系較近,推測他們可能發揮類似的功能。啟動子區域多種脅迫相關順式調控元件的分布表明,MbCCR4基因的調控與表達可能受到多種激素共同調控,其中茉莉酸、脫落酸與水楊酸可能在誘導MbCCR4基因表達過程中扮演重要角色,這與之前李婉瑩等[21]的研究結果一致。結構域分析表明,MbCCR4是典型的CR4家族成員。

RLKs作為模式識別受體的重要組成部分,在信號傳導網絡中扮演著關鍵角色,是植物感知環境信號的關鍵蛋白激酶,也是植物中最大的受體蛋白家族,對植物適應環境變化具有重要意義[22-23]。突出的例子是鞭毛蛋白傳感2(Flagellin sensitive 2,FLS2)和延伸因子Tu(elongation factor Tu,EF-Tu)受體(EFR),分別識別細菌鞭毛蛋白和EF-Tu啟動植物的防御[24]。此外,凝集素類受體激酶LecRK-I.9或LecRK-IX.1可以提高煙草對疫霉菌病原體的抗性[25]。CRINKLY4(CR4)是RLK亞家族中的一個分支,在擬南芥中主要調控葉片細胞分化、花器官發育和細胞壁發育等過程。其成員ACR4能夠感知分泌肽CLE40調節遠端根分生組織中的干性穩態[26]。而本研究中的結果表明MbCCR4在調控腐生病原菌的抗性中起著重要的作用,但對其感知的配體還未進行研究,未來可對其配體及共受體展開更深入的研究,這對明確MbCCR4調控腐爛病抗性的分子機制具有重要的意義。

植物不斷受到有害微生物病原體的攻擊,為了保護自己免受這些不同的脅迫,植物進化出了高度受調控的防御系統,主要由SA、JA、乙烯(ET)和脫落酸(ABA)等小分子激素協調[27-29]。SA通常誘導植物對生物營養病原體的防御[30],被認為是誘導植物系統獲得抗性(systemic acquired resistance,SAR)的關鍵信號分子[31]。此外,外施SA可以增強煙草對花葉病毒的抗性[32]。JA和ET是誘導植物防御壞死性病原體的重要激素調節因子[33-35],前期研究證實,CR4在茉莉酸信號中和對灰霉病菌的抗性起著重要的作用[8]。SA對JA途徑的影響可以是拮抗、協同或中性,但在擬南芥中的研究結果表明拮抗相互作用似乎占主導地位[36],但筆者在本研究中發現20% VpM處理后,野生型和過表達系中JA信號通路基因CHN50和LOX1和SA信號通路基因PR1和PR4的表達都被顯著激活,猜測在MbCCR4調控腐爛病菌的抗性作用中SA和JA可能是協同發揮作用,但具體的影響還待筆者更深入地研究。

4 結 論

從山荊子中篩選獲得了1個響應腐爛病信號的CR4家族成員MbCCR4。進一步的功能分析表明其正調控腐爛病抗性,過表達MbCCR4主要激活了植物體內的SA和JA相關信號,進而限制了腐生病原菌的進一步入侵。這一研究結果不僅為腐爛病的抗病育種提供了理論依據,也對生產實踐具有重要意義。

參考文獻References:

[1] WANG X L,WEI J L,HUANG L L,KANG Z S. Re-evaluation of pathogens causing Valsa canker on apple in China[J]. Mycologia,2011,103(2):317-324.

[2] 張美鑫,翟立峰,周玉霞,陳曉忍,賈娜娜,洪霓,王國平. 我國梨樹腐爛病菌致病力分化分析[J]. 果樹學報,2013,30(4):657-664.

ZHANG Meixin,ZHAI Lifeng,ZHOU Yuxia,CHEN Xiaoren,JIA Nana,HONG Ni,WANG Guoping. Pathogenicity differentiation of Valsa mali var. pyri causing pear stem canker in China[J]. Journal of Fruit Science,2013,30(4):657-664.

[3] KE X W,HUANG L L,HAN Q M,GAO X N,KANG Z S. Histological and cytological investigations of the infection and colonization of apple bark by Valsa mali var. mali[J]. Australasian Plant Pathology,2013,42(1):85-93.

[4] DELPLACE F,HUARD-CHAUVEAU C,BERTHOMé R,ROBY D. Network organization of the plant immune system:From pathogen perception to robust defense induction[J]. The Plant Journal,2022,109(2):447-470.

[5] MONAGHAN J,ZIPFEL C. Plant pattern recognition receptor complexes at the plasma membrane[J]. Current Opinion in Plant Biology,2012,15(4):349-357.

[6] WU Y,ZHOU J M. Receptor-like kinases in plant innate immunity[J]. Journal of Integrative Plant Biology,2013,55(12):1271-1286.

[7] 呂前前,劉鈺璽,李靜軒,馬宗桓,姜雪峰,王寶林,毛娟,褚明宇,陳佰鴻,左存武. 蘋果CR4基因家族鑒定與表達分析[J]. 園藝學報,2018,45(10):2019-2029.

Lü Qianqian,LIU Yuxi,LI Jingxuan,MA Zonghuan,JIANG Xuefeng,WANG Baolin,MAO Juan,CHU Mingyu,CHEN Baihong,ZUO Cunwu. Identification and expression analysis of CR4 in apple[J]. Acta Horticulturae Sinica,2018,45(10):2019-2029.

[8] E-ZEREEN J,INGRAM G. A possible involvement of ACR4,a receptor like kinase,in plant defence mechanism[J]. Bangladesh Pharmaceutical Journal,2012,15(2):127-130.

[9] 劉欣穎,呂松,王憶,王昆,李天紅,韓振海,張新忠. 蘋果種質資源對蘋果樹腐爛病抗性評價[J]. 果樹學報,2011,28(5):843-848.

LIU Xinying, Lü Song,WANG Yi,WANG Kun,LI Tianhong,HAN Zhenhai,ZHANG Xinzhong. Evaluation of resistance of Malus germplasms to apple canker (Valsa ceratosperma)[J]. Journal of Fruit Science,2011,28(5):843-848.

[10] YU H Q,SUN E,MAO X,CHEN Z J,XU T,ZUO L G,JIANG D J,CAO Y N,ZUO C W. Evolutionary and functional analysis reveals the crucial roles of receptor-like proteins in resistance to Valsa canker in Rosaceae[J]. Journal of Experimental Botany,2023,74(1):162-177.

[11] MAO X,WANG C,LV Q Q,TIAN Y Z,WANG D D,CHEN B H,MAO J,LI W F,CHU M Y,ZUO C W. Cyclic nucleotide gated channel genes (CNGCs) in Rosaceae:Genome-wide annotation,evolution and the roles on Valsa canker resistance[J]. Plant Cell Reports,2021,40(12):2369-2382.

[12] SUN E,YU H Q,CHEN Z J,CAI M R,MAO X,LI Y Y,ZUO C W. Enhanced Valsa canker resistance conferred by expression of MdLecRK-S. 4.3 in Pyrus betulifolia is largely suppressed by PbePUB36[J]. Journal of Experimental Botany,2023,74(14):3998-4013.

[13] 田丹,朵虎,劉河,呂前前,左存武. 蘋果L-LEC-RLK基因家族鑒定及響應病原真菌信號的表達分析[J]. 園藝學報,2019,46(3):421-432.

TIAN Dan,DUO Hu,LIU He,Lü Qianqian,ZUO Cunwu. Genome wide identification and expression patterns in response to signals from fungal pathogens of L-LEC-RLK gene family in apple[J]. Acta Horticulturae Sinica,2019,46(3):421-432.

[14] 孫娥,閆文萍,余宏強,趙丹,朵虎,左存武. 蘋果和梨抗病相關基因的誘導與表達分析[J]. 西北植物學報,2022,42(9):1468-1476.

SUN E,YAN Wenping,YU Hongqiang,ZHAO Dan,DUO Hu,ZUO Cunwu. Induction and expression analysis of the disease resistance related genes in apple and pear[J]. Acta Botanica Boreali-Occidentalia Sinica,2022,42(9):1468-1476.

[15] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT method[J]. Methods,2001,25(4):402-408.

[16] ROZEWICKI J,LI S L,AMADA K M,STANDLEY D M,KATOH K. MAFFT-DASH:Integrated protein sequence and structural alignment[J]. Nucleic Acids Research,2019,47(W1):W5-W10.

[17] PRICE M N,DEHAL P S,ARKIN A P. FastTree:Computing large minimum evolution trees with profiles instead of a distance matrix[J]. Molecular Biology and Evolution,2009,26(7):1641-1650.

[18] LETUNIC I,KHEDKAR S,BORK P. SMART:Recent updates,new developments and status in 2020[J]. Nucleic Acids Research,2021,49(D1):D458-D460.

[19] LESCOT M,DéHAIS P,THIJS G,MARCHAL K,MOREAU Y,VAN DE PEER Y,ROUZé P,ROMBAUTS S. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research,2002,30(1):325-327.

[20] WANG C,MAO X,ZHAO D,YU H Q,DUO H,SUN E,LU Y,ZUO C W. Transcriptomic analysis reveals that cell wall- and hypersensitive response (HR)-related genes are involved in the responses of apple to Valsa mali[J]. Plant Biotechnology Reports,2022,16(5):539-551.

[21] 李婉瑩,馬乃膺,左存武,毛娟,李文芳,陳佰鴻,褚明宇. 葡萄CR4類受體激酶基因家族的鑒定及表達分析[J]. 果樹學報,2022,39(4):518-531.

LI Wanying,MA Naiying,ZUO Cunwu,MAO Juan,LI Wenfang,CHEN Baihong,CHU Mingyu. Identification and bioinformatics analysis of CR4 receptor-like kinase gene family in grapevine[J]. Journal of Fruit Science,2022,39(4):518-531.

[22] TANG D Z,WANG G X,ZHOU J M. Receptor kinases in plant-pathogen interactions:More than pattern recognition[J]. The Plant Cell,2017,29(4):618-637.

[23] LI X P,ZHANG J J,SHI H Y,LI B,LI J. Rapid responses:Receptor-like kinases directly regulate the functions of membrane transport proteins in plants[J]. Journal of Integrative Plant Biology,2022,64(7):1303-1309.

[24] COUTO D,ZIPFEL C. Regulation of pattern recognition receptor signalling in plants[J]. Nature Reviews Immunology,2016,16(9):537-552.

[25] ZHU Y F,HU C,CUI Y W,ZENG L,LI S,ZHU M S,MENG F H,HUANG S T,LONG L,YI J,LI J,GOU X P. Conserved and differentiated functions of CIK receptor kinases in modulating stem cell signaling in Arabidopsis[J]. Molecular Plant,2021,14(7):1119-1134.

[26] WANG Y,NSIBO D L,JUHAR H M,GOVERS F,BOUWMEESTER K. Ectopic expression of Arabidopsis L-type lectin receptor kinase genes LecRK-I. 9 and LecRK-IX. 1 in Nicotiana benthamiana confers Phytophthora resistance[J]. Plant Cell Reports,2016,35(4):845-855.

[27] PIETERSE C M J,VAN DER DOES D,ZAMIOUDIS C,LEON-REYES A,VAN WEES S C M. Hormonal modulation of plant immunity[J]. Annual Review of Cell and Developmental Biology,2012,28:489-521.

[28] ROBERT-SEILANIANTZ A,GRANT M,JONES J D G. Hormone crosstalk in plant disease and defense:more than just jasmonate-salicylate antagonism[J]. Annual Review of Phytopathology,2011,49:317-343.

[29] VOS I A,PIETERSE C M J,VAN WEES S C M. Costs and benefits of hormone-regulated plant defences[J]. Plant Pathology,2013,62(Suppl. 1):43-55.

[30] GLAZEBROOK J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annual Review of Phytopathology,2005,43:205-227.

[31] MINE A,SEYFFERTH C,KRACHER B,BERENS M L,BECKER D,TSUDA K. The defense phytohormone signaling network enables rapid,high-amplitude transcriptional reprogramming during effector-triggered immunity[J]. The Plant Cell,2018,30(6):1199-1219.

[32] 李國婧,周燮. 植物防御反應中水楊酸與茉莉酸的“對話”機制[J]. 細胞生物學雜志,2002,24(2):101-105.

LI Guojing,ZHOU Xie. The “Dialogue” mechanism of salicylic acid and jasmonic acid in plant defense responses[J]. Chinese Journal of Cell Biology,2002,24(2):101-105.

[33] 徐剛,姚銀安. 水楊酸、茉莉酸和乙烯介導的防衛信號途徑相互作用的研究進展[J]. 生物學雜志,2009,26(1):48-51.

XU Gang,YAO Yin’an. The cross-talk between salicylic acid,jasmonic acid and ethylene defense pathway[J]. Journal of Biology,2009,26(1):48-51.

[34] PROIETTI S,CAARLS L,COOLEN S,VAN PELT J A,VAN WEES S C M,PIETERSE C M J. Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis[J]. Plant,Cell amp; Environment,2018,41(10):2342-2356.

[35] BOUWMEESTER K,HAN M,BLANCO-PORTALES R,SONG W,WEIDE R,GUO L Y,VAN DER VOSSEN E A G,GOVERS F. The Arabidopsis lectin receptor kinase LecRK-I. 9 enhances resistance to Phytophthora infestans in Solanaceous plants[J]. Plant Biotechnology Journal,2014,12(1):10-16.

[36] TSUDA K,SATO M,STODDARD T,GLAZEBROOK J,KATAGIRI F. Network properties of robust immunity in plants[J]. PLoS Genetics,2009,5(12):e1000772.

基金項目:甘肅省科技重大專項(22ZD6NA045)

作者簡介:蔡敏蕊,女,碩士,主要從事蘋果、梨腐爛病抗病機制研究。E-mail:2176029217@qq.com

*通信作者Author for correspondence. E-mail:zuocw@gsau.edu.cn

主站蜘蛛池模板: 91视频99| 亚洲最黄视频| 91无码人妻精品一区| 色婷婷成人| 国产在线视频二区| 亚洲欧美一区二区三区蜜芽| 精品91视频| 热久久国产| 久久一本日韩精品中文字幕屁孩| 欧美国产日韩在线播放| 福利在线不卡| 亚洲第一网站男人都懂| 尤物精品视频一区二区三区| 一级毛片免费高清视频| 国产人人射| 好吊色国产欧美日韩免费观看| 伊人激情久久综合中文字幕| 亚洲男人天堂2020| 一区二区理伦视频| 热99re99首页精品亚洲五月天| 成人一级黄色毛片| 久久无码高潮喷水| 久久综合伊人 六十路| 大香伊人久久| 99精品视频九九精品| A级毛片高清免费视频就| 就去色综合| 99热免费在线| 真人高潮娇喘嗯啊在线观看| 视频二区亚洲精品| 日韩乱码免费一区二区三区| 亚洲中文字幕av无码区| 欧美成人亚洲综合精品欧美激情| 亚洲成在线观看 | 啊嗯不日本网站| 欧美精品伊人久久| 国产女人18水真多毛片18精品| 国产精品无码一二三视频| 深夜福利视频一区二区| 国产一区二区人大臿蕉香蕉| 美臀人妻中出中文字幕在线| 免费国产黄线在线观看| 精品伊人久久久久7777人| 欧美激情综合一区二区| 喷潮白浆直流在线播放| 亚洲娇小与黑人巨大交| 国产网友愉拍精品| 久久综合九色综合97网| 亚洲国产亚洲综合在线尤物| 欧美一级黄片一区2区| 久久亚洲精少妇毛片午夜无码| 日本久久网站| 亚洲自偷自拍另类小说| 国产96在线 | 无码AV动漫| 欧美日韩午夜| 国产人妖视频一区在线观看| 中文字幕无码电影| 成年人午夜免费视频| 午夜免费小视频| 亚洲AV无码乱码在线观看裸奔| 伊人久久婷婷| 一级香蕉视频在线观看| 老熟妇喷水一区二区三区| 67194亚洲无码| a毛片在线播放| 国产丰满大乳无码免费播放| 日本欧美视频在线观看| 日韩精品久久久久久久电影蜜臀| 亚洲精品久综合蜜| 亚洲中文字幕日产无码2021| 国产超碰在线观看| 欧美中文字幕一区二区三区| 久久中文字幕2021精品| 亚洲日韩精品综合在线一区二区| 日本高清免费不卡视频| 亚洲天堂首页| 亚洲男人在线天堂| 国产欧美亚洲精品第3页在线| 九九这里只有精品视频| 亚洲无线一二三四区男男| 综合色88|