







摘" " 要:【目的】探明陽光玫瑰葡萄果銹形成的機制,為其有效防治提供科學的指導建議。【方法】以6年生陽光玫瑰葡萄植株為試材,在果實進入軟化期后,采集有果銹和無果銹的果粒樣品,按照果銹發生程度分成無果銹、輕度果銹和重度果銹3個等級,研究不同果銹等級的果皮相關物質含量、酶活性及代謝組的變化。【結果】隨著果銹程度的增加,陽光玫瑰葡萄果皮的葉綠素、纖維素、半纖維素和總果膠含量逐漸降低,木質素、總黃酮和總酚含量逐漸升高;果皮中過氧化物酶、多酚氧化酶、苯丙氨酸解氨酶、肉桂醇脫氫酶和4-香豆酸:輔酶A連接酶的活性逐漸升高,過氧化氫酶活性先升高后降低,肉桂酸-4-羥基化酶活性先降低后升高。不同果銹程度的果皮中共鑒定到1372種代謝物,差異代謝物有485種,3組果銹等級的果皮之間共有的差異代謝物有110種,其中,有105種差異代謝物在3組中均上調表達,占所有差異代謝物的95.45%,包括37種酚酸類、31種黃酮、17種芪類和5種醌類等;2種差異代謝物在3組中均下調表達,包括1種脂質和1種核苷酸及其衍生物。上述差異代謝物質主要分布在17條代謝途徑中,包括山柰酚苷元Ⅱ的生物合成、山柰酚苷元Ⅰ的生物合成和次生代謝物的生物合成等。【結論】酚酸類和黃酮類物質對陽光玫瑰葡萄果銹的發生影響最大,且山柰酚苷元Ⅱ的生物合成途徑可能在果銹的形成中發揮重要作用。
關鍵詞:陽光玫瑰葡萄;果銹;果皮;代謝組;黃酮;酚酸
中圖分類號:S663.1 文獻標志碼:A 文章編號:1009-9980(2024)09-1756-14
Metabolomic analysis of peels at different russet levels of Shine Muscat grape
LOU Yusui1, SHANG Hongquan1*, LI Zheng2, CUI Xiaoyue1, ZHANG Ke1, WU Wenying1, FAN Hongjie1, Lü Zhongwei1*
(1Horticulture Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China; 2Henan Zhongyuan Grape Research Institute Co., Ltd, Zhengzhou 450045, Henan, China)
Abstract: 【Objective】 Grape berry russet is caused by adverse environmental stimulation, and seriously affects the appearance and commercial value of grape. The study aimed to explore the mechanism of berry russet formation in grape and provide some scientific guidance and suggestions for its effective prevention and control. 【Methods】 6-year-old self-rooted Shine Muscat grapevines (Vitis labrusca × V. vinifera) cultivated in rain-shelter were used as the materials. Flower and fruit managements were carried out according to the conventional methods. The flower cluster was kept 6 cm in length through cutting during the initial flowering period. 1 to 3 days and two weeks after blooming period, the flower clusters were treated with 25 mg·L-1 gibberellic acid + 2 mg·L-1 rchlorfenuron for fruit preservation and enlargement, respectively. After softening period, the berries were collected and divided into three groups: no russet (NR), mild russet (MR, the area of berry russet was less than 10% of the whole peel and the color of berry russet was light), and severe russet (SR, the area of fruit russet was more than 25% of the whole peel and the color of berry russet was dark.). The contents of related substances, enzyme activities, and metabolome in the peel at different berry russet levels were studied through the methods of biochemical and widely targeted metabolomics. 【Results】 With the increase of berry russet level, the contents of chlorophyll, cellulose, hemicellulose, and total pectin in the peel decreased gradually, while the content of lignin, total flavonoids, and total phenol increased gradually. There were significant differences in the contents of cellulose, hemicellulose, total pectin, lignin, total flavonoids, and total phenol among the berries at three russet levels. The lignin content, total flavonoid content, and total phenolic content of severe russet peel were 71.60, 2.89, and 2.04 mg·g-1, respectively. Furthermore, the activities of peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, cinnamyl-alcohol dehydrogenase, and 4-coumarate: CoAligase in the peel increased gradually, and the catalase activity increased first and then decreased, while the cinnamate-4-hydroxylase activity decreased first and then increased with the increase of berry russet levels. There were significant differences in the activities of peroxidase, polyphenol oxidase, and 4-coumarate: CoAligase among the berries at three russet levels. There were no significant differences in the activities of phenylalanine ammonia-lyase and cinnamate-4-hydroxylase between the berries with no russet and mild russet. A total of 1372 metabolites in 13 classes (Class Ⅰ) or 52 classes (Class Ⅱ) were identified in the peel of Shine Muscat grapes, including 270 flavonoids, 223 terpenoids, 163 phenolic acids, 127 amino acids and derivatives, 115 lipids, and 106 alkaloids and so on. Among them, there were 690 up-regulated metabolites and 682 down-regulated metabolites in the peel with mild russet vs no russet. There were 920 up-regulated metabolites and 452 down-regulated metabolites in the peel with severe russet vs mild russet. There were 835 up-regulated metabolites and 537 down-regulated metabolites in the peel with severe russet vs no russet. 485 differential metabolites were determined by VIP (VIP > 1) and absolute Log2FC (|Log2FC|≥1) in the peel of Shine Muscat grapes with different degrees of berry russet. And 247, 287, and 386 differential metabolites existed between mild russet and no russet, severe russet and mild russet, and severe russet and no russet, respectively. The venn diagram analysis was performed and it was found that there were 110 common differential metabolites in the three groups. Among them, 105 differential metabolites were up-regulated in all three groups, accounting for 95.45% of the common differential metabolites, including 37 phenolic acids, 31 flavonoids, 17 stilbenes, five quinones, three terpenoids, three amino acids and derivatives, two lignans and coumarins, one alkaloid, one tannin, one chromone, and four others. Two differential metabolites were down-regulated in all three groups, including one lipid and one nucleotide and derivative. Three differential metabolites (which were flavonoids) were down-regulated in the berries with mild russet vs no russet, and up-regulated in the berries with severe russet vs mild russet and severe russet vs no russet. The above 110 differential metabolites were mainly enriched in 17 metabolic pathways through KEGG pathway annotation and Metware pathway annotation, including biosynthesis of kaempferol aglycones Ⅱ (six differential metabolites), biosynthesis of kaempferol aglycones Ⅰ (four differential metabolites), biosynthesis of secondary metabolites (four differential metabolites), metabolic pathways (three differential metabolites), biosynthesis of quercetin aglycones Ⅰ (two differential metabolites), stilbenoid, diarylheptanoid and gingerol biosynthesis (two differential metabolites), and tyrosine metabolism (two differential metabolites) and so on. In the biosynthesis of kaempferol aglycones Ⅱ, five differential metabolites of 6-hydroxykaempferol-3,7,6-O-triglycoside, 6-hydroxykaempferol-7,6-O-diglucoside, 6-hydroxykaempferol-3,6-O-diglucoside, 6-hydroxykaempferol-3,6-O-diglucoside-7-O-glucuronic acid, 6-methoxykaempferol-3-O -glucoside presented up-regulated among the three groups, which might play an important role in berry russet formation of Shine Muscat. While the metabolite of kaempferol-4'-O -glucoside presented down-regulated in the berries with mild russet vs no russet and up-regulated in the berries with severe russet vs mild russet and severe russet vs no russet. 【Conclusion】 The occurrence of berry russet in Shine Muscat grape had a greater impact on the metabolites of phenolic acids and flavonoids than others. The biosynthesis of kaempferol glycoside Ⅱ might would play an important role in the formation of berry russet.
Key words: Shine Muscat grape; Berry russet; Peel; Metabolome; Flavonoids; Phenolic acids
葡萄是世界性重要果樹,因其適應性強、果實形態美觀、多汁味美、營養價值高等特點而深受大眾喜愛。隨著人民生活水平的提高,消費者對葡萄外在和內在品質均提出了更高要求。葡萄果銹是果實遭受不良環境刺激產生的一種生理性病害,表現為果實表面呈現條狀或不規則狀黃褐色銹斑,嚴重時連成片,致使果實表皮形成木栓化組織[1-2],嚴重影響其外觀品質和經濟價值,該病在黃綠色葡萄品種上尤為凸顯[3],在近年來中國大面積種植的陽光玫瑰葡萄品種上更為嚴重,成為降低其商品性的重要原因。
果銹是一層褐色的木栓化次生保護組織,果銹的形成主要是果皮角質的減少和木質素、木栓質的積累[4-6],木質素、酚類、芪類、木栓質等物質含量的變化與果銹的形成密切相關[5-7]。王慧等[8]在翠冠梨上的研究表明,果銹主要是破碎的角質膜、木質化加厚的表皮和亞表皮細胞以及果點上較易剝落的物質。還有研究表明,翠冠梨果銹的形成與角質(主要是C16-C18 ω-羥基脂肪酸)的減少和木栓質(包括阿魏酸、C19-C23脂肪酸、C22-C26脂肪醇、C16-C22 α, ω-二羧基脂肪酸、C22、C26 ω-羥基脂肪酸、α, ω-二羧酸和ω-羥基酸等)含量的增加有關[9-10]。與Reinders品種相比,Rugiada品種蘋果(感銹品種)果銹果皮中的中鏈羥基脂肪酸(C16-9/10,16-DHFA)、末端羥基化脂肪酸(C16-ω-HFA)、環氧脂肪酸(C18:1-9,10-環氧-19-ω-HFA)含量降低,而C20-ω-HFAs、C22-ω-HFAs、飽和脂肪酸(C22:0 FA)及酚類、阿魏酸、苯甲酸、肉桂酸等代謝物的含量較高[11]。與金冠和Smoothee蘋果(非感銹品種)相比,Rugiada蘋果果皮中烏索酸、齊墩果酸含量顯著降低,而三萜類(樺木酸、羽扇豆醇、樺木蛋白、咖啡酸三萜衍生物)、二氫查耳酮類、酚酸含量升高[12]。另外,果銹的發生與苯丙烷代謝、木質素合成、酚類物質代謝、脂肪酸合成、乙烯代謝、轉錄調節、細胞外聚合和運輸等有關,與其代謝相關的苯丙氨酸解氨酶(PAL)、肉桂酸-4-羥化酶(C4H)、4-香豆酸-輔酶A連接酶(4CL)、過氧化物酶(POD)、肉桂醇脫氧酶(CAD)、多酚氧化酶(PPO)、過氧化氫酶(CAT)、咖啡酸-O-甲基轉移酶、肉桂酰輔酶A還原酶、白藜蘆醇合成酶等的活性與果銹的形成相關[13-15]。在陽光玫瑰葡萄上的研究表明,赤霉酸和氯吡脲處理緩解陽光玫瑰葡萄果銹發生與果皮中白藜蘆醇、總酚、木質素、咖啡酸、香豆酸、丁香酸等含量的下降及苯丙烷合成、類黃酮合成、苯丙氨酸代謝有關[16-17]。套袋降低陽光玫瑰葡萄果銹的發生主要是降低了果皮中木質素、酚類化合物及酚組分含量[18]。那么在相同管理條件下,有果銹與無果銹的葡萄果皮物質成分及相關酶活性發生怎樣的變化呢?至今尚沒有明確報道。代謝組學為研究代謝物及生物過程提供了很好的方法,因此,通過比較果銹發生過程中的代謝組學變化,有助于弄清哪些代謝物和生物過程在葡萄果銹形成中起關鍵作用。
因此,筆者在本研究中以無果銹、輕度果銹(果銹剛發生)和嚴重果銹(果銹發生后期)的陽光玫瑰葡萄果粒為對象,分析比較其果皮物質、相關酶活性及代謝組的變化,以期找出影響葡萄果銹形成的關鍵代謝物和生物過程,為探明葡萄果銹形成的機制奠定基礎,也為果銹有效防治技術開發提供科學的指導建議。
1 材料和方法
1.1 試驗材料
試驗于2023年在河南現代農業研究開發基地(35.00° N、113.07° E)進行。以6年生陽光玫瑰葡萄植株為試材,自根砧,南北行向,株行距1.5 m × 3.0 m,高寬平架式,簡易避雨栽培。花果和肥水管理參考婁玉穗等[19]的方法,于見花時修整花穗,留穗尖6 cm,盛花后1~3 d(5月11—13日)分批次用25 mg·L-1 赤霉酸(GA3)+ 2 mg·L-1氯吡脲(CPPU)進行保花保果處理,2周后用25 mg·L-1 GA3 + 2 mg·L-1 CPPU進行膨大處理。在果粒黃豆粒大小時疏果至60粒左右,控制單穗質量700 g左右。
1.2 樣品采集
在果實成熟期(8月21日),采集無果銹和有果銹的果粒樣品,按照果銹發生程度分成無果銹(NR,no russet)、輕度果銹(MR,mild russet,果銹面積<10%且果銹顏色淺)和重度果銹(SR,severe russet,果銹面積≥25%且果銹顏色深)3組(圖1)。先用刀片劃出取樣部位(無果銹樣品劃出表皮光滑、無斑點部位,輕度果銹和重度果銹樣品劃出有果銹部位),然后用鑷子分別夾取3組果皮樣品,置于液氮中快速冷凍,帶回實驗室用于以下指標的測定。
1.3 果皮物質含量、相關酶活性的測定
1.3.1 果皮物質含量檢測 葉綠素含量采用分光光度法測定,纖維素含量采用蒽酮比色法測定,半纖維素含量采用酶解法測定,總果膠含量采用咔唑比色法測定,木質素含量采用乙酰化法測定,總酚含量采用福林酚法測定,總黃酮含量采用NaNO2-Al(NO3)3-NaOH顯色法測定。
1.3.2 果皮相關酶活性測定 過氧化物酶活性采用愈創木酚法測定,多酚氧化酶活性采用鄰苯二酚法測定,苯丙氨酸解氨酶活性、肉桂酸4-羥基化酶活性、4-香豆酸:輔酶A連接酶活性、肉桂醇脫氫酶活性和過氧化氫酶活性采用分光光度法測定。
1.3.3 數據處理 試驗數據用SPSS 20軟件進行統計分析。
1.4 果皮廣泛靶向代謝組檢測與分析
1.4.1 樣品提取 將樣品置于凍干機(Scientz-100F)中真空冷凍干燥,研磨儀(MM 400,Retsch)研磨(30 Hz,1.5 min)至粉末狀,用電子天平(MS105DM)稱取50 mg粉末,加入1200 μL -20 ℃預冷的70%甲醇內標提取液中,每30 min渦旋一次,每次持續30 s,共渦旋6次;然后在12 000 r·min-1下離心3 min,取上清液,用微孔濾膜(0.22 μm)過濾樣品,保存于進樣瓶中,用于超效液相色譜-質譜聯用(UPLC-MS/MS)分析。
1.4.2 UPLC-MS/MS采集條件 液相條件:色譜柱為Agilent SB-C18(2.1 mm × 100 mm,1.8 μm);流動相:A相為超純水(加入0.1%甲酸),B相為乙腈(加入0.1%甲酸);洗脫梯度:0 min B相比例為5%,9 min內B相比例線性增加到95%,并維持在95% 1 min,10~11 min B相比例降為5%,并以5%平衡至14 min;流速0.35 mL·min-1;柱溫40 ℃;進樣量2 μL。質譜條件:電噴霧離子源(ESI)溫度550 ℃;離子噴霧電壓(IS)5500 V(正離子模式)/-4500 V(負離子模式);離子源氣體Ⅰ(GSⅠ)、氣體Ⅱ(GSⅡ)和氣簾氣(CUR)分別設置為50、60和25 psi,碰撞誘導電離參數設置為高。三重四級桿(QQQ)掃描使用MRM模式,并將碰撞氣體(氮氣)設置為中等。通過進一步的去簇電壓(DP)和碰撞能(CE)優化,完成了各個MRM離子對的DP和CE。根據每個時期內洗脫的代謝物,在每個時期監測一組特定的MRM離子對。
1.4.3 代謝物定性與定量分析 代謝物的定性基于武漢邁維生物技術有限公司自建數據庫(Metware database,MWDB)及代謝物信息公共數據庫,根據二級譜信息進行物質定性,分析去除同位素信號和重復信號。代謝物定量分析利用三重四級桿質譜的多反應監測模式(multiple reaction monitoring,MRM)分析完成。利用軟件Analyst 1.6.3處理質譜數據。根據代謝物保留時間與峰型信息,對每個代謝物在不同樣本中檢測到的質譜峰進行校正,以確保定性定量的準確。
1.4.4 數據分析 將代謝物數據進行無監督的主成分分析(principal component analysis,PCA)和有監督的正交偏最小二乘法判別分析(orthogonal partial least squares-discriminant analysis,OPLS-DA),以觀察分組之間和組內樣本之間的變異度大小。根據獲得的多變量分析OPLS-DA模型的變量重要性投影VIP值(variable importance in projection,VIP>1)和差異倍數值(fold change≥2和fold change≤0.5,FC)篩選差異代謝物。將差異代謝物映射到KEGG數據庫和Metware database中進行注釋,根據注釋結果,按照通路中的類型進行分類。
2 結果與分析
2.1 不同果銹程度的陽光玫瑰葡萄果皮物質含量
由表1可知,隨著果銹程度的增加,陽光玫瑰葡萄果皮的葉綠素、纖維素、半纖維素和總果膠含量逐漸降低,而木質素、總黃酮和總酚含量逐漸增加。其中,無果銹和輕度果銹的果皮葉綠素含量之間差異不顯著,且均顯著高于重度果銹果皮。無果銹、輕度果銹和重度果銹果皮的纖維素、半纖維和總果膠含量之間差異均顯著,重度果銹果皮的纖維素含量為46.25 mg·g-1。無果銹、輕度果銹和重度果銹果皮的木質素、總黃酮和總酚含量之間差異也均顯著,且重度果銹果皮的木質素、總黃酮和總酚含量分別為71.60、2.89和2.04 mg·g-1。
2.2 不同果銹程度的陽光玫瑰葡萄果皮相關酶活性
由表2可知,隨著果銹程度的增加,陽光玫瑰葡萄果皮的過氧化物酶、多酚氧化酶、苯丙氨酸解氨酶、肉桂醇脫氫酶、4-香豆酸:輔酶A連接酶的活性逐漸增高,而過氧化氫酶活性先升高后降低,肉桂酸-4-羥基化酶活性先降低后升高。輕度果銹和重度果銹果皮的過氧化氫酶活性分別為88.37 U·g-1和84.16 U·g-1,兩者之間差異不顯著,且均顯著高于無果銹果皮。重度果銹、輕度果銹和無果銹果皮的過氧化物酶、多酚氧化酶、4-香豆酸:輔酶A連接酶的活性之間差異均顯著。輕度果銹和無果銹果皮的苯丙氨酸解氨酶、肉桂醇脫氫酶和肉桂酸-4-羥基化酶的活性之間差異不顯著,但重度果銹果皮的這3種酶活性顯著高于輕度果銹和無果銹果皮。
2.3 不同果銹程度的陽光玫瑰葡萄果皮代謝組成分總體分析
不同果銹程度的陽光玫瑰葡萄果皮經UPLC-MS/MS分析,共鑒定出1372種代謝物,按照物質一級分類屬于13類、二級分類屬于52類(表3),包括270種黃酮、223種萜類、188種其他類、163種酚酸類、127種氨基酸及其衍生物、115種脂質、106種生物堿、53種木脂素和香豆素、37種有機酸、36種核苷酸及其衍生物、29種鞣質、15種醌類、10種甾體。其中,與無果銹相比,輕度果銹上調代謝物有690種,下調代謝物有682種;與輕度果銹相比,重度果銹上調代謝物有920種,下調代謝物有452種;與無果銹相比,重度果銹上調代謝物有835種,下調代謝物有537種。
2.4 不同果銹程度的陽光玫瑰葡萄果皮代謝組學差異分析
2.4.1 主成分分析 通過對樣本進行主成分分析,初步了解不同果銹程度陽光玫瑰葡萄果皮的總體代謝組差異和組內樣本之間的變異度大小。由圖2可知,PCA分析結果得到13個主成分,其中主成分1(PC1)的貢獻率為41.20%,主成分2(PC2)的貢獻率為18.84%,且3組樣本在二維圖上表現出明顯的分離趨勢,從總體上反映出3組樣品之間的代謝物差異。
2.4.2 差異代謝物篩選 不同程度果銹的陽光玫瑰葡萄果皮差異代謝物有485種,其中,輕度果銹與無果銹果皮間顯著差異的代謝物有247種,顯著下調代謝物有65種,顯著上調代謝物有182種;重度果銹與輕度果銹果皮間顯著差異的代謝物有287種,顯著下調代謝物有31種,顯著上調代謝物有256種;重度果銹與無果銹果皮間顯著差異的代謝物有386種,顯著下調代謝物有65種,顯著上調代謝物有321種(表4)。對3組差異代謝物進行韋恩圖分析,發現3組中共有的差異代謝物有110種(圖3)。
2.4.3 差異代謝物熱圖分析 如圖4所示,對3組中共有的110種差異代謝物進行熱圖分析,發現有105種差異代謝物在3組中均上調表達,占所有差異代謝物的95.45%,包括37種酚酸類、31種黃酮(1種異黃酮、2種其他類黃酮、1種黃烷醇類、19種黃酮醇、4種黃酮、2種花青素、2種二氫黃酮)、22種其他類(包括17種茋類、1種色酮類和4種其他)、5種醌類(2種醌類、3種菲醌)、3種萜類(2種三萜皂苷、1種倍萜)、3種氨基酸及其衍生物、2種木脂素和香豆素(木脂素)、1種生物堿和1種鞣質(原花青素);2種在3組中均下調表達,包括1種脂質(4-羥基鞘氨醇)和1種核苷酸及其衍生物(N6-異戊烯腺嘌呤);3種黃酮類物質(1種黃酮、1種查耳酮、1種黃酮醇)在MR與NR中下調表達,在SR與MR和SR與NR中均上調表達。
2.4.4 差異代謝物通路分析 通過KEGG數據庫和MetMap數據庫對差異代謝物質進行通路富集分析,結果以氣泡圖的形式展現,氣泡代表代謝通路,氣泡所在橫坐標和氣泡大小表示影響值,氣泡越大,表示通路越重要;縱坐標和氣泡顏色表示富集分析的P值,顏色越深,P值越小,富集程度越顯著。由圖5可知,上述110種差異代謝物質中有33種被注釋到17條代謝途徑中,其中,被注釋到山柰酚苷元Ⅱ的生物合成(biosynthesis of kaempferol aglycones Ⅱ)有6種,被注釋到山柰酚苷元Ⅰ的生物合成(biosynthesis of kaempferol aglyconesⅠ)和次生代謝物的生物合成(biosynthesis of secondary metabolites)各有4種,被注釋到代謝途徑(metabolic pathways)有3種,被注釋到槲皮素苷元Ⅰ的生物合成(biosynthesis of quercetin aglyconesⅠ),二苯乙烯、二芳基庚烷和姜酚的生物合成(stilbenoid,diarylheptanoid and gingerol biosynthesis)和酪氨酸代謝(tyrosine metabolism)各有2種,被注釋到花青素的生物合成(anthocyanin biosynthesis)、槲皮素苷元Ⅱ的生物合成(biosynthesis of quercetin aglycones Ⅱ)、槲皮素苷元Ⅲ的生物合成(biosynthesis of quercetin aglycones Ⅲ)、黃酮和黃酮醇的生物合成(flavone and flavonol biosynthesis)、糖酵解/糖異生(glycolysis/gluconeogenesis)、泛醌和其他萜類醌的生物合成(ubiquinone and other terpenoid-quinone biosynthesis)、輔因子的生物合成(biosynthesis of cofactors)、鞘脂代謝(sphingolipid metabolism)、玉米素的生物合成(Zeatin biosynthesis)、植物激素信號轉導(plant hormone signal transduction)各有1種。以上結果說明陽光玫瑰葡萄果銹發生對山柰酚苷元Ⅱ的生物合成的影響最顯著。
2.4.5 山柰酚苷元Ⅱ的生物合成途徑分析 如圖6所示,在山柰酚苷元Ⅱ的生物合成途徑中,被注釋到的6種差異代謝物均屬于黃酮類,其中,6-羥基山柰酚-3,7,6-O-三葡萄糖苷(6-hydroxykaempferol-3,7,6-O-triglycoside)、6-羥基山柰酚-7,6-O-二葡萄糖苷(6-hydroxykaempferol-7,6-O-diglucoside)、6-羥基山柰酚-3,6-O-二葡萄糖苷(6-hydroxykaempferol-3,6-O-diglucoside)、6-羥基山柰酚-3,6-O-二葡萄糖苷-7-O-葡萄糖醛酸(6-hydroxykaempferol-3,6-O-diglucoside-7-O-glucuronic acid)和6-甲氧基山柰酚-3-O-葡萄糖苷(6-methoxykaempferol-3-O-glucoside)在3組中均上調表達,而山柰酚-4'-O-葡萄糖苷(kaempferol-4'-O-glucoside)在MR與NR中下調表達,在SR與MR和SR與NR中均上調表達。
3 討 論
果銹是果實發育過程中的一種生理紊亂現象,黃綠色的葡萄、蘋果、梨等更容易發生果銹,如陽光玫瑰葡萄、金冠蘋果、翠冠梨等[1,4,8],成為降低其商品性的重要原因。生產上常用套袋、植物生長調節劑處理、施鈣肥等方法來降低果銹的發生[3,16-18],而這些方法只能在一定程度上起作用,還不能完全解決果銹發生的問題,究其原因是還沒有完全掌握果銹的發生機制。
葉綠素是果實發育早期的主要呈色色素,隨著果實的發育,葡萄果皮呈現出典型的葉綠素降解特征[20]。在本研究中,發生果銹的陽光玫瑰葡萄果皮呈黃褐色,且隨著果銹程度的增加,果銹顏色越深,葉綠素含量越低,只有重度果銹的果皮葉綠素含量顯著低于無果銹果皮,說明輕度果銹的果皮葉綠體還沒有遭到嚴重破壞。植物細胞壁分為初生壁與次生壁,初生壁主要由纖維素、半纖維素、果膠和糖蛋白組成;次生壁主要由纖維素、半纖維素和木質素組成,因此,纖維素、半纖維素、果膠和木質素含量對維持細胞壁的穩定性具有重要作用[21]。黃艷等[18]的研究表明,陽光玫瑰葡萄有銹果皮的角質層細胞不明顯,角質膜結構被破壞,表皮蠟質層相對稀疏,表皮細胞壁次生加厚,木質素和總酚含量顯著提高。筆者在本研究中的結果與其相似,隨著果銹發生程度的增加,果皮中的纖維素、半纖維素和總果膠含量逐漸降低,木質素、總黃酮和總酚含量逐漸升高,且無果銹、輕度果銹和重度果銹的這些指標之間差異顯著,說明果銹一經發生,果皮的細胞壁結構就遭到破壞,次生細胞壁加厚。
研究表明,果銹的發生主要是次生代謝的結果[13-14],與苯丙烷代謝、木質素合成、酚類物質代謝、脂肪酸合成等有關,與其代謝相關的PAL、C4H、4CL、POD、CAD、PPO、CAT等的活性與果銹的形成有關[13-15]。李晶[22]的研究表明,維納斯黃金蘋果果銹指數與果實PAL、PPO、4CL、C4H的活性呈負相關,與POD、CAD、CCR的活性呈正相關;華金蘋果果銹指數與PAL、PPO、CAD、CCR、C4H的活性呈負相關,與POD、4CL的活性呈正相關。劉鹿寧等[23]的研究表明,琯溪蜜柚果實汁胞粒化過程中與木質素合成相關酶PAL、C4H、4CL、CAD、PPO的活性明顯上升,木質素含量顯著積累。在本研究中,隨著果銹程度的增加,陽光玫瑰葡萄果皮的POD、PPO、PAL、CAD、4CL的活性逐漸升高,而CAD活性先升高后降低,C4H活性先降低后升高,說明陽光玫瑰葡萄果銹發生與POD、PPO、PAL、CAD、4CL的活性呈正相關,CAD在果銹形成早期起作用,C4H在果銹形成后期起作用。這與Hou等[16]的研究結果略有不同,其研究中陽光玫瑰葡萄果銹的減少與PAL、POD活性的降低和4CL活性的升高有關。
果銹的形成是一個復雜的生物學過程,主要涉及木栓質在果皮中的積累,木質素和脂肪酸代謝是兩個重要的代謝途徑,為木栓質及其他物質合成提供前體物質[15]。代謝組學是對某一生物或細胞在特定生理時期內所有低分子量代謝產物進行定性和定量分析的一門學科,為研究生物代謝物及生物過程提供了很好的方法。楊王莉等[24]利用代謝組學方法比較了蘇翠1號(無或極少銹品種)及其父本翠冠(有銹品種)、母本華酥(無銹品種)的代謝物差異,發現差異代謝物主要是酚酸類、脂質類和黃酮類物質。Wang等[25]比較了有銹和無銹蘋果果皮的代謝組差異,發現肉桂酸及其衍生物、苯丙烷、酚酸在有銹果皮中顯著積累,黃酮、氨基酸及其衍生物在兩個樣品中均富集。在本研究中,在無果銹、輕度果銹和重度果銹的陽光玫瑰葡萄果皮代謝組的兩兩比較中,發現有110種共有差異代謝物,其中,有105種隨著果銹發生程度的增加而上調表達,2種下調表達,這105種上調表達的代謝物中有37種酚酸、31種黃酮、17種茋類、5種醌類、3種萜類等,下調表達的2種代謝物為1種脂質(4-羥基鞘氨醇)和1種核苷酸及其衍生物(N6-異戊烯腺嘌呤),說明在陽光玫瑰葡萄果銹發生過程中,酚酸、黃酮、茋類等物質在果皮中積累,而脂質和核苷酸及其衍生物在果皮中減少,這與前人的研究結果相似[24-25]。Huang等[26]在陽光玫瑰葡萄無銹果皮與有銹果皮中發現有60種差異代謝物,其中,43種上調表達、17種下調表達,上調表達的代謝物中有29種酚類物質,包括10種槲皮素相關糖苷,筆者在本研究中也發現有4種槲皮素相關的糖苷在有果銹果皮中上調表達。在葡萄中,芪類物質的生物合成途徑受非生物脅迫響應,且芪合酶位于果皮細胞壁上[27],Suehiro等[2]的研究表明,陽光玫瑰葡萄芪合酶基因VvSTS type B的上調表達與果銹形成相關。
通過對差異代謝物的功能注釋及富集分析有助于了解特定條件下的生物代謝途徑。Wang等[25]的研究表明,代謝過程,嘌呤代謝、苯丙烷類生物合成,類黃酮生物合成,丙烷、哌啶和吡啶生物堿的生物合成參與蘋果果銹的發生。還有研究表明,苯丙烷代謝,乙烯代謝,次生代謝,卟啉和葉綠素代謝,黃酮的生物合成,油菜素甾醇的生物合成,類胡蘿卜素的生物合成,亞油酸代謝,α-亞油酸代謝,角質、木栓質和蠟質的生物合成等參與梨果銹的形成[24,28-30]。苯丙烷的生物合成、植物信號轉導和谷胱甘肽代謝參與陽光玫瑰葡萄果銹形成[26]。在本研究中,通過對110種共有差異代謝物進行注釋分析,發現有33種差異代謝物質被注釋到17條代謝途徑中,其中,被注釋到差異代謝物較多的代謝途徑有山柰酚苷元Ⅱ的生物合成,山柰酚苷元Ⅰ的生物合成,次生代謝物的生物合成,代謝途徑,槲皮素苷元Ⅰ的生物合成,二苯乙烯、二芳基庚烷和姜酚的生物合成,酪氨酸代謝等。在山柰酚苷元Ⅱ的生物合成途徑中,6種差異代謝物均屬于黃酮類物質,其中,6-羥基山柰酚-3,7,6-O-三葡萄糖苷、6-羥基山柰酚-7,6-O-二葡萄糖苷、6-羥基山柰酚-3,6-O-二葡萄糖苷、6-羥基山柰酚-3,6-O-二葡萄糖苷-7-O-葡萄糖醛酸和6-甲氧基山柰酚-3-O-葡萄糖苷隨著果銹程度的增加均上調表達,而山柰酚-4'-O-葡萄糖苷在MR與NR中下調表達,在SR與MR和SR與NR中均上調表達。山柰酚糖苷屬于黃酮醇類物質,存在于許多蔬菜、水果及中草藥中,具有廣泛的藥理活性,包括抗腫瘤、抗炎、抗氧化、抗菌、保護損傷組織等,因其毒副作用小,越來越受到人們的關注[31],如香石竹中有山柰酚三糖苷、山柰酚-3-O-新橙皮苷[32]。本研究中山柰酚苷元Ⅱ的生物合成和山柰酚苷元Ⅰ的生物合成均參與到陽光玫瑰葡萄果銹形成過程中,且多個山柰酚糖苷在果皮中積累,說明山柰酚苷元的生物合成和這幾種山柰酚糖苷可能在陽光玫瑰葡萄果銹形成中發揮著重要作用。
4 結 論
在陽光玫瑰葡萄果銹發生過程中,果皮葉綠素、纖維素、半纖維素和總果膠含量逐漸降低,木質素、總黃酮和總酚含量逐漸升高,過氧化物酶、多酚氧化酶、苯丙氨酸解氨酶、肉桂醇脫氫酶和4-香豆酸:輔酶A連接酶的活性逐漸升高,過氧化氫酶活性先升高后降低,肉桂酸-4-羥基化酶活性先降低后升高。3組果銹等級的果皮之間共有的差異代謝物有110種,其中,有105種差異代謝物在3組中均表達上調,包括37種酚酸類、31種黃酮、17種芪類和5種醌類等;2種在3組中均表達下調,包括1種脂質和1種核苷酸及其衍生物。上述差異代謝物質主要分布在17條代謝途徑中,包括山柰酚苷元Ⅱ的生物合成、山柰酚苷元Ⅰ的生物合成和次生代謝物的生物合成等。總之,酚酸類和黃酮類物質對陽光玫瑰葡萄果銹的發生影響最大,且山柰酚苷元Ⅱ的生物合成途徑可能在果銹的形成中發揮重要作用。
參考文獻References:
[1] 婁玉穗,尚泓泉,樊紅杰,李政,張柯,呂中偉,張曉鋒,吳文瑩. 不同果銹等級的陽光玫瑰葡萄果皮結構及相關物質變化[J]. 河南農業科學,2022,51(9):105-113.
LOU Yusui,SHANG Hongquan,FAN Hongjie,LI Zheng,ZHANG Ke,Lü Zhongwei,ZHANG Xiaofeng,WU Wenying. Changes in berry peel structure and related substances of Shine Muscat grape with different berry russet levels[J]. Journal of Henan Agricultural Sciences,2022,51(9):105-113.
[2] SUEHIRO Y,MOCHIDA K,ITAMURA H,ESUMI T. Skin browning and expression of PPO,STS,and CHS genes in the grape berries of ‘Shine Muscat’[J]. Journal of the Japanese Society for Horticultural Science,2014,83(2):122-132.
[3] 吳江,程建徽,張月華,蔣飛榮. 黃綠色葡萄品種果皮銹斑問題及防治措施[J]. 中外葡萄與葡萄酒,2006(6):41-42.
WU Jiang,CHENG Jianhui,ZHANG Yuehua,JIANG Feirong. Problems and prevention measures of fruit russet spot in yellow-green grape varieties[J]. Sino-Overseas Grapevine amp; Wine,2006(6):41-42.
[4] YUAN G P,BIAN S X,HAN X L,HE S S,LIU K,ZHANG C X,CONG P H. An integrated transcriptome and proteome analysis reveals new insights into russeting of bagging and non-bagging “Golden Delicious” apple[J]. International Journal of Molecular Sciences,2019,20(18):4462.
[5] FALGINELLA L,ANDRE C M,LEGAY S,WANG K L,DARE A P,DENG C,REBSTOCK R,PLUNKETT B J,GUO L,CIPRIANI G,ESPLEY R V. Differential regulation of triterpene biosynthesis induced by an early failure in cuticle formation in apple[J]. Horticulture Research,2021,8(1):75.
[6] 張伊凡. PpyMYB144調控梨果銹木栓質形成的機制研究[D]. 揚州:揚州大學,2022.
ZHANG Yifan. Study on the mechanism of PpyMYB144 regulating the formation of suberin in pear rust wood[D]. Yangzhou:Yangzhou University,2022.
[7] 劉子毓. PpyNAC381轉錄調控砂梨果銹木栓質形成的機制[D]. 揚州:揚州大學,2023.
LIU Ziyu. PpyNAC381 transcriptionally regulates exocarp suberization of russeted sand pear fruit[D]. Yangzhou:Yangzhou University,2023.
[8] 王慧,安玉艷,汪良駒. ‘翠冠’梨果銹形成的形態解剖學觀察[J]. 果樹學報,2017,34(11):1415-1425.
WANG Hui,AN Yuyan,WANG Liangju. Morphological and anatomic observation on fruit russet formation of pear (Pyrus pyrifolia Nakai ‘Cuiguan’)[J]. Journal of Fruit Science,2017,34(11):1415-1425.
[9] 張鵬飛. ‘翠冠’梨果銹形成機制及關鍵過氧化物酶基因挖掘[D]. 揚州:揚州大學,2020.
ZHANG Pengfei. Mechanism of russet formation and mining of key PRX genes in ‘Cuiguan’ pear fruit[D]. Yangzhou:Yangzhou University,2020.
[10] ZHANG J,ZHANG Y F,ZHANG P F,BIAN Y H,LIU Z Y,ZHANG C,LIU X,WANG C L. An integrated metabolic and transcriptomic analysis reveals the mechanism through which fruit bagging alleviates exocarp semi-russeting in pear fruit[J]. Tree Physiology,2021,41(7):1306-1318.
[11] LASHBROOKE J,COHEN H,LEVY-SAMOCHA D,TZFADIA O,PANIZEL I,ZEISLER V,MASSALHA H,STERN A,TRAINOTTI L,SCHREIBER L,COSTA F,AHARONI A. MYB107 and MYB9 homologs regulate suberin deposition in angiosperms[J]. The Plant Cell,2016,28(9):2097-2116.
[12] BUSATTO N,MATSUMOTO D,TADIELLO A,VRHOVSEK U,COSTA F. Multifaceted analyses disclose the role of fruit size and skin-russeting in the accumulation pattern of phenolic compounds in apple[J]. PLoS One,2019,14(7):e0219354.
[13] TONG N N,PENG L P,LIU Z A,LI Y,ZHOU X Y,WANG X R,SHU Q Y. Comparative transcriptomic analysis of genes involved in stem lignin biosynthesis in woody and herbaceous Paeonia species[J]. Physiologia Plantarum,2021,173(3):961-977.
[14] HU S,KAMIMURA N,SAKAMOTO S,NAGANO S,TAKATA N,LIU S,GOEMINNE G,VANHOLME R,UESUGI M,YAMAMOTO M,HISHIYAMA S,KIM H,BOERJAN W,RALPH J,MASAI E J,MITSUDA N,KAJITA S. Rerouting of the lignin biosynthetic pathway by inhibition of cytosolic shikimate recycling in transgenic hybrid aspen[J]. The Plant Journal,2022,110(2):358-376.
[15] JIANG S H,CHEN M,WANG Z Q,REN Y X,WANG B,ZHU J,ZHANG Y G. Advances in understanding the causes,molecular mechanism,and perspectives of russeting on tree fruit[J]. Frontiers in Plant Science,2022,13:834109.
[16] HOU X D,WEI L L,XU Y S,KHALIL-UR-REHMAN M,FENG J,ZENG J J,TAO J M. Study on russet-related enzymatic activity and gene expression in ‘Shine Muscat’ grape treated with GA3 and CPPU[J]. Journal of Plant Interactions,2018,13(1):195-202.
[17] 馮嬌,侯旭東,董禮花,陶建敏. GA3與CPPU對葡萄果銹相關物質合成及基因表達的影響[J]. 江蘇農業學報,2018,34(3):642-650.
FENG Jiao,HOU Xudong,DONG Lihua,TAO Jianmin. Effects of GA3 and CPPU on the synthesis of related substances and gene expression of berry russet of grapes[J]. Jiangsu Journal of Agricultural Sciences,2018,34(3):642-650.
[18] 黃艷,王鋌,劉磊,梁東,王進,呂秀蘭,黃科文. 不同果袋對陽光玫瑰葡萄果銹形成及酚類物質的影響[J]. 中國果樹,2023(12):53-58.
HUANG Yan,WANG Ting,LIU Lei,LIANG Dong,WANG Jin,Lü Xiulan,HUANG Kewen. Effects of different fruit bags on fruit russet formation and phenolic substances in ‘Shine Muscat’ grape[J]. China Fruits,2023(12):53-58.
[19] 婁玉穗,張曉鋒,樊紅杰,王鵬,吳文瑩,張柯,呂中偉. 黃河故道地區陽光玫瑰葡萄合理產量負載研究[J]. 河南農業科學,2018,47(12):110-115.
LOU Yusui,ZHANG Xiaofeng,FAN Hongjie,WANG Peng,WU Wenying,ZHANG Ke,Lü Zhongwei. Study on the proper yield load of shine Muscat grape in the old flooded area of Yellow River[J]. Journal of Henan Agricultural Sciences,2018,47(12):110-115.
[20] MENDES-PINTO M M,SILVA FERREIRA A C,CARIS-VEYRAT C,GUEDES DE PINHO P. Carotenoid,chlorophyll,and chlorophyll-derived compounds in grapes and port wines[J]. Journal of Agricultural and Food Chemistry,2005,53(26):10034-10041.
[21] 陳瑤瑤,嚴良文,劉建汀,劉智成,余潔,鄭作蕓,朱海生. 黃秋葵果實發育過程中細胞壁組成成分、糖代謝及相關酶活性的變化[J]. 江蘇農業學報,2023,39(5):1217-1224.
CHEN Yaoyao,YAN Liangwen,LIU Jianting,LIU Zhicheng,YU Jie,ZHENG Zuoyun,ZHU Haisheng. Developmental changes of okra fruits in cell wall composition,saccharometabolism and related enzymatic activities[J]. Jiangsu Journal of Agricultural Sciences,2023,39(5):1217-1224.
[22] 李晶. 主要黃綠色蘋果品種果銹發生機制與防控研究[D]. 煙臺:煙臺大學,2022.
LI Jing. Research on fruit rust occurrence mechanism and prevention and control of main yellow-green apple varieties[D]. Yantai:Yantai University,2022.
[23] 劉鹿寧,趙秋月,葛聰,田志嬌,周曉俐,阮翥龍,莊木來,李延,王平. 木質素生物合成途徑相關基因調控琯溪蜜柚汁胞粒化的研究[J]. 果樹學報,2023,40(3):432-441.
LIU Luning,ZHAO Qiuyue,GE Cong,TIAN Zhijiao,ZHOU Xiaoli,RUAN Zhulong,ZHUANG Mulai,LI Yan,WANG Ping. The genes related to lignin biosynthesis pathway regulate juice sac granulation in Guanxi pomelo[J]. Journal of Fruit Science,2023,40(3):432-441.
[24] 楊王莉,李曉剛,楊青松,藺經,盛寶龍,常有宏,王宏. 早熟砂梨蘇翠1號與其親本成熟期果皮差異代謝產物鑒定及相關差異基因表達分析[J]. 果樹學報,2022,39(11):1989-2006.
YANG Wangli,LI Xiaogang,YANG Qingsong,LIN Jing,SHENG Baolong,CHANG Youhong,WANG Hong. Comparative metabolic and transcriptomic analysis of the pericarp of Sucui 1,Cuiguan and Huasu pears[J]. Journal of Fruit Science,2022,39(11):1989-2006.
[25] WANG Z Q,LIU S S,HUO W P,CHEN M,ZHANG Y G,JIANG S H. Transcriptome and metabolome analyses reveal phenotype formation differences between russet and non-russet apples[J]. Frontiers in Plant Science,2022,13:1057226.
[26] HUANG Y,LIANG D,XIA H,LIN L J,WANG J,Lü X L. Lignin and quercetin synthesis underlies berry russeting in ‘Sunshine Muscat’ grape[J]. Biomolecules,2020,10(5):690.
[27] FORNARA V,ONELLI E,SPARVOLI F,ROSSONI M,AINA R,MARINO G,CITTERIO S. Localization of stilbene synthase in Vitis vinifera L. during berry development[J]. Protoplasma,2008,233(1/2):83-93.
[28] SHI C H,WANG X Q,XU J F,ZHANG Y X,QI B X,JUN L. Dissecting the molecular mechanism of russeting in sand pear (Pyrus pyrifolia Nakai) by metabolomics,transcriptomics,and proteomics[J]. The Plant Journal,2021,108(6):1644-1661.
[29] HENG W,LIU L,WANG M D,JIA B,LIU P,YE Z F,ZHU L W. Differentially expressed genes related to the formation of russet fruit skin in a mutant of ‘Dangshansuli’ pear (Pyrus bretchnederi Rehd.) determined by suppression subtractive hybridization[J]. Euphytica,2014,196(2):285-297.
[30] WANG Q,WU X Y,LIU L,YAO D Z,LI J C,FANG J,CHEN X N,ZHU L W,LIU P,YE Z F,JIA B,HENG W. Transcriptome and metabolomic analysis to reveal the browning spot formation of ‘Huangguan’ pear[J]. BMC Plant Biology,2021,21(1):321.
[31] 梁迪,楊曉虹,王娜,孫燁. 黃酮醇類化合物藥理活性的研究進展[C]//劉淑瑩. 吉林省第四屆科學技術學術年會論文集. 長春:吉林大學出版社,2006:979-981.
LIANG Di,YANG Xiaohong,WANG Na,SUN Ye. Research progress on the pharmacological activity of flavonol compounds[C]//LIU Shuying. The 4th Jilin Province Science and Technology Academic Annual Conference. Changchun:Jilin University Press,2006:979-981.
[32] 李趙菊,沈秋雨,周旭紅,王苗苗,鄭永仁. 不同花色香石竹在發育過程中花青素、總黃酮及山奈酚糖苷的含量變化[J]. 現代園藝,2024,47(7):43-47.
LI Zhaoju,SHEN Qiuyu,ZHOU Xuhong,WANG Miaomiao,ZHENG Yongren. Changes of anthocyanin,total flavonoids and kaempferol glycoside contents during the development of carnation with different flower colors[J]. Contemporary Horticulture,2024,47(7):43-47.
基金項目:河南省農業科學院自主創新項目(2024ZC030);國家葡萄產業技術體系豫東綜合試驗站項目(CARS-29-19);河南省農業科學院科技創新團隊(2024TD41);河南省中央引導地方科技發展資金項目(Z20231811173)
作者簡介:婁玉穗,女,助理研究員,主要從事葡萄栽培生理研究。E-mail:yusui86@126.com
*通信作者Author for correspondence. E-mail:13838273960@163.com;E-mail:nkylzw@126.com