999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

果園風送式噴霧機在現代矮砧蘋果園的噴施效果評價

2024-12-31 00:00:00朱力爭王濤王丹余賢美翟浩
果樹學報 2024年9期

摘" " 要:【目的】探究風送式塔型噴霧機在矮砧寬行密植蘋果園中的施藥效果,優化施藥參數,為現代矮砧蘋果園農藥施用“減量增效”提供理論參考。【方法】以5年生煙富3蘋果為試驗材料,采用水敏紙霧滴測試卡測定3WF-1000風送式塔型噴霧機霧滴粒徑、霧滴密度與覆蓋率,并利用示蹤劑誘惑紅測定噴霧機的藥液沉積量及地面沉積量。【結果】在5年生現代矮砧寬行密植蘋果園中,噴霧機在不同牽引速度下的霧滴特性差異顯著,與牽引速度為1.16 m·s-1(4.18 km·h-1)時相比,牽引速度為1.77 m·s-1(6.37 km·h-1)時的霧滴覆蓋率和霧滴粒徑由62.19%和142.67 μm下降到57.03%和131.67 μm,而霧滴密度由141.72點·cm-2增加到179.86點·cm-2;牽引速度為1.77 m·s-1時的葉面平均沉積量、地面沉積量和農藥利用率分別為0.24 μg·cm-2、0.55 μg·cm-2和47.1%,均高于1.16 m·s-1時(分別為0.22 μg·cm-2、0.43 μg·cm-2和43.7%)。【結論】3WF-1000型風送式噴霧機兩個牽引速度(1.16 m·s-1和1.77 m·s-1)的霧滴特性均能滿足矮砧寬行密植蘋果園病蟲害的防治要求,噴霧機在牽引速度1.77 m·s-1時農藥利用率更高,但易導致土壤流失率增高。

關鍵詞:果園;風送式噴霧機;霧滴密度;霧滴覆蓋率;霧滴粒徑;利用率;流失率

中圖分類號:S661.1 文獻標志碼:A 文章編號:1009-9980(2024)09-1821-08

Evaluation of spraying efficacy of the air-assisted orchard sprayer in modern dwarfing-rootstock apple orchard

ZHU Lizheng1, WANG Tao2, WANG Dan2, YU Xianmei2, ZHAI Hao2*

(1Feixian Fruit Tea Service in Shandong Province, Feixian 273400, Shandong, China; 2Shandong Institute of Pomology, Tai’an 271000, Shandong, China)

Abstract: 【Objective】 Combining good application technology with advanced application machinery, optimizing parameters such as droplet size, spray volume and traction speed can give full play to the performance of application instruments, improve the utilization rate of pesticides, and achieve precise prevention and control. However, the normative evaluation of the application efficacy of modern machinery, and the reference of the measure adjustment and the equipment improvement are lacking. This research aimed to investigate the spraying effect of air-assisted sprayer, optimize application parameters by comparing and analyzing the changes of droplet characteristics, droplet deposition distribution and ground loss rate of 3WF-1000 air-assisted tower sprayer in the apple orchard with wide planting rows and dwarfing rootstocks, so as to provide theoretical reference for pesticide application “reducing quantity and increasing efficiency” in modern dwarfing-rootstock apple orchards. 【Methods】 Five-year-old Yanfu 3 apple cultivar with spindle-shaped canopy was used as experimental material. The spacing between plants and rows were (1.25-1.50) m × 4.5 m, respectively. The volume median diameter (VMD), droplet density and droplet coverage of the 3WF-1000 air-assisted tower sprayer were tested by water-sensitive paper, and the foliar deposition and ground deposition were tested by tracer agent allura red. A row with the length of 50 m was selected as the test plot and three discontinuous apple trees were randomly selected as sampling points. In order to investigate the droplet characteristics, the canopy was vertically divided into upper (2.0 m), middle (1.5 m) and lower (1.0 m) layers, and five points were selected as distribution sample points in the east, south, west, north and middle of each canopy. A paper clip was used to fix each water-sensitive paper with the detection face down. To investigate the ground loss rate, a dish was placed in each of four directions (east, south, west and north), 30 cm away from the trunk. 20 g of allura red was fully dissolved in 100 L of water and added to the sprayer at the traction speeds of 1.16 m·s-1 (4.18 km·h-1) or 1.77 m·s-1 (6.37 km·h-1). The water-sensitive paper was put into a plastic bag and brought back to the laboratory. After scanning, the droplet size, droplet density and coverage were measured by Image J software. In order to test the foliar deposition, three leaves were collected at each sampling point. After measuring the leaf area, each leaf was washed with 5 mL distilled water for 10 min, the absorption of the washing solution at 501 nm was determined, and the concentration of allura red was calculated according to the standard curve. The dried dishes were added with 10 mL distilled water, and shaken at 100 r·min-1 for 5 min. The absorption of the washing solution at 501 nm was measured and the concentration of allura red was calculated. 【Results】 The droplet characteristics of the sprayer at different traction speeds were significantly different in the five-year-old modern dwarfing-rootstock and wide-row apple orchard. Compared with the traction speed of 1.16 m·s-1 (4.18 km·h-1), the droplet coverage and VMD at 1.77 m·s-1 (6.37 km·h-1) decreased from 62.19% and 142.67 μm to 57.03% and 131.67 μm, and the droplet density (141.72 points·cm-2) increased to 179.86 points·cm-2. The average foliar deposition, ground deposition and utilization rate at the speed of 1.77 m·s-1 were 0.24 μg·cm-2, 0.55 μg·cm-2 and 47.1%, respectively, and were both higher than those of 1.16 m·s-1 (0.22 μg·cm-2, 0.43 μg·cm-2, and 43.7%, respectively). The droplet parameters of the sprayer in the east, south, west, north and middle of the tree were also different at two traction speeds. When the traction speed was 1.77 m·s-1, the droplet coverage in the east, west, south and north was lower than that at the traction speed of 1.16 m·s-1, but it was opposite in the middle canopy, which was significantly higher than that at the traction speed of 1.16 m·s-1 (p<0.05). The droplet particle size at the traction speed of 1.77 m·s-1 was lower than that at 1.16 m·s-1 in all 5 directions, and the south direction had a significant difference (p<0.05). The droplet density in the east, west, north and middle of the tree at the traction speed of 1.77 m·s-1 was higher than that at 1.16 m·s-1, while the droplet density in the south was slightly lower. The distribution of foliar deposition at the two traction speeds of the sprayer was in such a descending order: the upper canopy gt; the middle canopy ≥ the lower canopy of the tree, and the deposition amount in the outer of the tree was higher than that in the inner at the height of the middle and low canopy. At the traction speed of 1.77 m·s-1, the deposition amount in the inner and outer canopy of the middle and lower canopy (deposition ratio of inner to outer was 0.73 and 0.65) was higher than that at the traction speed of 1.16 m·s-1 (deposition ratio of inner to outer was 0.72 and 0.64). However, there was no significant difference in the amount of liquid deposited in the upper, middle and lower canopy of the tree (p<0.05). 【Conclusion】 The droplet characteristics of the 3WF-1000 air-assisted sprayer at two traction speeds (1.16 m·s-1 and 1.77 m·s-1) could meet the requirements of disease and pest control in modern dwarfing-rootstock apple orchards. The better pesticide utilization rate was observed with the sprayer at the traction speed of 1.77 m·s-1, but the soil loss rate would increase as well.

Key words: Orchard; Air-assisted sprayer; Droplet density; Droplet coverage; Volume median diameter (VMD); Utilization rate; Ground loss index

農藥在控制農作物病蟲草危害,保證農產品產量與質量等方面具有不可替代的作用。據統計,2018年中國農藥使用量在30萬t左右[1](折百量),但農藥利用率僅為36.6%[2],農藥流失浪費嚴重,對土壤、河流和地下水系造成嚴重污染[3],限制了農業的綠色可持續發展。果樹作為多年生木本植物,生長周期長,病蟲害種類繁雜及發生規律各異,且中國傳統一家一戶分散經營的果園種植模式無法實現病蟲害的統防統治,落后的施藥器械“跑、冒、滴、漏”現象嚴重,致使果園用藥次數多,農藥使用量大。為提升農產品附加值,促進農業綠色發展,農業部于2016年提出“農藥化肥雙減”和“農藥零增長”[4]的概念和目標。其中,應用高效施藥器械、提高農藥利用率是果園農藥減施的重要組成部分。

蘋果現代矮砧集約栽培模式是中國蘋果生產發展的主流方向,該模式“寬行、高干、集約、高效”的栽培特點,更適合應用大中型果園機械。隨著現代矮砧集約栽培模式在中國蘋果優勢產區的迅速發展[5],風送式噴霧機由于具有工作強度低、安全性好、利用率高、防效高等優點,在矮砧集約栽培果園中廣泛應用。但是,風送式噴霧機在果園的應用效果受諸多因素的影響,不同的農藥劑型和助劑影響藥液在靶標植物葉片上的附著[6-7];藥械噴頭對藥液的流量、噴霧角度、霧滴大小等指標亦有較大影響[8-11];植株冠層結構、葉片表面特性和環境條件對果園農藥利用率的影響也較大[12-14]。針對果園的立地條件和果樹樹體結構,專家學者對機械的各項指標進行調整,相繼研發出果園自動對靶靜電噴霧機[15]、自走履帶式風送果園變量噴霧機[16]、自動仿形變量噴霧機[17]、自走式精準變量噴桿噴霧機[18]和植保無人機[19]等精準施藥機械。將良好的施藥技術與先進的施藥機械相結合,調整優化霧滴粒徑、噴霧量和牽引速度等各項參數,才能充分發揮施藥器械性能,提高農藥利用率,實現精準防控。但由于目前缺少對現代化施藥機械施藥效果的規范性評價,施藥措施的調整與藥械的改進缺少充足的參考。

筆者在本研究中通過對比分析不同牽引速度下3WF-1000風送式塔型噴霧機在5年生矮砧寬行密植蘋果園中霧滴特性、霧滴沉積分布和地面流失率的變化,綜合評價3WF-1000風送式塔型噴霧機在矮砧寬行密植蘋果園中的施藥效果,摸索并優化施藥參數,以期為矮砧寬行密植蘋果園中農藥施用“減量增效”提供理論依據和數據支持。

1 材料和方法

1.1 材料

供試果園:山東省威海市大水泊鎮矮砧寬行密植蘋果園(37°11' N,122°15' E)。以5年生煙富3蘋果為試驗材料,紡錘形樹冠,株行距(1.25~1.50 m)×4.50 m,南北走向,果園自然生草。

設備及試劑耗材:3WF-1000風送式塔型噴霧機(威海新元果業技術服務有限公司,容積1000 L,工作壓力0.5~3.0 MPa,長×寬×高為3.20 m×1.40 m×2.26 m,設備額定轉速540 r·min-1,流量135 L·min-1)。U-3900型紫外分光光度計(日立,日本);CI-202便攜式激光葉面積儀(CID公司,美國);培養皿(直徑7 cm);食品染色劑誘惑紅(上海染料研究所),蒸餾水,水敏紙霧滴測試卡(中國農業科學院植物保護研究所生產)。

1.2 方法

1.2.1 誘惑紅標準溶液配制及標準吸收曲線的測定 稱取誘惑紅0.01 g,將其溶解并轉移至10 mL容量瓶中定容,配成質量濃度為1000 μg·mL-1的母液。分別用移液槍移取母液50、150、250、350、450、550、650 μL至7個10 mL容量瓶中定容,配制成5、15、25、35、45、55、65 μg·mL-1系列質量濃度的誘惑紅溶液。用U-3900型紫外分光光度計測定上述標準溶液在501 nm波長下的吸光度,并繪制標準曲線。

1.2.2 霧滴特性、霧滴沉積分布和地面流失的測定 選擇長50 m的一行果樹作為試驗小區,噴霧開始前,隨機選取3株不連續蘋果樹進行采樣點布置。為研究蘋果樹冠層的霧滴特性,在垂直方向將樹冠層分為上、中、下3層(2.0 m、1.5 m和1.0 m),在冠層的東、南、西、北、中選五點作為布樣點(圖1)。用回形針分別固定一張檢測面朝下的水敏紙霧滴測試卡。為研究霧滴的地面流失率,在距離樹干30 cm處的4個方位(東、南、西、北)各放置一個培養皿(圖2-A)。霧滴特性以各方位布樣點的平均值表示。

將20 g誘惑紅充分溶解于100 L水中,加入3WF-1000風送式塔型噴霧機,在牽引速度為1.16 m·s-1(4.18 km·h-1)和1.77 m·s-1(6.37 km·h-1)時對果樹進行噴施,測量剩余溶液體積以確定用水量。將晾干的水敏紙放入塑封袋中,帶回實驗室,用掃描儀掃描后,用Image J軟件測定分析覆蓋率、霧滴粒徑和霧滴密度;為研究蘋果樹冠層的藥液沉積量,在每個采樣點各采集3片葉(圖2-B),在實驗室中測定葉面積后,每片葉用5 mL蒸餾水振蕩洗滌10 min,測定洗滌液在501 nm下的吸光值,根據標準曲線計算誘惑紅濃度;將風干后的培養皿帶回實驗室,每個皿加入10 mL蒸餾水,100 r·min-1震蕩5 min,測定洗滌液在501 nm下的吸光值并計算誘惑紅濃度。

1.2.3 數據計算與分析 按以下公式計算藥液沉積量、利用率、地面沉積量和地面流失率[20-21]。用掃描儀掃描水敏紙,并用分析軟件Image J測定分析霧滴密度、覆蓋率和霧滴粒徑。采用DPS 16.05統計軟件對數據進行方差分析和顯著性檢驗(Ducan’s新復極差法)。試驗結果表示為平均值(mean)±標準差(SD)。

葉面沉積量/(μg·cm-2)=

[洗滌液的誘惑紅質量濃度(μg·mL-1)×體積(mL)葉面積(cm2)×2];

(1)

利用率/%=[單株蘋果的實際沉積量(μg·cm-2)單株蘋果的理論沉積量(μg·cm-2)]×100;

(2)

地面沉積/(μg·cm-2)=

[洗滌液的誘惑紅質量濃度(μg·mL-1)×體積(mL)培養皿底面積(cm2)];

(3)

地面流失率/%=

[地面沉積量(μg·cm-2)×小區面積(m2)×10小區內誘惑紅投放量(mg)]×100。

(4)

2 結果與分析

2.1 誘惑紅標準吸收曲線的測定

對誘惑紅水溶液進行吸光度檢測,發現吸光度與誘惑紅水溶液的質量濃度在0~65 μg·mL-1范圍內呈線性相關。一元線性回歸方程為y = 0.050 2x-0.060 6,R2=0.995 4。

2.2 不同牽引速度用水量的比較

牽引速度1.16 m·s-1的單位用水量(284.63 L·666.7 m-2)約為速度1.77 m·s-1(148.25 L·666.7 m-2)的1.5倍(表1)。

2.3 不同牽引速度的霧滴特性比較

由表2可知,在試驗果園中,3WF-1000型風送式塔型噴霧機兩個牽引速度(1.16 m·s-1和1.77 m·s-1)在不同采樣點的霧滴覆蓋率分布范圍為53.56%~67.37%,霧滴粒徑為116.67~154.33 μm,霧滴密度為111.50~245.36點·cm-2。噴霧機的霧滴覆蓋率、霧滴粒徑和霧滴密度因牽引速度不同而存在顯著差異,其中,噴霧機牽引速度為1.16 m·s-1時平均霧滴覆蓋率和霧滴粒徑分別為62.19%和142.67 μm,均顯著高于牽引速度為1.77 m·s-1時(57.03%和131.67 μm);而霧滴密度則相反,牽引速度為1.16 m·s-1時是141.72點·cm-2,顯著低于牽引速度1.77 m·s-1時(179.86點·cm-2)(p<0.05)。

牽引速度不同,噴霧機在樹體東、南、西、北和中方位的霧滴參數也不同。噴霧機牽引速度為1.77 m·s-1時霧滴覆蓋率在東、西、南和北4個方位均低于牽引速度為1.16 m·s-1時,而在樹體中部方位則相反,顯著高于牽引速度為1.16 m·s-1時(p<0.05);霧滴粒徑在5個方位均低于牽引速度為1.16 m·s-1時,其中,南方位的霧滴粒徑差異顯著(p<0.05);霧滴密度在樹體東、西、北、中4個方位均高于牽引速度為1.16 m·s-1時,而南方位霧滴密度略低于牽引速度1.16 m·s-1。

2.4 不同牽引速度的霧滴沉積分布和地面流失比較

3WF-1000型風送式塔型噴霧機噴施霧滴在葉面的沉積結果顯示(表3),噴霧機在兩個牽引速度(1.16 m·s-1和1.77 m·s-1)的葉面沉積量、地面沉積量、農藥利用率和地面流失率的分布范圍分別為0.16~0.30 μg·cm-2、0.43~0.55 μg·cm-2、43.7%~47.1%和19.4%~36.0%;噴霧機牽引速度為1.77 m·s-1時葉面平均沉積量、地面沉積量、農藥利用率和地面流失率分別為0.24 μg·cm-2、0.55 μg·cm-2、47.1%和36.0%,均高于牽引速度為1.16 m·s-1時(分別為0.22 μg·cm-2、0.43 μg·cm-2、43.7%和19.4%)。

噴霧機的兩個牽引速度(1.16 m·s-1和1.77 m·s-1)在樹體不同冠層內膛和外膛的霧滴沉積量均為上部冠層>中部冠層≥下部冠層,且在樹體中、下部冠層的外膛藥液沉積量均高于內膛。噴霧機在牽引速度為1.77 m·s-1時除了在樹體上部冠層內膛藥液沉積量略低外,在中、下冠層內膛和外膛的藥液沉積量(內/外膛的沉積比為0.73和0.65)均高于牽引速度為1.16 m·s-1時(內/外膛的沉積比為0.72和0.64),但噴霧機兩個牽引速度在樹體上、中、下冠層內膛和外膛的藥液沉積量差異不顯著(p<0.05)。

3 討 論

先進的施藥器械輔以精準的施藥技術,能有效降低農藥的使用量,大幅度提高農藥利用率。目前,中國現代矮砧寬行密植果園中,大中型風送式噴霧機已開始普及,但由于風送式噴霧機的研發和田間應用脫節,在應用中未能發揮風送式噴霧機的最佳性能,導致農藥的使用效率低下,因此,綜合評價施藥器械在田間的施藥效果并優化噴施過程中的各項技術參數顯得尤為重要[22]。衡量藥械施藥效果的必備檢測指標包含霧滴覆蓋率、霧滴粒徑、霧滴密度、藥液利用率和流失率[18],其中霧滴粒徑和霧滴密度受施藥機械的直接影響,最終影響藥液的沉積量[22]。

摩澤[23]提出,對蟲害的防治僅需5%的霧滴覆蓋率,而對植物病害的防治則需要40%的霧滴覆蓋率,通常覆蓋率達到33%左右即可同時有效防治病害與蟲害。生物最佳粒徑理論證明,防治飛行害蟲適合使用10~50 μm的細小霧滴,防治葉面爬行類害蟲幼蟲和植物病害則適合30~150 μm的霧滴[24-26]。丁素明等[27]報道,由于單個霧滴所產生的影響遠大于其本身的粒徑范圍,霧滴密度達到20點·cm-2以上即可對病蟲害有較好的防治效果。在本研究中,3WF-1000風送式塔型噴霧機兩個牽引速度(1.16 m·s-1和1.77 m·s-1)的霧滴覆蓋率為53.56%~67.37%,霧滴粒徑為116.67~154.33 μm,霧滴密度為111.50~245.36點·cm-2,均能滿足病蟲害防治的基本要求。

在本研究中,與牽引速度為1.16 m·s-1時相比,3WF-1000風送式塔型噴霧機牽引速度為1.77 m·s-1時的霧滴覆蓋率和霧滴粒徑均由牽引速度為1.16 m·s-1時的62.19%和142.67 μm下降到57.03%和131.67 μm,而霧滴密度由141.72點·cm-2增加到179.86點·cm-2。這與袁會珠等[24]報道的在不同牽引速度下的噴霧機霧滴粒徑和霧滴密度變化成反比相一致。噴霧機在樹體東、南、西、北和中方位的霧滴參數因牽引速度的不同而不同,這可能與樹體枝葉的疏密程度、噴霧機的行走方向及果樹栽植行向有關。

農藥利用率為農藥噴施后沉積在靶標作物上的藥量占總施藥量的百分比[22],是衡量藥械噴施效率的重要指標。在本研究中,3WF-1000風送式塔型噴霧機的兩個牽引速度(1.16 m·s-1和1.77 m·s-1)的農藥利用率(43.7%和47.1%)均高于中國植保機械農藥利用率的平均水平(36.6%)[2];噴霧機牽引速度為1.16 m·s-1的地面流失率(19.4%)低于Vercruysse等[28]所研究的蘋果園地面流失率(29%),而牽引速度為1.77 m·s-1時的地面流失率(36.0%)較高,推測可能是快速行駛時輸送的風量和霧滴數量降低、霧滴葉面沉積量下降造成的[29]。噴霧機兩個牽引速度(1.16 m·s-1和1.77 m·s-1)在樹體中、下部冠層的內/外膛的沉積比均小于1,反映出樹冠中下部內膛沉積量小于外膛,霧滴穿透效果較差。而蘋果樹作為多年生作物,輪紋病、腐爛病等枝干病害嚴重,內膛沉積量小不利于防治干部病蟲害,可通過增加噴霧機壓強或使用霧化效果更好的噴頭以減小霧滴粒徑,提高霧滴的穿透性。

4 結 論

3WF-1000型風送式塔型噴霧機兩個牽引速度(1.16 m·s-1和1.77 m·s-1)的霧滴特性均能滿足矮砧寬行密植蘋果園病蟲害的防治要求。噴霧機的兩個牽引速度(1.16 m·s-1和1.77 m·s-1)在樹體不同冠層內膛和外膛霧滴沉積量均為上部冠層>中部冠層≥下部冠層,且在樹體中、下部冠層的外膛藥液沉積量均高于內膛,其中,噴霧機在牽引速度1.77 m·s-1時農藥利用率更高,但易導致土壤流失率增高。

參考文獻 References:

[1] 劉園園. 我國農村面源污染防治法律制度研究[D]. 楊凌:西北農林科技大學,2019.

LIU Yuanyuan. Study on the legal system of prevention and control of non-point source pollution in rural China[D]. Yangling:Northwest A amp; F University,2019.

[2] 蘇小記,王雅麗,魏靜,黃崇春,劉艾英,李淑,梁自靜,袁會珠. 9種植保機械防治小麥穗蚜的農藥沉積率與效果比較[J]. 西北農業學報,2018,27(1):149-154.

SU Xiaoji,WANG Yali,WEI Jing,HUANG Chongchun,LIU Aiying,LI Shu,LIANG Zijing,YUAN Huizhu. Pesticide deposition percentage and control effect of nine kinds of crop protection machineries against wheat aphid[J]. Acta Agriculturae Boreali-occidentalis Sinica,2018,27(1):149-154.

[3] 李麗,李恒,何雄奎,ANDREAS H. 紅外靶標自動探測器的研制及試驗[J]. 農業工程學報,2012,28(12):159-163.

LI Li,LI Heng,HE Xiongkui,ANDREAS H. Development and experiment of automatic detection device for infrared target[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(12):159-163.

[4] 董濤. 基于表面增強拉曼光譜的土壤農殘快速檢測方法研究[D]. 杭州:浙江大學,2019.

DONG Tao. Study on rapid detection of soil pesticide residues based on surface enhanced raman spectroscopy[D]. Hangzhou:Zhejiang University,2019.

[5] 韓明玉. 蘋果矮砧集約栽培技術模式芻議[J]. 中國果樹,2015(3):76-79.

HAN Mingyu. A preliminary discussion on the intensive cultivation technology model of apple dwarf rootstock[J]. China Fruits,2015(3):76-79.

[6] 徐廣春,顧中言,徐德進,許小龍,董玉軒. 常用農藥在水稻葉片上的潤濕能力分析[J]. 中國農業科學,2012,45(9):1731-1740.

XU Guangchun,GU Zhongyan,XU Dejin,XU Xiaolong,DONG Yuxuan. Wettability analysis of pesticides on rice leaf[J]. Scientia Agricultura Sinica,2012,45(9):1731-1740.

[7] 馮建國,張小軍,于遲,陳維韜,蔡夢玲,吳學民. 我國農藥劑型加工的應用研究概況[J]. 中國農業大學學報,2013,18(2):220-226.

FENG Jianguo,ZHANG Xiaojun,YU Chi,CHEN Weitao,CAI Mengling,WU Xuemin. General situation of applied studies on pesticide formulations processing in China[J]. Journal of China Agricultural University,2013,18(2):220-226.

[8] 徐德進,徐廣春,許小龍,顧中言. 施液量、霧滴大小、葉片傾角及助劑對農藥在稻葉上沉積的影響[J]. 西南農業學報,2015,28(5):2056-2062.

XU Dejin,XU Guangchun,XU Xiaolong,GU Zhongyan. Effect of application volume,droplet size,rice leaf incline angle and spray adjuvant on pesticide deposition[J]. Southwest China Journal of Agricultural Sciences,2015,28(5):2056-2062.

[9] NUYTTENS D,WINDEY S,BRAEKMAN P,DE MOOR A,SONCK B. Optimisation of a vertical spray boom for greenhouse spraying applications[J]. Communications in Agricultural and Applied Biological Sciences,2003,68(4 Pt B):905-912.

[10] SáNCHEZ-HERMOSILLA J,RINCóN V J,PáEZ F,FERNáNDEZ M. Comparative spray deposits by manually pulled trolley sprayer and a spray gun in greenhouse tomato crops[J]. Crop Protection,2012,31(1):119-124.

[11] 朱金文,吳慧明,朱國念. 霧滴大小與施藥液量對草甘膦在空心蓮子草葉片沉積的影響[J]. 農藥學學報,2004,6(1):63-66.

ZHU Jinwen,WU Huiming,ZHU Guonian. Influence of droplet size and spray volume on deposition of glyphosate on Alligator weed leaves[J]. Chinese Journal of Pesticide Science,2004,6(1):63-66.

[12] 顧中言. 植物的親水疏水特性與農藥藥液行為的分析[J]. 江蘇農業學報,2009,25(2):276-281.

GU Zhongyan. Analysis of the relationship between hydrophilic or hydrophobic property of plant and action of pesticides solution on plants leaves[J]. Jiangsu Journal of Agricultural Sciences,2009,25(2):276-281.

[13] 袁會珠,齊淑華,楊代斌. 藥液在作物葉片的流失點和最大穩定持留量研究[J]. 農藥學學報,2000,2(4):66-71.

YUAN Huizhu,QI Shuhua,YANG Daibin. Study on the point of Run-off and the maximum retention of spray liquid on crop leaves[J]. Chinese Journal of Pesticide Science,2000,2(4):66-71.

[14] 洪曉燕,張天棟. 影響農藥利用率的相關因素分析及改進措施[J]. 中國森林病蟲,2010,29(5):41-43.

HONG Xiaoyan,ZHANG Tiandong. Analysis of relevant factors influencing pesticide utilization and improvement measures[J]. Forest Pest and Disease,2010,29(5):41-43.

[15] 何雄奎,嚴苛榮,儲金宇,汪健,曾愛軍,劉亞佳. 果園自動對靶靜電噴霧機設計與試驗研究[J]. 農業工程學報,2003,19(6):78-80.

HE Xiongkui,YAN Kerong,CHU Jinyu,WANG Jian,ZENG Aijun,LIU Yajia. Design and testing of the automatic target detecting,electrostatic,air assisted,orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering,2003,19(6):78-80.

[16] 胡桂琴. 果園風送噴霧機噴頭霧化與沉積性能試驗研究[D]. 南京:南京林業大學,2013.

HU Guiqin. Experimental study on automization and deposition characteristicof orchard air-assisted sprayer nozzle[D]. Nanjing:Nanjing Forestry University,2013.

[17] 李龍龍,何雄奎,宋堅利,王瀟楠,賈曉銘,劉朝輝. 基于變量噴霧的果園自動仿形噴霧機的設計與試驗[J]. 農業工程學報,2017,33(1):70-76.

LI Longlong,HE Xiongkui,SONG Jianli,WANG Xiaonan,JIA Xiaoming,LIU Chaohui. Design and experiment of automatic profiling orchard sprayer based on variable air volume and flow rate[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(1):70-76.

[18] 張文君. 農藥霧滴霧化與在玉米植株上的沉積特性研究[D]. 北京:中國農業大學,2014.

ZHANG Wenjun. The study of pesticide droplets atomization and deposit characteristics in corn leaves[D]. Beijing:China Agricultural University,2014.

[19] 亓文哲,王菲菲,孟臻,張典利,王紅艷,喬康,姬曉雪. 我國植保無人機應用現狀[J]. 農藥,2018,57(4):247-254.

QI Wenzhe,WANG Feifei,MENG Zhen,ZHANG Dianli,WANG Hongyan,QIAO Kang,JI Xiaoxue. Application status of unmanned aerial vehicle for plant protection in China[J]. Agrochemicals,2018,57(4):247-254.

[20] 袁會珠,王忠群,孫瑞紅,李世訪,董嶄,孫麗鵬. 噴灑部件及噴霧助劑對擔架式噴霧機在桃園噴霧中的霧滴沉積分布的影響[J]. 植物保護,2010,36(1):106-109.

YUAN Huizhu,WANG Zhongqun,SUN Ruihong,LI Shifang,DONG Zhan,SUN Lipeng. Influences of nozzle type and spray adjuvant on the distribution of spray droplets with stretcher mounted sprayer in peach orchards[J]. Plant Protection,2010,36(1):106-109.

[21] 陳丹,任廣偉,王秀芳,王新偉,馮超. 4種噴霧器在茶樹上噴霧效果比較[J]. 植物保護,2011,37(5):110-114.

CHEN Dan,REN Guangwei,WANG Xiufang,WANG Xinwei,FENG Chao. Spray performance of four sprayers in the tea garden[J]. Plant Protection,2011,37(5):110-114.

[22] 程玲,薛光山,劉永杰,張安盛. 蔬菜病蟲害防治中農藥減量增效的影響因素及改進措施[J]. 農學學報,2018,8(2):11-14.

CHENG Ling,XUE Guangshan,LIU Yongjie,ZHANG Ansheng. Influencing factors and improving measures of pesticide decrement and synergism in vegetable pest control[J]. Journal of Agriculture,2018,8(2):11-14.

[23] 屠豫欽. 農藥使用技術標準化[M]. 北京:中國標準出版社,2001:163-169.

TU Yuqin. Standardization of pesticide use technology[M]. Beijing:Standards Press of China,2001:163-169.

[24] 袁會珠,王國賓. 霧滴大小和覆蓋密度與農藥防治效果的關系[J]. 植物保護,2015,41(6):9-16.

YUAN Huizhu,WANG Guobin. Effects of droplet size and deposition density on field efficacy of pesticides[J]. Plant Protection,2015,41(6):9-16.

[25] 胡桂琴,許林云,周宏平,崔業民. 影響空心圓錐霧噴頭霧滴粒徑的多因素分析[J]. 南京林業大學學報(自然科學版),2014,38(2):133-136.

HU Guiqin,XU Linyun,ZHOU Hongping,CUI Yemin. Analysis of multi-factor influence on droplet size distribution of hollow cone nozzle[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2014,38(2):133-136.

[26] UK S. Tracing insecticide spray droplets by sizes on natural surfaces. The state of the art and its value[J]. Pesticide Science,1977,8(5):501-509.

[27] 丁素明,傅錫敏,薛新宇,周良富,呂曉蘭. 低矮果園自走式風送噴霧機研制與試驗[J]. 農業工程學報,2013,29(15):18-25.

DING Suming,FU Ximin,XUE Xinyu,ZHOU Liangfu,Lü Xiaolan. Design and experiment of self-propelled air-assisted sprayer in orchard with dwarf culture[J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(15):18-25.

[28] VERCRUYSSE F,STEURBAUT W,DRIEGHE S,DEJONCKHEERE W. Off target ground deposits from spraying a semi-dwarf orchard[J]. Crop Protection,1999,18(9):565-570.

[29] 張海鋒,許林云,徐業勇,蔣雪松,張慧春,賈志成,張昊天,徐銘銘. GY8果園噴霧機噴霧特性研究[J]. 南京林業大學學報(自然科學版),2015,39(1):135-141.

ZHANG Haifeng,XU Linyun,XU Yeyong,JIANG Xuesong,ZHANG Huichun,JIA Zhicheng,ZHANG Haotian,XU Mingming. Research on spray characteristics of GY8 orchard sprayer[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2015,39(1):135-141.

基金項目:國家現代農業產業技術體系(CARS-27);山東省重點研發計劃(2017CXGC0214)

作者簡介:朱力爭,男,高級農藝師,主要從事果茶新品種引進、新技術推廣、果茶技術培訓和指導等相關工作。E-mail:zhuli72zheng@163.com

*通信作者Author for correspondence. E-mail:zhaihao688@163.com

主站蜘蛛池模板: WWW丫丫国产成人精品| 香蕉久人久人青草青草| 亚洲福利片无码最新在线播放| 中文字幕调教一区二区视频| 欧美日韩在线第一页| 久久综合AV免费观看| 国产在线98福利播放视频免费| 亚洲成人在线网| 九色综合伊人久久富二代| 精品久久久久成人码免费动漫| 免费一级无码在线网站| 永久在线播放| 国内嫩模私拍精品视频| 91精品国产综合久久香蕉922 | 蜜芽国产尤物av尤物在线看| 国产成人一区| 国产成人毛片| 天天综合天天综合| 国产十八禁在线观看免费| 亚洲欧美成aⅴ人在线观看| 欧美日韩国产成人在线观看| 国产自无码视频在线观看| 综合网天天| h视频在线播放| 亚洲成人免费在线| 一级毛片中文字幕| 亚洲中文字幕国产av| 一级毛片中文字幕| 亚洲天堂网视频| 日本91在线| 亚洲侵犯无码网址在线观看| 美女一级毛片无遮挡内谢| 亚洲va视频| 超清人妻系列无码专区| 亚洲日韩Av中文字幕无码| 久久婷婷人人澡人人爱91| 伊人久久久久久久久久| 热伊人99re久久精品最新地| 亚洲综合婷婷激情| 精品无码日韩国产不卡av| 无码高清专区| 一级高清毛片免费a级高清毛片| 在线精品亚洲国产| 国产手机在线ΑⅤ片无码观看| 欧美一级色视频| 激情综合五月网| 狠狠色丁香婷婷| 亚洲欧洲日本在线| 亚洲黄色视频在线观看一区| 精品国产网站| 国产麻豆精品手机在线观看| 国产国模一区二区三区四区| 亚洲人成网站在线播放2019| 亚洲精品无码AV电影在线播放| 激情六月丁香婷婷| 久久无码av一区二区三区| 米奇精品一区二区三区| 国产jizz| 日日摸夜夜爽无码| 久久 午夜福利 张柏芝| 亚洲人成网线在线播放va| 国产成人三级在线观看视频| 国产精品久线在线观看| 日韩av在线直播| 亚洲国产AV无码综合原创| 91色综合综合热五月激情| 日韩欧美中文在线| 毛片久久久| 毛片最新网址| 在线观看免费人成视频色快速| 久久免费视频6| 一级爆乳无码av| 国产成人夜色91| 国产视频你懂得| 国产成人精品高清不卡在线 | 国产成人亚洲无码淙合青草| 国产精品19p| 亚洲V日韩V无码一区二区| 永久免费av网站可以直接看的 | 精品国产91爱| 国产区精品高清在线观看| 在线中文字幕日韩|