




摘" " 要:【目的】探索一套適合新疆大果沙棗果實品質的評價方法,為大果沙棗優良品種選育及產業發展提供科學理論依據?!痉椒ā恳?個大果沙棗新品種為試驗材料,對30項果實品質指標進行測定,并采用隸屬函數法、因子分析和主成分分析進行綜合評價?!窘Y果】6個新疆大果沙棗新品種30項果實品質性狀各指標變異系數在2.656%~97.165%。變異系數最大的是原花青素含量(97.165%),其次為鈣含量(67.785%),變異系數最小的為可食率(2.656%)。經因子分析提取出3個特征值大于1的公因子,累積貢獻率達93.396%。第1主成分的貢獻率為40.728%,主要代表單果質量及水分、總糖、粗纖維、單寧、總酚含量6項指標的信息;第2主成分的貢獻率為38.214%,主要代表還原糖、多糖、總氨基酸、蛋白質、總黃酮、全P和銅含量;第3主成分的貢獻率為14.454%,主要代表總酸和脂肪含量?!窘Y論】綜合評價得出紅玉得分最高,白沙甜次之;雅豐第3。研究結果為科學評價新疆大果沙棗果實品質及推廣優良品種提供理論依據。
關鍵詞:大果沙棗;品質指標;因子分析
中圖分類號:S665.1 文獻標志碼:A 文章編號:1009-9980(2024)09-1800-11
Comprehensive evaluation of fruit quality traits of six new Elaeagnus moorcroftii varieties based on factor analysis
SHENG Wei1, LIU Qiaoling1, LIU Liyan2
(1Research Institute of Landscaping, Xinjiang Academy of Forestry Sciences, Urumqi 830000, Xinjiang, China; 2Research Institute of Afforestation and Sand Control, Xinjiang Academy of Forestry Sciences, Urumqi 830000, Xinjiang, China)
Abstract: 【Objective】 The purpose of this study is to provide a scientific basis for the breeding and industrial development of superior large-fruit jujube (Ziziphus jujuba) varieties in Xinjiang and to explore a suitable method for evaluating the fruit quality of large-fruit jujubes. 【Methods】 Six new large-fruit jujube varieties were used as experimental materials to measure 30 fruit quality indicators (individual fruit weight, flesh recovery, moisture content, soluble solids, total acid, total sugars, reducing sugars, glucose, fructose, starch, polysaccharides, total amino acids, vitamin C, protein, fat, crude fiber, tannin, total flavonoids, total phenols, proanthocyanidins, total alkaloids, ash, Na, K, Ca, Mg, Fe, Mn, Zn and Cu). Subordinate function method, factor analysis, and principal component analysis were used for comprehensive evaluation. 【Results】 The coefficient of variation for the 30 fruit quality traits of the six new Xinjiang large-fruit jujube varieties ranged from 2.656% to 97.165%. The highest variability was in proanthocyanidins (97.165%) and calcium (67.785%), indicating significant differences among varieties in these two components. The variation was less than 10% for moisture content, soluble solids, total sugars, reducing sugars, fructose, starch, polysaccharides, total alkaloids, and copper, indicating low dispersion and relatively consistency of these parameters among varieties. The smallest coefficient of variation was found in flesh recovery (2.656%). The 30 fruit quality traits showed varying degrees of positive and negative correlations. Among them, reducing sugars and total sugars had a very significant positive correlation; starch and individual fruit weight had a significant negative correlation; polysaccharides and total acids had a significant positive correlation; total amino acids had a significant negative correlation with moisture content and significant positive correlations with total acids, total sugars, and reducing sugars; proteins had a significant positive correlation with total acids, a very significant positive correlation with total amino acids, and a very significant negative correlation with moisture content; fat had a very significant negative correlation with polysaccharides; crude fiber had significant positive correlations with total acids and proteins, a very significant positive correlation with total amino acids, and a significant negative correlation with moisture content; tannins had significant negative correlations with reducing sugars, total amino acids, and proteins, and a very significant negative correlation with soluble solids; total flavonoids had a significant positive correlation with tannin; total phenols had significant negative correlations with soluble solids, total amino acids, and proteins, a significant positive correlation with total flavonoids, and a very significant positive correlation with tannins; proanthocyanidins had a significant positive correlation with total flavonoids, a very significant positive correlation with tannins and total phenols, and a significant negative correlation; potassium had significant positive correlations with soluble solids, total amino acids, and proteins, a very significant positive correlation with crude fiber, and a very significant negative correlation with moisture content; magnesium had significant positive correlations with total acids, total amino acids, proteins, and total phosphorus; manganese had a significant positive correlation with calcium; zinc had a very significant positive correlation with starch; copper had a very significant positive correlation with fat and a significant negative correlation with polysaccharides. In the comprehensive evaluation of jujube fruit quality, which is better as the sensory indicators, such as individual fruit weight, flesh recovery, moisture content, and nutritional indicators, such as total sugars, reducing sugars, glucose, fructose, starch, polysaccharides, total amino acids, vitamin C, proteins, fat, total flavonoids, proanthocyanidins, total alkaloids, ash, total phosphorus, potassium, calcium, magnesium, iron, manganese, zinc, and copper become higher values and total acids, crude fiber, tannins, and total phenols become lower, the subordinate function method was used to standardize the data for factor analysis. Principal component analysis was employed to simplify the plethora of raw information into a few synthetic variables for comprehensive evaluation, and five common factors with eigenvalues greater than 1.0 were extracted through factor analysis, accounting for 10% of the cumulative contribution rate, representing the 30 fruit quality indicators of the six types of large-fruit jujube, which can be used as indicators for the comprehensive evaluation of the fruit quality. Within the first principal component (F1) synthesized from 16 indicators (moisture content, soluble solids, total acid, total sugars, reducing sugars, polysaccharides, total amino acids, protein, fat, crude cellulose, tannins, total phenols, total phosphorus, potassium, magnesium, and copper), moisture content, fat, and copper had the greatest weight. The second principal component (F2) was synthesized from 7 indicators: individual fruit weight, fresh recovery rate, glucose, fructose, vitamin C, calcium, and iron, with individual fruit weight and fresh recovery having the greatest weight. The third principal component (F3) included 4 indicators: starch, total flavonoids, proanthocyanidins, and zinc, with starch and proanthocyanidins and weight having the greatest weight. 【Conclusion】 The results of the study show that the quality of large-fruit jujube can be comprehensively evaluated with a set of factors, including external sensory indicators and nutritional indicators. The use of subordinate function method and principal component analysis provides a systematic approach to the evaluation of fruit quality traits, allowing for the identification of superior varieties and the improvement of breeding programs. The study also highlights the importance of obtaining a wide range of quality traits, as they are interrelated and can affect the overall quality of the fruit. The findings can guide the selection of large-fruit jujube varieties with high fruit quality for consumers and the industry, and support the development of new varieties with better quality traits.
Key words: Elaeagnus moorcroftii; Quality index; Factor analysis
大果沙棗(Elaeagnus moorcroftii),又叫大沙棗、新疆大沙棗,胡頹子科胡頹子屬落葉小喬木或喬木,樹高可達10 m,濃郁的芳香氣味被稱為“飄香沙漠的桂花”,具有生長快、抗風沙、耐貧瘠、耐鹽堿等特點,是西北地區防風固沙、改良鹽堿地(沙地)以及四旁綠化的主要樹種[1-2]。沙棗枝、葉、花和果都具有較高的經濟、生態、藥用和觀賞價值,開發利用前景廣闊[3],目前主要用于食品、藥品、化妝品、造紙、飼草等方面。
果實品質是影響果實價值的關鍵因素,而果實品質性狀的評價是篩選林果優良品種的重要依據。前人對沙棗單果質量、果形指數及糖酸、黃酮、總糖含量等果實品質方面已有較多報道[4-5],但有關大果沙棗果實品質性狀評價報道較少,主要集中在組培育苗[6]、抗逆性[7-10]、栽培[11]、營養價值[12]、藥用價值[13]及果實品質(氨基酸、多糖、多酚)[14]等方面,不利于大果沙棗優良品種的推廣應用[15]。因此,高產優質的新品種果實品質評價也是沙棗產業化發展中急切解決的問題。傳統的感官評定[16]、方差分析[17]等方法仍不夠全面,基于此,筆者在采用隸屬函數法統一數量綱的基礎上,結合因子分析進行果實品質的綜合評價,以期為科學評價果實品質及推廣優良大果沙棗品種提供理論依據。
1 材料和方法
1.1 試驗材料
2022年,國家林業和草原局第一批授予大果沙棗植物新品種權6個,包括雅豐、金莎、紅鈴、金皇后、白沙甜和紅玉。于果實成熟期果樹不同方位采集1 kg果實,單株果實為一個試驗,3次重復,當天完成果實外觀等相關指標的測定后于-80 ℃超低溫保存備用。
1.2 測定項目及方法
用電子臺秤測定單果質量[18];參照GB 5009.3—2016測定水分含量[19];參照NY/T 2637—2014測定可溶性固形物含量[20];參照GB/T 12456—2021測定總酸含量[21];參照惠秋沙[19]、武平等[22]的方法測定總糖含量;參照NY/T 2742—2015測定還原糖含量[23];參照GB 5009.8—2023測定果糖和葡萄糖含量[24];參照食品中淀粉的測定GB 5009.9—2016第一法酶水解法測定淀粉含量[25];參照QB/T 5176—2017測定多糖含量[26];參照GB/T 5009 124—2016測定氨基酸含量[27];參照GB 5009.86—2016測定維生素C含量[28];參照GB 5009.5—2016測定蛋白質含量[29];參照GB 5009.6—2016測定脂肪含量[30];參照GB/T 5009.10—2003測定粗纖維含量[31];參照NY/T 1600—2008測定單寧含量[32];參照王振江等[33]、韓志萍[34]的方法測定黃酮含量;參照王振江等[33]、閆祝煒等[35]的方法測定總酚含量;參照DB12/T 885—2019測定原花青素含量[36];參照蒲俊松[37]的方法測定總生物堿含量;參照GB/T 5009.4—2016測定灰分含量[38];參照GB 5009.87—2016測定全磷含量[39];參照GB 5009.91—2017[40]、GB 5009.241—2017[41]、GB 5009.13—2017[42]、GB 5009.14—2017[43]、GB 5009.242—2017[44]、GB 5009.268—2016[45]分別測定礦物質元素鉀、鎂、銅、鋅、錳、鐵和鈣的含量。
1.3 數據處理
使用Excel2013軟件對數據進行整理,使用SPSS19.0軟件進行相關性分析[46]和因子分析[47]。對因子分析的原始數據采用隸屬函數法進行標準化處理,將數據規范至[0,1]。
2 結果與分析
2.1 果實品質分析
雅豐、金莎、紅鈴、金皇后、白沙甜、紅玉6個品種的30項果實品質指標見表1。從各指標變異程度來看,6個品種果實品質性狀變異系數為2.656%~97.165%,變異系數最大的是原花青素含量(97.165%),其次為鈣含量(67.785%),說明原花青素和鈣含量在各品種間差異較大;可溶性固形物、總糖、還原糖、果糖、淀粉、多糖、總生物堿和銅含量變異程度較小,小于10%,說明其離散程度較低,各品種間取值分布較為一致,其中,可食率變異系數僅為2.656%。
2.2 不同果實品質指標的相關性分析
對大果沙棗30項不同果實品質性狀指標進行相關性分析,從表2可知,30項果實品質指標間表現出不同程度的正相關性和負相關性。其中,還原糖含量與總糖含量呈極顯著正相關;淀粉含量與單果質量呈顯著負相關;多糖含量與總酸含量呈顯著正相關;總氨基酸含量與水分含量呈顯著負相關,與總酸、總糖和還原糖含量呈顯著正相關;蛋白質含量與總酸含量呈顯著正相關,與總氨基酸含量呈極顯著正相關,與水分含量呈極顯著負相關;脂肪含量與多糖含量呈極顯著負相關;粗纖維含量與總酸和蛋白質含量呈顯著正相關,與總氨基酸含量呈極顯著正相關,與水分含量呈顯著負相關;單寧含量與還原糖、總氨基酸和蛋白質含量呈顯著負相關,與可溶性固形物含量呈極顯著負相關;總黃酮含量與單寧含量呈顯著正相關;總酚含量與可溶性固形物、總氨基酸和蛋白質含量呈顯著負相關,與總黃酮含量呈顯著正相關,與單寧含量呈極顯著正相關;原花青素含量與總黃酮含量呈顯著正相關;灰分含量與單果質量呈顯著負相關;全P含量與總酸、總糖、還原糖和粗纖維含量呈顯著正相關,與總氨基酸和蛋白質含量呈極顯著正相關,與單寧和總酚含量呈顯著負相關;鉀含量與可溶性固形物、總氨基酸和蛋白質含量呈顯著正相關,與粗纖維含量呈極顯著正相關,與水分含量呈極顯著負相關;鎂含量與總酸、總氨基酸、蛋白質和全P含量呈顯著正相關;錳含量與鈣含量呈顯著正相關;鋅含量與淀粉含量呈極顯著正相關;銅含量與脂肪含量呈極顯著正相關,與多糖含量呈顯著負相關。以上分析結果表明,沙棗品種的各項品質指標間存在一定的相關性,并非完全獨立,且有些指標高度相關。因此,可以對這些高度相關的指標進行篩選,從而簡化果實品質評價指標體系。此外,表中顯示單果質量與淀粉和灰分含量呈顯著負相關;水分含量與總氨基酸和粗纖維含量呈顯著負相關,與蛋白質和總K含量呈極顯著負相關,這表明外部感官品質與內在品質間也存在著一定的關聯性。
2.3 果實品質的因子分析
依據以上分析結果,剔除變異程度小于5%和相關性較低的14項果實品質指標:可食率及可溶性固形物、淀粉、果糖、葡萄糖、維生素C、原花青素、總生物堿、灰分、鉀、鎂、鐵、錳和鋅含量,對其余16項果實品質指標采用隸屬函數法進行數據標準化,見表3。
為了將大量冗雜的原始信息簡化為少數綜合變量,采用主成分分析——利用少數綜合指標來評價原始信息的綜合評價方法[20]對本文數據進行分析評價。以特征值>1.0為標準提取主成分,3個主成分的特征值>1.0。表4統計了3個主成分的載荷值、特征值和貢獻率,其累積貢獻率達93.396%,代表了6種大果沙棗的16項果實品質指標,可以作為綜合評價大果沙棗果實品質的指標。
主成分載荷矩陣經5次迭代后的旋轉因子載荷值見表4。由此可知,第1主成分的貢獻率為40.728%,主要代表單果質量及水分、總糖、粗纖維素、單寧、總酚含量6項指標的信息。第2主成分的貢獻率為38.214%,主要代表還原糖、多糖、總氨基酸、蛋白質、總黃酮、全P和Cu含量。第3主成分的貢獻率為14.454%,主要代表總酸和脂肪含量。
2.4 各主成分綜合得分
將各項指標的載荷值除以相應主成分的特征值即可得到得分矩陣(略),再將得分矩陣中的載荷值開算術平方根即可作為每個指標的載荷系數,將得分矩陣同經標準化轉化的數據相乘,即可得到各主成分的算術表達式:
F1=0.337Zx1-0.212Zx2+0.304Zx3+0.266Zx4+0.203Zx5+0.368Zx6+0.262Zx7-0.201Zx8-0.343Zx9+0.285Zx10-0.122Zx11+0.030Zx12-0.062Zx13+0.266Zx14-0.063Zx15-0.315Zx16;
F2=0.347Zx1-0.219Zx2+0.314Zx3+0.275Zx4+0.209Zx5+0.380Zx6+0.270Zx7+0.207Zx8-0.354Zx9+0.294Zx10-0.126Zx11+0.031Zx12-0.064Zx13+0.274Zx14-0.065Zx15-0.326Zx16;
F3=-0.096Zx1-0.483Zx2+0.329Zx3+0.256Zx4+0.372Zx5+0.171Zx6+0.469Zx7+0.563Zx8-0.151Zx9+0.386Zx10-0.581Zx11-0.619Zx12-0.641Zx13+0.466Zx14+0.043Zx15-0.188Zx16。
用特征值除以所有主成分特征值之和,可以計算出綜合評價函數F=0.436F1+0.409F2+0.155F3。
綜合來看,大果沙棗的綜合評價得分范圍為
-0.297~1.407。果實品質指標排名位列前3的品種分別為紅玉、白沙甜和雅豐,綜合得分分別為1.407、1.299、0.766。其中紅玉果實在F1和F2排名均居第1,而在F3上排名第3;白沙甜果實在F1和F2上排名均居第2,F3排在第1,綜合得分排序為第2;雅豐果實的F1、F2排在第3,F3排在第2,綜合得分排序為第3(表5)。
3 討 論
果實品質是決定大果沙棗品種選育和市場競爭力的關鍵,筆者在本研究中對6個品種30項果實品質指標進行了測定,各指標變異系數在2.656%~97.165%。變異系數最大的是原花青素含量(97.165%),變異系數最小的為可食率(2.656%)。徐金等[48]研究表明,48個沙棗品種的品質指標中,維生素C含量變異系數最大,為35.1%。筆者在本研究中發現大果沙棗維生素C含量的變異系數為23.701%,較前人的研究偏低,可能與沙棗品種材料較少有關,在今后果實品質評價中可增大群體數量。
因果實品質指標單位的不一致,在進行因子分析前需進行指標標準化處理[49],筆者在本研究中采用隸屬函數法和因子分析對6個大果沙棗品種(系)16項果實品質指標進行綜合評價。結果表明,排名前3位的分別是紅玉、白沙甜和雅豐。常用的果實評價方法,主要采用感官評價[50]、方差分析[51]等,受主觀性、多因素性等要素制約,評價結果具有片面性及不確定性。近些年,在選擇果實品質評價方法上,越來越傾向于主成分分析[52-53],主成分分析是將多個指標通過線性變換選出較少的綜合因子來代表眾多的因子[54],已被廣泛應用于多種園藝作物品質的綜合評價[51],目前此法已在釀酒葡萄[55]、枸杞[56]、梨[57]等資源評價上得以廣泛運用。筆者在本研究中剔除變異程度小于5%和相關性較低的果實品質指標,通過因子分析、主成分分析將原有的多個指標,簡化為代表不同果品性狀表現的3個主成分,包括16個大果沙棗果實品質指標,累積方差貢獻率達93.396%,由此可見,3個主成分更有利于全面把握各個品種的綜合指標性狀,排名得分結果更為客觀合理。不同分析方法,對果樹果實品質計算方法和評價側重點各有所不同,在今后的大果沙棗品種果實評價工作中,可采用聚類分析法、主成分分析等多種方法相互結合和驗證進行果實品質的綜合評價,進而獲得更加準確的結論。除此之外,品種的抗逆性、耐貯性、豐產性等方面的因素對大果沙棗品種的綜合評價也十分重要,所以優良品種的篩選應在果實品質評價的基礎上,結合其他農藝性狀進行科學評價,從而篩選出適宜新疆種植推廣的優良品種。
4 結 論
通過對6個大果沙棗新品種30項果實品質指標進行測定,采用相關性分析和因子分析進行綜合評價,提取到3個主成分,主要代表單果質量及水分、總糖、粗纖維、單寧、總酚、還原糖、多糖、總氨基酸、蛋白質、總黃酮、全P、銅、總酸、脂肪含量共16個指標,累積貢獻率可達93.396%。對大果沙棗品種果實綜合品質的優劣進行綜合得分排序,紅玉的果實綜合品質排名最高,其次為白沙甜,雅豐第3。研究結果為新疆大果沙棗優良品種的選育和推廣應用提供了參考依據。
參考文獻 References:
[1] 齊曼·尤努斯,李秀霞,李陽,高橋久光. 鹽脅迫對大果沙棗膜脂過氧化和保護酶活性的影響[J]. 干旱區研究,2005,22(4):503-507.
Qiman·Yunus,LI Xiuxia,LI Yang,GAOQIAO Jiuguang. Effects of salt stress on membrane lipid peroxidation and protective enzymes in leaves of Elaeagnus angustifolia L.[J]. Arid Zone Research,2005,22(4):503-507.
[2] 李磊,賈志清,寧虎森,吉小敏,朱雅娟,綦艷林. 水分脅迫下2種沙棗的抗旱性比較[J]. 林業科學研究,2009,22(3):335-342.
LI Lei,JIA Zhiqing,NING Husen,JI Xiaomin,ZHU Yajuan,QI Yanlin. Drought resistance of two Elaeagnus species under water stress[J]. Forest Research,2009,22(3):335-342.
[3] 郭林繁,畢春竹,宋振琪,王秀軍,耿紅凱,李子航,羅春燕,李慶衛. 堿性鹽脅迫對不同種源沙棗幼苗的生理影響[J]. 西北林學院學報,2023,38(4):51-60.
GUO Linfan,BI Chunzhu,SONG Zhenqi,WANG Xiujun,GENG Hongkai,LI Zihang,LUO Chunyan,LI Qingwei. Physiological response of alkaline salt stress on Elaeagnus angustifolia seedlings from different provenances[J]. Journal of Northwest Forestry University,2023,38(4):51-60.
[4] 王蕓蕓. 沙棗的優系初選及加工性能評價[D]. 泰安:山東農業大學,2020.
WANG Yunyun. Primary selection of superior lines and evaluation of processing performance of Elaeagnus angustifolia[D]. Tai’an:Shandong Agricultural University,2020.
[5] 王雅,趙萍,王玉麗,張軼. 野生沙棗果實營養成分研究[J]. 甘肅農業大學學報,2006,41(6):130-132.
WANG Ya,ZHAO Ping,WANG Yuli,ZHANG Yi. Nutritional composition of wild Elaeagnus angustifolia fruits[J]. Journal of Gansu Agricultural University,2006,41(6):130-132.
[6] 楊育紅,張文輝. 沙棗組織脫分化培養與快繁體系建立的研究[J]. 植物研究,2006,26(4):435-441.
YANG Yuhong,ZHANG Wenhui. Induction differentiation and plant regeneration of Elaeagnus angustifolia[J]. Bulletin of Botanical Research,2006,26(4):435-441.
[7] 劉正祥,張華新,楊升,楊秀艷,狄文彬. NaCl脅迫對沙棗幼苗生長和光合特性的影響[J]. 林業科學,2014,50(1):32-40.
LIU Zhengxiang,ZHANG Huaxin,YANG Sheng,YANG Xiu-yan,DI Wenbin. Effects of NaCl stress on growth and photosynthetic characteristics of Elaeagnus angustifolia seedlings[J]. Scientia Silvae Sinicae,2014,50(1):32-40.
[8] 李思思. NaCl和Na2SO4鹽脅迫對沙棗生長和生理生化特性的影響[D]. 北京:北京林業大學,2017.
LI Sisi. Effects of NaCl and Na2SO4 saline stress on growth and physiological and biochemical characteristics of Elaeagnus angustifolia[D]. Beijing:Beijing Forestry University,2017.
[9] 李陽,齊曼·尤努斯,祝燕. 水分脅迫對大果沙棗光合特性及生物量分配的影響[J]. 西北植物學報,2006,26(12):2493-2499.
LI Yang,Qiman·Yunus,ZHU Yan. Effects of water stress on photosynthetic characteristics and biomass partition of Elaeagnus moorcroftii[J]. Acta Botanica Boreali-Occidentalia Sinica,2006,26(12):2493-2499.
[10] 羅青紅,周斌,李英侖,阿不都熱西提·熱合曼. 鹽漬土壤大果沙棗樹主要礦質陽離子的吸收和分配特征[J]. 西北植物學報,2021,41(8):1371-1379.
LUO Qinghong,ZHOU Bin,LI Yinglun,Abudurexiti·Reheman. Absorption and distribution of main mineral cations of Elaeagnus moorcroftii in salinized land[J]. Acta Botanica Boreali-Occidentalia Sinica,2021,41(8):1371-1379.
[11] FOLLSTAD SHAH J J,HARNER M J,TIBBETS T M. Elaeagnus angustifolia elevates soil inorganic nitrogen pools in riparian ecosystems[J]. Ecosystems,2010,13(1):46-61.
[12] 周尚臻. 沙棗果肉乙酸乙酯部位化學成分及活性研究[D]. 蘭州:蘭州理工大學,2013.
ZHOU Shangzhen. The research on chemical component and their activities of ethyl acetate fraction from flesh of Elaeagnus angustifolia L.[D]. Lanzhou:Lanzhou University of Technology,2013.
[13] 萬超超,王東東,郭敬宇,孫蕓. 新疆沙棗花抗氧化活性研究及總黃酮測定[J]. 化學工程師,2022,36(4):15-19.
WAN Chaochao,WANG Dongdong,GUO Jingyu,SUN Yun. Study on antioxidant activity of Elaeagnus angustifolia flower and determination of total flavonoids[J]. Chemical Engineer,2022,36(4):15-19.
[14] 宋海龍. 大果沙棗果實性狀及化學成分與質量標準的研究[D]. 烏魯木齊:新疆農業大學,2015.
SONG Hailong. Study on the fruit shape and chemical composition and quality standard of Elaeagnus moorcroftii fruit[D]. Urumqi:Xinjiang Agricultural University,2015.
[15] 管文軻,徐娜. 沙棗資源利用研究與開發現狀述評[J]. 安徽農學通報(上半月刊),2012,18(19):119-120.
GUAN Wenke,XU Na. Research situation and resources utilization of Elaeagnus angustifolia[J]. Anhui Agricultural Science Bulletin,2012,18(19):119-120.
[16] 羅青紅,史彥江,宋鋒惠,俞濤. 不同產地雜交榛果實品質比較分析[J]. 食品科學,2013,34(3):50-54.
LUO Qinghong,SHI Yanjiang,SONG Fenghui,YU Tao. Comparative analysis of the quality of hybrid hazels from different growing areas[J]. Food Science,2013,34(3):50-54.
[17] 白沙沙,畢金峰,方芳,王沛,公麗艷. 蘋果品質評價技術研究現狀及展望[J]. 食品科學,2011,32(3):286-290.
BAI Shasha,BI Jinfeng,FANG Fang,WANG Pei,GONG Liyan. Current research progress and prospects of technologies for apple quality evaluation[J]. Food Science,2011,32(3):286-290.
[18] 馮會麗,吳正保,史彥江,張亞鴿,謝亞麗,馬合木提·阿不來提. 基于因子分析的灰棗優良無性系果實品質評價[J]. 食品科學,2016,37(9):77-81.
FENG Huili,WU Zhengbao,SHI Yanjiang,ZHANG Yage,XIE Yali,Mahemuti·Abulaiti. Fruit quality evaluation of superior clones of Zizyphus jujuba cv. Huizao based on factor analysis[J]. Food Science,2016,37(9):77-81.
[19] 惠秋沙. 蒽酮-硫酸法測定桑葚烏發粥中粗多糖的含量[J]. 農產品加工(學刊),2011(10):105-107.
HUI Qiusha. Content determination of total polysaccharides in sangshen wufa gruel by anthrone-sulfuric acid method[J]. Academic Periodical of Farm Products Processing,2011(10):105-107.
[20] 中華人民共和國農業部. 水果和蔬菜可溶性固形物含量的測定 折射儀法:NY/T 2637—2014[S]. 北京:中國農業出版社,2015.
Ministry of Agriculture of the People’s Republic of China. Refractometric method for determination of total soluble solids in fruits and vegetables:NY/T 2637—2014[S]. Beijing:China Agriculture Press,2015.
[21] 中華人民共和國國家衛生健康委員會,國家市場監督管理總局. 食品安全國家標準 食品中總酸的測定:GB 12456—2021[S]. 北京:中國標準出版社,2021.
National Health Commission of the People’s Republic of China,State Administration for Market Regulation. National food safety standard-Determination of Total Acid in Foods:GB 12456—2021[S]. Beijing:Standards Press of China,2021.
[22] 武平,趙文婧,徐曉嬌,段學強. 測定葡萄酒中總糖方法的探討[J]. 中國釀造,2011,30(1):163-165.
WU Ping,ZHAO Wenjing,XU Xiaojiao,DUAN Xueqiang. Methods for determination of total sugar content in wine[J]. China Brewing,2011,30(1):163-165.
[23] 中華人民共和國農業部. 水果及制品可溶性糖的測定 3,5-二硝基水楊酸比色法:NY/T 2742—2015[S]. 北京:中國農業出版社,2015.
Ministry of Agriculture of the People’s Republic of China. Determination of soluble sugar in fruits and derived products-3,5-dinitrosalicylic acid colorimetry:NY/T 2742—2015[S]. Beijing:China Agriculture Press,2015.
[24] 中華人民共和國國家衛生健康委員會,國家市場監督管理總局. 食品安全國家標準 食品中果糖、葡萄糖、蔗糖、麥芽糖、乳糖的測定:GB 5009.8—2023[S]. 北京:中國標準出版社,2023.
National Health Commission of the People’s Republic of China,State Administration for Market Regulation. National food safety standards-Determination of fructose, glucose, sucrose, maltose and lactose in foods:GB 5009.8—2023[S]. Beijing:Standards Press of China,2023.
[25] 中華人民共和國國家衛生和計劃生育委員會,國家食品藥品監督管理總局. 食品安全國家標準 食品中淀粉的測定:GB 5009.9—2016[S]. 北京:中國標準出版社,2017.
National Health and Family Planning Commission of the People’s Republic of China,China Food and Drug Administration. National food safety standard-Determination of starch in foods:GB 5009.9—2016[S]. Beijing:Standards Press of China,2017.
[26] 中華人民共和國工業和信息化部. 枸杞多糖:QB/T 5176—2017[S]. 北京:中國輕工業出版社,2017.
Ministry of Industry and Information of the People’s Republic of China. Wolfberry polysaccharide:QB/T 5176—2017[S]. Beijing:China Light Industry Press,2017.
[27] 中華人民共和國國家衛生和計劃生育委員會,國家食品藥品監督管理總局. 食品安全國家標準 食品中氨基酸的測定:GB 5009.124—2016[S]. 北京:中國標準出版社,2017.
National Health and Family Planning Commission of the People’s Republic of China,China Food and Drug Administration. National food safety standard-Determination of amino acids in food:GB 5009.124—2016[S]. Beijing:Standards Press of China,2017.
[28] 中華人民共和國國家衛生和計劃生育委員會. 食品安全國家標準 食品中抗壞血酸的測定:GB 5009.86—2016[S]. 北京:中國標準出版社,2017.
National Health and Family Planning Commission of the People’s Republic of China. National food safety standard-Determination of ascorbic acid in foods:GB 5009.86—2016[S]. Beijing:Standards Press of China,2017.
[29] 中華人民共和國國家衛生和計劃生育委員會,國家食品藥品監督管理總局. 食品安全國家標準 食品中蛋白質的測定:GB 5009.5—2016[S]. 北京:中國標準出版社,2017.
National Health and Family Planning Commission of the People’s Republic of China,China Food and Drug Administration. National food safety standard- Determination of protein in foods:GB 5009.5—2016[S]. Beijing:Standards Press of China,2017.
[30] 中華人民共和國國家衛生和計劃生育委員會,國家食品藥品監督管理總局. 食品安全國家標準 食品中脂肪的測定:GB 5009.6—2016[S]. 北京:中國標準出版社,2017.
National Health and Family Planning Commission of the People’s Republic of China,China Food and Drug Administration. National food safety standard-Determination of fat in foods:GB 5009.6—2016[S]. Beijing:Standards Press of China,2017.
[31] 中華人民共和國衛生部,中國國家標準化管理委員會. 植物類食品中粗纖維的測定:GB/T 5009.10—2003[S]. 北京:中國標準出版社,2004.
Ministry of Health of the People’s Republic of China,Standardization Administration of the People’s Republic of China. Determination of crude fiber in vegetable foods:GB/T 5009.10—2003[S]. Beijing:Standards Press of China,2004.
[32] 中華人民共和國農業部. 水果、蔬菜及其制品中單寧含量的測定 分光光度法:NY/T 1600—2008[S]. 北京:中國農業出版社,2008.
Ministry of Agriculture of the People’s Republic of China. Determination of tannin content in fruit,vegetable and derived product-Spectrophotometry method:NY/T 1600—2008[S]. Beijing:China Agriculture Press,2008.
[33] 王振江,羅國慶,唐翠明,吳福泉,吳劍安,肖更生,廖森泰. 桑椹成熟過程中酚類物質、總黃酮及花色苷含量的動態變化[J]. 熱帶作物學報,2011,32(9):1658-1660.
WANG Zhenjiang,LUO Guoqing,TANG Cuiming,WU Fuquan,WU Jian’an,XIAO Gengsheng,LIAO Sentai. Chang in the contents of anthocyanins,total phenolics and flavonoids compounds in fruits of three mulberry cultivars during maturation[J]. Chinese Journal of Tropical Crops,2011,32(9):1658-1660.
[34] 韓志萍. 陜北紅棗中總黃酮的提取及含量比較[J]. 食品科學,2006,27(12):560-562.
HAN Zhiping. Extraction and comparison of flavonoids of Chinese dates produced in Shaanxi Province[J]. Food Science,2006,27(12):560-562.
[35] 閆祝煒,鹿毅,楊濤. 分光光度法測定3種顏色桑葚中的總多酚[J]. 光譜實驗室,2011,28(1):325-328.
YAN Zhuwei,LU Yi,YANG Tao. Determination of total polyphenol in three colors of mulberries by spectrophotometry[J]. Chinese Journal of Spectroscopy Laboratory,2011,28(1):325-328.
[36] 天津市市場監督管理委員會. 植物提取物中原花青素的測定 紫外/可見分光光度法:DB12/T 885—2019[S]. 北京:中國標準出版社,2019.
Tianjin Administration for Market Regulation. Determination of anthocyanin in plant extract ultraviolet/visible spectrophotometry:DB12/T 885—2019[S]. Beijing:Standards Press of China,2019.
[37] 蒲俊松. 桑葉生物堿的檢測提取及含量分析[D]. 重慶:西南大學,2016.
PU Junsong. Determination, extraction and concentration analysis of alkaloid in mulberry leaves[D]. Chongqing:Southwest University,2016.
[38] 中華人民共和國國家衛生和計劃生育委員會. 食品安全國家標準 食品中灰分的測定:GB 5009.4—2016[S]. 北京:中國標準出版社,2017.
National Health and Family Planning Commission of the People’s Republic of China. National food safety standard- Determination of ash in foods:GB 5009.4—2016[S]. Beijing:Standards Press of China,2017.
[39] 中華人民共和國國家衛生和計劃生育委員會,國家食品藥品監督管理總局. 食品安全國家標準 食品中磷的測定:GB 5009.87—2016[S]. 北京:中國標準出版社,2017.
National Health and Family Planning Commission of the People’s Republic of China,China Food and Drug Administration. National food safety standard-Determination of phosphorus in foods:GB 5009.87—2016[S]. Beijing:Standards Press of China,2017.
[40] 中華人民共和國國家衛生和計劃生育委員會,國家食品藥品監督管理總局. 食品安全國家標準 食品中鉀、鈉的測定:GB 5009.91—2017[S]. 北京:中國標準出版社,2017.
National Health and Family Planning Commission of the People’s Republic of China,China Food and Drug Administration. National food safety standard-Determination of K, Na in foods:GB 5009.91—2017[S]. Beijing:Standards Press of China,2017.
[41] 中華人民共和國國家衛生和計劃生育委員會,國家食品藥品監督管理總局. 食品安全國家標準 食品中鎂的測定:GB 5009.241—2017[S]. 北京:中國標準出版社,2017.
National Health and Family Planning Commission of the People’s Republic of China,China Food and Drug Administration. National food safety standard-Determination of Mg in foods:GB 5009.241—2017[S]. Beijing:Standards Press of China,2017.
[42] 中華人民共和國國家衛生和計劃生育委員會,國家食品藥品監督管理總局. 食品安全國家標準 食品中銅的測定:GB 5009.13—2017[S]. 北京:中國標準出版社,2017.
National Health and Family Planning Commission of the People’s Republic of China,China Food and Drug Administration. National food safety standard-Determination of copper in foods:GB 5009.13—2017[S]. Beijing:Standards Press of China,2017.
[43] 中華人民共和國國家衛生和計劃生育委員會,國家食品藥品監督管理總局. 食品安全國家標準 食品中鋅的測定:GB 5009.14—2017[S]. 北京:中國標準出版社,2017.
National Health and Family Planning Commission of the People’s Republic of China,China Food and Drug Administration." National food safety standard-Determination of Zn in foods:GB 5009.14—2017[S]. Beijing:Standards Press of China,2017.
[44] 中華人民共和國國家衛生和計劃生育委員會,國家食品藥品監督管理總局. 食品安全國家標準 食品中錳的測定:GB 5009.242—2017[S]. 北京:中國標準出版社,2017.
National Health and Family Planning Commission of the People’s Republic of China,China Food and Drug Administration. National food safety standard-Determination of Mn in foods:GB 5009.242—2017[S]. Beijing:Standards Press of China,2017.
[45] 中華人民共和國國家衛生和計劃生育委員會,國家食品藥品監督管理總局. 食品安全國家標準 食品中多元素的測定:GB 5009.268—2016[S]. 北京:中國標準出版社,2017.
National Health and Family Planning Commission of the People’s Republic of China,China Food and Drug Administration. National food safety standard-Determination of multielement in foods:GB 5009.268—2016[S]. Beijing:Standards Press of China,2017.
[46] 潘越,史彥江,陳淑英,宋鋒惠,陶秀冬. 噴施葉面肥對平歐雜種榛‘新榛1號’嫩枝扦插的影響[J]. 江西農業大學學報,2016,38(5):920-926.
PAN Yue,SHI Yanjiang,CHEN Shuying,SONG Fenghui,TAO Xiudong. Effect of foliar fertilizers on the hybrid hazel ‘New Hazel One’ twig cutting[J]. Acta Agriculturae Universitatis Jiang-xiensis,2016,38(5):920-926.
[47] 劉科鵬,黃春輝,冷建華,陳葵,嚴玉平,辜青青,徐小彪. ‘金魁’獼猴桃果實品質的主成分分析與綜合評價[J]. 果樹學報,2012,29(5):867-871.
LIU Kepeng,HUANG Chunhui,LENG Jianhua,CHEN Kui,YAN Yuping,GU Qingqing,XU Xiaobiao. Principal component analysis and comprehensive evaluation of the fruit quality of ‘Jinkui’ kiwifruit[J]. Journal of Fruit Science,2012,29(5):867-871.
[48] 徐金,于文章,倪偉,毛云飛,劉青,沈向. 沙棗種質資源表型性狀與果實品質多樣性[J]. 北方園藝,2016(22):20-24.
XU Jin,YU Wenzhang,NI Wei,MAO Yunfei,LIU Qing,SHEN Xiang. Diversity of phenotypic traits and fruit quality of Elaeagnus germplasm resources[J]. Northern Horticulture,2016(22):20-24.
[49] 張海英,韓濤,王有年,李麗萍. 桃果實品質評價因子的選擇[J]. 農業工程學報,2006,22(8):235-239.
ZHANG Haiying,HAN Tao,WANG Younian,LI Liping. Selection of factors for evaluating peach (Prunus persica) fruit quality[J]. Transactions of the Chinese Society of Agricultural Engineering,2006,22(8):235-239.
[50] 馬慶華,續九如,王貴禧,姚立新,李穎岳. 河北和山東冬棗果實品質評價及AFLP分子標記的研究[J]. 林業科學研究,2009,22(1):48-54.
MA Qinghua,XU Jiuru,WANG Guixi,YAO Lixin,LI Yingyue. Studies on the fruit quality and aflp markers of Ziziphus jujuba cv. Dongzao from Hebei and Shandong provenances[J]. Forest Research,2009,22(1):48-54.
[51] 高文海,李新崗,王長柱. 木棗優良株系的選擇研究[J]. 果樹學報,2009,26(4):481-486.
GAO Wenhai,LI Xingang,WANG Changzhu. Superior clones selected from Muzao cultivar (Ziziphus jujuba)[J]. Journal of Fruit Science,2009,26(4):481-486.
[52] 辜夕容,陳勇,李洪飛,李秀珍,彭秀,羅平,趙渝麗,羅會,李川. 武隆豬腰棗優良單株果實品質的主成分分析及綜合評選[J]. 食品科學,2012,33(15):79-82.
GU Xirong,CHEN Yong,LI Hongfei,LI Xiuzhen,PENG Xiu,LUO Ping,ZHAO Yuli,LUO Hui,LI Chuan. Principal component analysis and comprehensive evaluation of fruit quality of wulongzhuyao jujube[J]. Food Science,2012,33(15):79-82.
[53] KEENAN D F,VALVERDE J,GORMLEY R,BUTLER F,BRUNTON N P. Selecting apple cultivars for use in ready-to-eat desserts based on multivariate analyses of physico-chemical properties[J]. LWT-Food Science and Technology,2012,48(2):308-315.
[54] 趙雙,黃穎宏,郄紅麗. 30個楊梅品種果實品質分析與綜合評價[J/OL]. 果樹學報,2024:1-18[2024-01-30]. https://doi.org/10.13925/j.cnki.gsxb.20230483.
ZHAO Shuang,HUANG Yinghong,QI Hongli. Fruit quality analysis and comprehensive evaluation of 30 bayberry varieties[J/OL]. Journal of Fruit Science,2024,1-18[2024-01-30]. https://doi.org/10.13925/j.cnki.gsxb.20230483.
[55] 魏烈權,盧世雄,馬宗桓,郭銳,毛娟. 基于主成分分析法的嘉峪關10種釀酒葡萄品種品質評價[J]. 甘肅農業大學學報,2020,55(3):90-96.
WEI Liequan,LU Shixiong,MA Zonghuan,GUO Rui,MAO Juan. Quality evaluation of 10 wine grape varieties in Jiayuguan based on principal component analysis[J]. Journal of Gansu Agricultural University,2020,55(3):90-96.
[56] 王益民,張珂,許飛華,王玉,任曉衛,張寶琳. 不同品種枸杞子營養成分分析及評價[J]. 食品科學,2014,35(1):34-38.
WANG Yimin,ZHANG Ke,XU Feihua,WANG Yu,REN Xiaowei,ZHANG Baolin. Chemical analysis and nutritional evaluation of different varieties of goji berries (Lycium barbarum L.)[J]. Food Science,2014,35(1):34-38.
[57] 木合塔爾·扎熱,阿卜杜許庫爾·牙合甫,故麗米熱·卡克什,馬合木提·阿不來提,哈地爾·依沙克. 新疆地方品種梨果實品質性狀綜合評價[J]. 農業工程學報,2021,37(7):278-285.
Muhtar·Zari,Abduxukur·Yakup,Gulmira·Kakix,Mahmut·Ablat,Kadir·Esah. Comprehensive evaluation of fruit quality traits of local pear cultivars in Xinjiang Region of China[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(7):278-285.
基金項目:新疆維吾爾自治區“三農”骨干人才培養項目(2022SNGGGCCO30);新疆維吾爾自治區公益性科研院所基本科研業務費專項(KY2020025)
作者簡介:盛瑋,男,高級工程師,主要從事大果沙棗的引種、栽培、繁育等方面的研究。E-mail:17626962@qq.com