摘" " 要:開展鹽堿地綜合利用對保障國家糧食安全,端牢中國飯碗具有重要戰略意義。鹽堿脅迫是影響植物生長發育的主要非生物逆境因素之一。桑樹是具有廣泛抗逆性的藥食同源作物,不論是在生態還是經濟建設中都具有舉足輕重的作用。提高桑樹對鹽堿脅迫的耐受性,篩選耐鹽堿桑樹品種,為生物改良鹽堿地,提供以種適地的途徑,成為目前鹽堿區域農業生態修復的一個重要研究方向。綜述了鹽堿脅迫對桑樹生長發育、光合特性和生理性狀的影響以及桑樹響應鹽堿脅迫的分子機制和緩解鹽堿脅迫的應對措施的研究進展。在此基礎上,還討論了桑樹植物在耐鹽性研究中存在的問題,并展望了桑樹耐受鹽脅迫研究的方向。旨在進一步桑樹耐鹽機制的解析及耐鹽品種的選育提供理論依據,進而為桑樹栽培廣泛應用于鹽堿地治理提供新思路。
關鍵詞:桑樹;鹽堿脅迫;耐鹽機制
中圖分類號:S663.2 文獻標志碼:A 文章編號:1009-9980(2024)09-1862-13
Research progress in mulberry responding to saline-alkali stress
ZENG Yuli1, 3, SHI Jianguo1, 2, 3*, CHANG Fengyun1, 3, SONG Yiying1, 3, FU Guangjun4, CHAI Guai-qiang1, 2, 3, JIANG Jinyu4, WANG Haiyan4, XUE Zhongmin1, 2, 3
(1Key Laboratory of Ecological Restoration of Mining Areas in Northern Shaanxi Province, Yulin University, Yulin 719000, Shaanxi, China; 2Mulberry Industry Engineering Technology Research Center of State Forestry and Grassland Administration, Xi’an 710000, Shaanxi, China; 3Mulberry Science and Technology Backyard in Yuyang, Shaanxi, Yulin 719000, Shaanxi, China; 4Institute of Sand Control of Shaanxi Academy of Forestry, Yulin 719000, Shaanxi, China)
Abstract: With the development of economy and society, the improvement of people’s living standards and the continuous upgrading of grain consumption structure, China’s grain supply is in a tight balance as a whole, and the national food security pressure persists, Moreover, the acceleration of industrialization and urbanization has led to an irreversible decline in the quantity and quality of cultivated land in China, and the sustainable utilization and protection of cultivated land are also facing huge pressure and challenges, and the saline-alkali land has become the largest non-traditional cultivated land resource in China that can be transformed and utilized. Therefore, the comprehensive utilization of saline-alkali land is of great strategic significance for ensuring national food security and securing the rice bowl in China. It is an effective biological measure to cultivate saline-alkali tolerant plants and improve their saline-alkali tolerance in saline-alkali land development and technical improvement. It is an urgent need to cultivate and introduce excellent varieties that can adapt to saline-alkali environment, and to explore and cultivate more salt-tolerant plants that have both ecological restoration function and economic benefits. Mulberry is rich in nutrients and functional factors, which is also a medicinal and edible homologous crop and economic tree species with extensive stress resistance. At the same time, mulberry has many varieties, different characteristics, developed roots, lush foliage and strong resistance, which can resist the invasion of cold, drought and flood, and has many functions such as water conservation, wind and sand fixation, air purification and ecological environment improvement. It is one of the ecological tree species with great potential for ecological protection, saline-alkali land management and soil remediation. Mulberry plays an important role in both ecological and economic construction. Therefore, it has become an important research direction of agricultural ecological restoration in saline-alkali areas to improve the tolerance of mulberry to saline-alkali stress, screen mulberry varieties with saline-alkali tolerance, and provide a way for biological improvement of saline-alkali land. In this paper, the effects of saline-alkali stress on the growth and development, photosynthetic and physiological characteristics of mulberry, the molecular mechanism of mulberry responding to saline-alkali stress and the countermeasures to alleviate saline-alkali stress were reviewed. The main results are as follows: (1) The influence of saline-alkali stress on the growth and development of mulberry shows that the germination of mulberry seeds is inhibited by salt stress, which affects the growth of radicle and embryo of seedlings, and further affects the development of mulberry seeds into seedlings. In some cases, low-concentration salt stress can promote seed germination or seedling growth to some extent, and gradually turns into inhibition with the increase of concentration. (2) The effects of saline-alkali stress on the photosynthetic characteristics of mulberry trees are as follows: the effects of salt concentration on the photosynthetic characteristics of mulberry trees are various, from the adaptive mechanism under low salt stress to the inhibitory effect under moderate and high salt stress, and then to the special response under specific conditions, like alkaline salt stress, which jointly affect the photosynthetic performance of mulberry trees under salt stress. (3) The effects of saline-alkali stress on the photosynthetic characteristics of mulberry are as follows: under salt stress, mulberry plants can increase the activities of ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) to eliminate excessive ROS in plants, improve the adaptability of mulberry to stress and increase the contents of osmotic adjustment substances such as soluble sugar, soluble protein and proline, which are helpful to improve the adaptability of mulberry to salt stress environment. Mulberry adapts to salt stress through a series of physiological and molecular mechanisms to maintain intracellular ion balance and promote the development of salt tolerance of mulberry. (4) Molecular mechanism of mulberry responding to saline-alkali stress: Through the joint analysis of transcriptome and proteome, many transcription factors and genes responding to salt stress have been discovered in mulberry, including Na+/H+ antiporter gene, Jacalin lectin gene, Mul-NHX5 gene and its regulated transcription factors MYC2, WRKY33 and EIL1. The research results provide not only solid theoretical basis for revealing the salt-tolerant mechanism of mulberry, but also important candidate genes and molecular markers for salt-tolerant variety breeding. (5) Countermeasures to alleviate saline-alkali stress: Applying K+, Ca2+ and N fertilizers, spraying plant hormones such as ABA and GA3 on leaves, and using exogenous substances such as SA, proline and betaine can effectively improve the saline-alkali tolerance of mulberry trees and alleviate the damage caused by saline-alkali stress. On this basis, this paper also discusses the problems existing in the study on salt tolerance of mulberry plants. Only a few studies related to salt tolerance are involved in the study on salt tolerance-related genes and molecular mechanisms, and all of them lack large-scale productive evaluation in the field. Simultaniously, the research direction of mulberry tolerance to salt stress is also prospected, focusing on the period change under stress and the large-scale extension experiment in Ottawa. The purpose is to provide theoretical basis for further analysis of salt-tolerant mechanism of mulberry and breeding of salt-tolerant varieties, so as to provide new ideas for mulberry cultivation to be widely used in saline-alkali land management.
Key words: Mulberry; Saline-alkali stress; Salt tolerance mechanism
通過對比全國第二次土壤普查數據與2011年的調查數據,在過去的30年間,中國鹽堿耕地面積從5.79×106 hm2增加到了7.60×106 hm2[1]。隨著鹽堿耕地面積不斷增長以及鹽堿地優質可墾資源的減少,農業生產面臨著更加嚴峻的挑戰。鹽堿化不僅直接影響作物生長,導致農業減產,還會造成土壤退化,嚴重降低土地利用率[2],因此,鹽堿地的改良利用對確保中國耕地“紅線”不被突破、實現農業可持續發展具有極其重要的現實意義[3]。
種植耐鹽堿植物是提高鹽堿地農業利用效率的有效生物措施之一[4]。通過選擇適宜的耐鹽植物進行種植,不僅可以改善鹽堿土的理化性質[5],提高土壤的生物活性[6-7],還能帶來一定的經濟效益[8],從而為中國耕地農業生產能力的提升、國家糧食安全的保障以及耕地紅線的堅守提供重要支撐[9]。
桑樹(Morus alba L.)根系發達[10],生物產量高[11],耐干旱、抗風沙[12],蒸騰系數小,使得其在防風固沙、保持水土、涵養水源等方面具有得天獨厚的優勢[13-14]。在干旱、鹽堿、重金屬污染等環境脅迫下,桑樹更是展現出了獨特的抗性機制和生態修復功效[15],成為了生態修復和環境治理領域的研究熱點[16-18]。桑樹不僅是一種重要的生態型樹種[19],還具有很好的經濟價值[20-21],更是一種“食藥兩用”型作物[22],然而,鹽堿化土壤對桑樹的生長發育和產量造成了嚴重的影響。因此,為了促進植物在鹽脅迫下的生長和提高產量,研究植物對鹽脅迫的反應機制和抗鹽機制顯得尤為重要。本文旨在綜述桑樹耐鹽堿性研究的最新進展,為進一步改善桑樹的生長環境和提高產量提供理論基礎,并為農業發展、糧食安全以及生態環境保護方面提供參考依據。
1 鹽脅迫對桑樹生長性狀的影響
鹽堿脅迫會抑制植物細胞的分化,影響種子萌發、阻滯根系吸收、減弱植物體光合作用、抑制植株生長,對植物體生長發育中諸多過程造成不同程度的影響[23]。鹽脅迫會抑制桑樹種子的萌發和幼苗的生長[24],且鹽分濃度越高,對桑樹抑制作用越明顯,嚴重時導致桑樹死亡[25]。
1.1 種子萌發
種子萌發時期是整個植物生命過程中最脆弱的時期,鹽堿脅迫處理會降低桑樹種子的發芽率和發芽勢,延緩種子發芽并抑制幼苗生長[26]。閆晶秋子等[27]選取碳酸鹽漬土中含量最多的NaCl為處理試劑,共設置6個NaCl濃度梯度,對蒙桑種子進行脅迫處理,與張國英等[28]對豐馳桑種子在鹽脅迫下的發芽影響研究結果一致,桑種子的萌發率、發芽率隨NaCl濃度的不斷增加而呈現下降趨勢,且各處理與對照均存在顯著差異。此外,NaCl脅迫還顯著抑制了桑種子胚根和胚芽的生長,班月圓等[29]對3個地域來源桑種子進行耐鹽機制的研究,在鹽分脅迫條件下,根、芽伸長抑制率隨NaCl濃度的增大逐漸升高,而且在高濃度鹽分脅迫下,3種來源桑種子還會出現子葉不能長出或生長不舒展、胚根反向生長以及抵抗力下降易霉變的現象,與祝娟娟等[30]在4個桑品種種子萌發特性研究中得到的胚根長和胚芽長會隨著NaCl濃度的增加而減小的結論相同。
綜上所述,桑樹種子的萌發受鹽脅迫的抑制,影響幼苗胚根、胚芽生長,進一步影響桑種子發育成苗,因此,可以看出鹽脅迫對桑樹種子萌發期的影響較大。
1.2 苗期生長形態
植株苗期的形態會因為鹽脅迫而受到較大影響,而且不同部位受影響的程度也存在差異[31]。
張利琴等[32]選用5個廣泛種植的雜交桑種質,通過NaCl脅迫處理分析各種質桑樹幼苗的耐鹽性,結果表明,各種質幼苗的生長發育、株高和生物量以及植株地上地下部分鮮質量和干質量等在6% NaCl脅迫處理下均顯著降低。孫景波等[33]研究發現,鹽堿脅迫會顯著降低兩個桑樹幼苗的株高和植株干物質量,并且兩種桑樹的葉片水勢、滲透勢、壓力勢和相對含水量會隨著脅迫濃度的增加而明顯下降。以上研究結論與胡博[34]開展的4個不同種源桑苗耐鹽性研究試驗結果一致。但董亞茹等[35]在研究鹽脅迫對兩種雜交桑種幼苗生長指標的影響中發現,兩種桑樹幼苗鮮干質量均在50 mmol·L-1時到達最大值且隨著NaCl濃度的增加均呈現先升高后降低的趨勢,這與朱光書等[36]對6個桑樹品種的實生苗耐鹽能力評價的研究結果一致,6個品種桑苗的株高、葉片數、最大葉長和最大葉寬在NaCl質量濃度≤ 4 g·L-1時與對照組相比均有所增長,但隨著鹽脅迫濃度的增加,大部分生長性狀的相對增加量以及整體生物量逐漸降低,有的供試品種的桑苗在≥ 4 g·L-1 NaCl脅迫處理時則出現比較嚴重的生長停滯甚至枯死現象,NaCl脅迫時表現較好的桑品種生長速度也受到一定的抑制作用。說明低濃度的鹽脅迫有利于植株干物質量的積累,對桑樹的生長有一定促進作用,但達到一定的鹽堿耐受值則會產生抑制作用,且因品種、種子以及苗期差異產生不同影響。
雖然鹽脅迫對種子的萌發整體表現為抑制作用,但在某些情況下低濃度的鹽脅迫對種子萌發或幼苗生長具有一定的促進作用,直至濃度逐漸升高則轉為抑制作用[37-38]。
2 鹽堿脅迫對桑樹光合特性的影響
光合作用是植物體獲得營養物質和能量的主要來源。鹽堿脅迫會造成植物體固定CO2能力下降、光合色素降解、光合電子傳遞過程受阻和光合器官損傷等,嚴重影響植物的光合作用[39]。
2.1 不同鹽濃度對桑樹光合特性的影響
在低鹽濃度(w,后同)下(0.1%),桑樹幼苗的光合作用并未受到明顯影響[40]。這一結論與其對1年生桑樹幼苗光合作用和葉綠素熒光特性在NaCl含量(w,后同)為1、3 g·kg-1時同樣沒有明顯影響的結果一致[41],表明在較低含量的鹽脅迫下,桑樹幼苗能夠通過一定的生理調節來維持光合能力。此外,研究還發現,在NaCl脅迫下,當Na+濃度<150 mmol·L-1時,桑樹幼苗的光合能力和生長受到的抑制程度較小,可以通過增加根冠比等形態特性來進一步適應鹽脅迫[42]。鹽堿脅迫抑制了PSⅡ受體側QA向QB的電子傳遞,導致電子傳遞鏈上QA向QB的電子傳遞速率下降和熱耗散比例增大,從而降低了光化學效率[43-44]。張培寧[45]采用1年生實生苗分析了鹽脅迫對桑樹葉片光系統的損傷位點,認為輕度鹽脅迫增加了葉片的熱耗散,明顯抑制了NDH依賴型環式電子傳遞。
隨著Na+濃度的增加,到中高鹽脅迫下,桑樹葉片的凈光合速率(Pn)、氣孔導度(Gs)、蒸騰速率(Tr)和水分利用率(WUE)均顯著降低[40-42],說明中高鹽濃度顯著抑制了桑樹幼苗的光合作用。此外,柯裕州等[41]在對1年生桑樹苗光合作用和葉綠素熒光特性的研究中發現,當NaCl含量在5 g·kg-1以上時,1年生桑樹苗葉片的最大熒光(Fm)、最大光化學效率(Fv/Fm)、潛在光化學效率(Fv/Fo)和PSⅡ有效光化學量子效率(ΦPSⅡ)均顯著下降。這些變化反映了鹽堿脅迫對桑樹葉片PSⅡ反應中心活性和反應中心開放程度的影響,進而影響了光能的吸收、轉化和熱耗散[46-47]。
重度鹽脅迫(200 mmol·L-1)處理會嚴重破壞桑樹光合系統,造成不可逆損傷。中度和重度鹽脅迫均會降低葉片的熱耗散,且重度鹽脅迫會嚴重損傷桑樹光合系統[45]。這表明在高鹽濃度下,桑樹幼苗的光合系統受到嚴重的損傷,導致光合效率大幅下降。
在低鹽脅迫下,桑樹幼苗主要依賴植株形態和光合代謝雙重途徑適應逆境[42]。而在中高鹽脅迫下,尤其是堿性鹽脅迫下,桑樹幼苗的主要適應機制轉向依賴光合代謝來適應逆境[42,48]。此外,可以通過施用農家肥改善鹽堿地桑樹的生長狀況,來提高葉片的光合能力,從而減輕鹽堿脅迫對桑樹幼苗的傷害[49-50]。同時,嫁接桑樹也可以在鹽脅迫下表現出更高的PSⅡ光化學活性和更強的耐鹽能力,張書博[51]的研究表明,嫁接可以降低鹽脅迫下桑樹嫁接苗根系對Na+的吸收和向葉片的運輸,促進對氮磷鉀等養分的吸收,從而提高植株生物量積累。
綜上所述,鹽濃度對桑樹光合特性的影響是多方面的,從低鹽脅迫下的適應機制到中高鹽脅迫下的抑制作用,再到特定條件下如堿性鹽脅迫下的特殊響應,以及外部因素如微生物接種的作用,共同決定了桑樹幼苗在不同鹽脅迫條件下的光合表現。
2.2 不同種類鹽脅迫對桑樹光合特性的影響
中性鹽(NaCl)脅迫明顯降低了桑樹幼苗的株高、葉片數、生物量和葉片的光合能力[42]。當中性鹽(NaCl)濃度≥0.3%時,鹽脅迫顯著降低桑樹幼苗的凈光合速率(Pn)、氣孔導度(Gs)、蒸騰速率(Tr)、水分利用率(WUE)、光能利用效率(SUE)和羧化效率(CUE),增加胞間CO2濃度(Ci)[40]。
堿性鹽脅迫不僅降低了桑樹幼苗葉片的葉綠素含量,還改變了葉片PSⅡ對光能的吸收、轉化和熱耗散的狀況[43,46,48]。這表明堿性鹽脅迫對桑樹葉片PSⅡ的傷害程度大于中性鹽(NaCl)[43]。李仕洪等[52]認為在HCO3-脅迫下,桑樹的光合速率(Pn)和胞間CO2濃度(Ci)同時減小,而氣孔導度(Gs)增大,這表明氣孔限制是造成桑樹光合速率降低的主要因素。當高濃度的HCO3-添加到根際時,桑樹受到強烈的堿脅迫,這種高滲脅迫導致氣孔進一步關閉,并降低了植物根系吸收HCO3-的能力,從而使植物的光合系統和膜系統受到更嚴重的破壞[53]。
無論是中性鹽還是堿性鹽脅迫,都會明顯降低桑樹幼苗的株高、葉片數、生物量和葉片的光合能力[42]。特別是當Na+濃度超過50 mmol·L-1時,堿性鹽(Na2CO3)脅迫對桑樹的生長和光合能力表現出較強的抑制作用,并且這種抑制程度隨著Na+濃度的增加而增大[42,48]。
在堿性鹽(Na2CO3)脅迫下,增加NO3--N可以降低Na2CO3脅迫下桑樹葉片的氣孔限制,改善葉肉細胞對CO2的利用,提高光合碳同化能力,明顯減輕Na2CO3脅迫對桑樹幼苗的鹽害,促進地上部和根系生物量的積累[54]。
在相同Na+濃度下,堿性鹽(Na2CO3)脅迫通過較高的pH降低了類囊體膜兩側存在的ΔpH而抑制或傷害桑樹葉片PSⅡ,導致PSⅡ反應中心活性和反應中心開放程度降低,葉片的電子傳遞受阻[43,46]。相比之下,中性鹽(NaCl)脅迫下,桑樹幼苗可以通過增大根冠比等形態特性來增強對鹽脅迫的適應性[50]。
綜上所述,與中性鹽(NaCl)脅迫相比,堿性鹽(Na2CO3)脅迫對桑樹幼苗的生長和光合能力表現出更強的抑制作用。這種抑制作用主要通過降低葉綠素含量、改變PSⅡ對光能的吸收、轉化和熱耗散的狀況以及提高pH值來實現。此外,硝態氮(NO3--N)的應用可以在一定程度上緩解Na2CO3脅迫對桑樹幼苗的影響。
3 鹽堿脅迫對桑樹生理生化特性的影響
在鹽脅迫條件下,植物體通過調節自身的生理生化反應來適應環境并減輕鹽害的影響[55]。
3.1 鹽脅迫對桑樹抗氧化酶系活性的影響
鹽脅迫會破壞植物體內滲透平衡,植物細胞可以通過積累無機離子和合成有機溶劑來降低細胞內滲透勢[56]。鹽脅迫會造成桑樹體內產生大量的活性氧(ROS),過多的ROS會改變植物體內的膜系統的質膜透性,破壞質膜的完整性,進而影響質膜上的酶活性[57]。
胡博[58]研究認為,3種桑超氧化物歧化酶(SOD)與過氧化物酶(POD)活性在NaCl濃度200~300 mmol·L-1時出現峰值,隨后降低,且雞桑SOD與POD酶活性均顯著高于蒙桑與龍桑,說明在低鹽濃度下,雞桑SOD對鹽脅迫產生的超氧陰離子自由基、POD對鹽脅迫產生的H2O2發揮了有效的清除作用,但在高鹽濃度下受到抑制,導致酶的活性降低,活性氧受到傷害。馬娟[59]研究認為1年生黑桑移栽苗在NaCl脅迫下,其SOD、POD、過氧化氫酶(CAT)活性均存在不同程度的下降,這與蘇國興[54]研究結果相一致。但隨著濃度的逐漸增加,SOD的活性呈現出先升高后下降的趨勢,這與蓋英萍等[60]和殷朝瑞等[61]的結論一致。
綜上所述,當植物受到一定濃度的鹽脅迫時會打破自身活性氧代謝的動態平衡,引起SOD和POD活性的變化。鹽脅迫下,桑樹植株能提高體內抗壞血酸過氧化物酶(APX)、過氧化氫酶(CAT)和超氧化物歧化酶(SOD)等的活性來清除植物體內過多的ROS,提高桑樹對脅迫的適應能力[25]。
3.2 鹽脅迫對桑樹滲透調節物質含量的影響
鹽堿脅迫能夠對植物細胞產生顯著的滲透壓力,進而影響細胞內離子的區域化分布,并破壞細胞內離子的平衡狀態。植物遭受鹽堿脅迫可通過調整形態特征來適應,或通過合成及積累特定的生理生化物質(如脯氨酸、可溶性糖等)來維持細胞的膨脹狀態和降低鹽堿脅迫對細胞膜的傷害[62]。
張利琴等[32]在對5個雜交桑的耐鹽性評價中發現,各桑樹種質葉片中的游離脯氨酸含量和丙二醛(MDA)含量都有不同程度的增加,可溶性糖和可溶性蛋白含量變化也存在明顯差異,與清水處理相比,桂桑優12號和桂桑優62號可溶性糖和可溶性蛋白的含量降低最少,而魯雜1號可溶性糖和可溶性蛋白的含量降低最多。
李衛國等[63]在鹽脅迫下4個桑樹品種的嫁接苗葉片內滲透調節物質含量的研究中,發現4個桑樹品種葉片中的脯氨酸含量在各種濃度鹽分脅迫初期都迅速增加,與蘇國興等[57]在對桑樹的耐鹽性研究中發現鹽脅迫處理的桑樹葉片中脯氨酸含量隨著鹽濃度和處理時間的增加呈上升趨勢的結論一致。但高濃度鹽分脅迫后期葉片中的脯氨酸含量在品種間表現出顯著差異;可溶性糖含量的變化在各種濃度鹽分脅迫期間都表現出先升高后降低的趨勢,但各品種下降的時期不同,與胡博[34]的研究結果一致。
綜上所述,桑樹品種葉片中的脯氨酸及可溶性糖和可溶性蛋白含量的變化呈現一定規律性,且品種間存在顯著差異。鹽脅迫下,可溶性糖、可溶性蛋白和脯氨酸等滲透調節物質含量的增加,有助于提高桑樹對鹽脅迫環境的適應性[64-65]。在桑樹對鹽分脅迫的響應過程中,其葉片內含有的滲透調節物質可能發揮了關鍵的調節作用,但這種作用在不同的桑樹品種之間可能存在差異,且與各自品種的耐鹽性能相關。
3.3 鹽脅迫對桑樹離子平衡的影響
鹽脅迫會對植物造成離子毒害,抑制植物對N、P、K、Ca、S等營養元素的吸收,植物營養缺乏,細胞內離子平衡失調,破壞植物營養平衡,抑制植物生長[66]。在鹽脅迫下,當植物體內Na+濃度過高時,植物細胞膜會選擇性地吸收Na+,通過質膜上的Na+/H+逆向轉運蛋白將Na+從細胞中排出,另外還可以通過位于液泡上的Na+/H+逆向轉運蛋白來區隔Na+,從而維持細胞內的離子平衡[67]。
蘇國興[68]認為在鹽脅迫下,桑樹體內的Na+主要積累于桑樹主莖、主根中,以保持葉片組織的低Na+水平;通過改變體內K+的分配來平衡Na+的大量積累來維持組織細胞內的離子平衡,從而降低鹽堿脅迫對桑樹的毒害,提高桑樹的耐鹽能力。宋尚文[23]在對鹽脅迫下6個桑樹品種反應特性研究中認為桑樹幼苗產生的鹽害可能主要是由單鹽離子毒害引起的,6個桑樹品種中Na+含量最多,Na+的大量吸收積累,在一定程度上抑制了CI-、K+等礦質元素的吸收,從而導致桑樹幼苗營養失衡[69]。這與鹽脅迫下植物對Na+的高敏感性相一致,因為Na+的積累會導致其他必需離子如K+和Ca2+的相對缺乏,進而影響植物的正常生長和發育[33]。
綜上所述,鹽脅迫通過破壞桑樹體內的離子平衡,特別是Na+的過量積累,抑制桑樹對N、P、K、Ca、S等營養元素的吸收,導致桑樹營養缺乏和細胞內離子平衡失調,最終破壞桑樹營養平衡,抑制桑樹生長。桑樹通過一系列生理和分子機制來適應鹽脅迫,包括Na+的外排或胞內區隔化、改變體內離子分配以及調整光合作用等途徑,以維持細胞內的離子平衡和促進桑樹的耐鹽性增強。
4 外源調節物質對桑樹耐鹽堿性的影響
植物中還存在其他鹽分脅迫適應機制,植物激素調節在植物適應鹽脅迫過程中也發揮著重要作用。
已有研究表明,施加K+、Ca2+、N素肥料,葉片噴灑脫落酸(ABA)、赤霉素(GA3)等,以及使用外源水楊酸(SA)、脯氨酸、甜菜堿、多胺等,是提高植物耐鹽堿能力、緩解鹽堿脅迫傷害的有效措施[70-72]。
K+和Ca2+作為植物生長發育的重要營養元素,對維持細胞膜的穩定性和提高植物的抗逆性具有重要作用[33]。N素肥料的施用可以促進桑樹生長,增強其對鹽堿脅迫的抵抗力。此外,N素還能參與合成多種與抗逆性相關的物質,如蛋白質、核酸等[73]。
ABA和GA3是植物激素,在調節植物生長發育和應對環境脅迫中起著關鍵作用。葉片噴灑ABA能夠提高桑樹的抗旱性和抗鹽堿性,而GA3則有助于促進植物生長,增強其對逆境的恢復能力[74]。
SA是一種重要的植物內源信號分子,參與調控植物的防御反應,對抗病原菌和環境脅迫[25]。脯氨酸是一種滲透調節物質,能夠在鹽脅迫下積累,幫助維持細胞內的滲透平衡[75]。
甜菜堿是一種天然的滲透保護劑,能夠提高植物的抗鹽堿能力,通過調節離子平衡和抗氧化系統來減輕鹽脅迫的影響[76-77]。外源甜菜堿(glycine betaine,GB)通過提高桑種子在鹽脅迫條件下的發芽率、增加幼苗葉片的葉綠素含量、保持適當的含水量,并促進游離脯氨酸的積累,從而減輕鹽脅迫對細胞膜的傷害,增強桑樹的抗鹽性[78]。此外,甜菜堿還能在一定程度上限制桑樹幼苗對外界Na+的吸收,增加K+的吸收,提高K+/Na+比值,緩解因鹽離子大量進入桑樹體內造成的離子失衡和傷害[79]。
外源γ-氨基丁酸(GABA)能顯著緩解NaCl對桑苗生長的抑制作用,減少O2-和H2O2在桑樹幼苗根尖和葉片中的積累,從而抑制活性氧的爆發[80]。這表明GABA能夠有效降低桑樹體內的氧化應激水平,保護細胞膜免受損傷。
綜上所述,通過施加K+、Ca2+、N素肥料、葉片噴灑ABA、GA3等植物激素,以及使用外源SA、脯氨酸、甜菜堿等物質,可以有效提高桑樹的耐鹽堿能力,緩解鹽堿脅迫傷害。這些措施通過不同的機制作用于桑樹,包括改善離子平衡、增強抗氧化能力、調節滲透壓等,共同提高了桑樹對鹽堿脅迫的適應能力。
5 桑樹響應鹽堿脅迫的分子機制研究
在探索桑樹鹽脅迫狀態下的分子調控機制方面,近年來的研究進展表明,轉錄組測序技術的應用為揭示桑樹耐鹽機制提供了新的視角和方法[81]。在分子層面,鹽脅迫誘導了多種基因的表達變化,這些基因涉及到了離子運輸、滲透調節、信號轉導等多個方面[82]。例如,SOS途徑是植物響應Na+毒性的一個重要信號通路,它通過調節Na+/H+反向轉運蛋白(如SOS1)的活性來維持細胞內Na+濃度的穩定[83]。瞬時過表達MnERF2基因的研究結果也表明,該基因通過提高植株的保護酶活性和抗氧化物質含量、降低活性氧氧化及細胞損傷程度,從而增強植物對鹽脅迫的耐受性[84]。此外,苯丙素代謝途徑和MAPK信號途徑也與桑樹對鹽脅迫的響應密切相關,這些途徑的激活有助于提高植物的抗氧化能力和增強細胞壁的穩定性[85]。
蛋白質組學分析進一步揭示了鹽脅迫下桑樹葉片中差異表達蛋白的功能和分布,其中一些蛋白參與了硫代葡萄糖苷的生物合成、氨基酸合成和降解等過程,這些過程可能與桑樹適應鹽脅迫的能力有關[85]。這表明,桑樹在鹽脅迫下不僅可以通過調節基因表達來應對,還可能通過改變蛋白質的種類和功能來實現其適應策略。
迄今為止,在桑樹中已經發現了多種響應鹽脅迫的轉錄因子和基因,例如,對Na+/H+逆向轉運蛋白基因(MnNHX1)的研究表明,這種基因在桑樹中的表達受到NaCl脅迫的誘導,且過量表達該基因可以顯著提高擬南芥的耐鹽能力[86-87]。通過比較鹽敏感和鹽耐受桑樹品種的轉錄組數據,可以發現差異表達基因,并進一步分析這些基因參與的生物學途徑[88]。
一些特定基因在桑樹響應鹽堿脅迫中也發揮著重要作用,胡景濤等[89]在桑樹HD-ZipⅠ亞家族基因的鑒定及表達分析的研究中認為:HD-ZipⅠ亞家族基因在桑樹逆境脅迫響應中具有潛在重要功能,特別是在鹽和脫水脅迫下顯著誘導表達。這些研究結果不僅揭示了桑樹對鹽脅迫的分子響應機制,而且為培育耐鹽桑樹品種提供了重要的分子標記和候選基因。
進一步的研究還發現,Jacalin類凝集素基因(MnJRL8和MnJRL11/12)在桑樹對鹽脅迫的響應中也發揮了重要作用。這些基因的過表達能夠增強轉基因煙草的耐鹽性,通過調節活性氧產生和清除系統及滲透調節物質脯氨酸的積累,從而提高植物的抗鹽性[90]。此外,Mul-NHX5基因及其調控的轉錄因子MYC2在桑樹耐鹽性中的作用也被證實,表明這些基因在桑樹應對鹽脅迫的過程中起著關鍵作用[91]。除了上述基因和轉錄因子外,WRKY33和EIL1等轉錄因子也在桑樹的鹽脅迫響應中發揮作用。WRKY33基因的沉默會導致桑樹葉片中Mm WRKY33及其下游基因CYP94B1的表達水平下降,而EIL1基因的沉默則會降低其下游基因ERF1B的表達水平,這表明這些轉錄因子是桑樹鹽脅迫條件下的正向調控因子[92]。
綜上所述,通過轉錄組和蛋白組聯合分析,在桑樹中已經挖掘出許多響應鹽脅迫的轉錄因子和基因,包括Na+/H+逆向轉運蛋白基因、Jacalin類凝集素基因、Mul-NHX5基因及其調控的轉錄因子MYC2、WRKY33和EIL1等。這些研究成果不僅為揭示桑樹耐鹽機制提供了堅實的理論依據,也為耐鹽品種的選育提供了重要的候選基因和分子標記。未來的研究需要進一步探索這些分子機制的具體作用機制,以及它們如何相互作用共同調控桑樹的耐鹽性。
6 桑樹在耐鹽性研究中存在的問題
綜上可知,不同的學者利用不同的研究材料,得到的不同品種桑樹的耐鹽性結果并不相同。目前關于桑樹耐鹽性的相關研究多集中在種子萌發、幼苗生長發育、光合生理生化指標的測定以及綜合評價、篩選耐鹽品種方面,只有極少數的研究涉及到耐鹽性相關基因和分子機制的研究,對于桑樹耐鹽性的生理和分子機制的理解尚且不足。雖然已有研究表明桑樹對鹽脅迫的響應包括細胞、器官和整體植株水平上的適應機制,如滲透調節物質的積累、抗氧化酶系統的激活等,但對于整個植物體在整體水平上如何控制Na+積累和耐受滲透脅迫的分子調控機制的研究仍不夠深入。
不同品種的桑樹對鹽脅迫的響應也存在顯著差異,這種差異可能與遺傳背景、生理生化特性以及環境適應性有關。因此,如何準確評估和篩選出具有高耐鹽性的桑樹品種成為一個重要問題,這也就需要更細致的研究來揭示其背后的分子基礎。
桑樹耐鹽性研究涉及植物生理學、分子生物學、遺傳學等多個領域,需要跨學科的合作和綜合研究方法。目前,這一領域的研究往往局限于某一特定方面,還缺乏系統性和綜合性的研究。
此外,桑樹的耐鹽性研究還都缺乏大田大規模的生產性評價。如何有效利用桑樹進行鹽堿地治理,以及如何選擇適合當地條件的桑樹品種進行大規模推廣,仍然是需要解決的問題。
7 展 望
就目前的研究現狀而言,雖然對桑樹響應耐鹽脅迫在生理生化方面取得了一定的進展,但是對耐鹽基因資源分子調控機制以及對桑樹耐鹽機制的研究尚不充分,在耐鹽基因挖掘方面的研究有待于進一步深入。
并且,目前桑樹的鹽堿脅迫研究多停留在盆栽試驗階段,加之試驗材料和鹽分選擇單一,脅迫處理時間短,只注重脅迫下的短期變化等問題,很少在大田以及野外進行大規模推廣試驗,研究內容具有一定的局限性。此外,自然環境中鹽堿脅迫往往與其他環境因子通過復雜的相互作用共同對桑樹產生影響,如鹽堿與干旱、高溫、低溫、水分脅迫、營養脅迫等的協同作用,都值得深入研究。
參考文獻 References:
[1] 胡炎,楊帆,楊寧,賈偉,崔勇. 鹽堿地資源分析及利用研究展望[J]. 土壤通報,2023,54(2):489-494.
HU Yan,YANG Fan,YANG Ning,JIA Wei,CUI Yong. Analysis and prospects of saline-alkali land in China from the perspective of utilization[J]. Chinese Journal of Soil Science,2023,54(2):489-494.
[2] 楊真,王寶山. 中國鹽漬土資源現狀及改良利用對策[J]. 山東農業科學,2015,47(4):125-130.
YANG Zhen,WANG Baoshan. Present status of saline soil resources and countermeasures for improvement and utilization in China[J]. Shandong Agricultural Sciences,2015,47(4):125-130.
[3] 周和平,張立新,禹鋒,李平. 我國鹽堿地改良技術綜述及展望[J]. 現代農業科技,2007(11):159-161.
ZHOU Heping,ZHANG Lixin,YU Feng,LI Ping. Summary and prospect of saline-alkali land improvement technology in China[J]. Modern Agricultural Science and Technology,2007(11):159-161.
[4] 薛洋,趙勝杰,何玉敏,王方方,李杰,張林龍,徐志紅,王平勇. 瓜菜作物耐鹽性研究進展[J]. 中國瓜菜,2023,36(12):1-8.
XUE Yang,ZHAO Shengjie,HE Yumin,WANG Fangfang,LI Jie,ZHANG Linlong,XU Zhihong,WANG Pingyong. Research progress on salt tolerance of cucurbits and vegetables[J]. China Cucurbits and Vegetables,2023,36(12):1-8.
[5] 肖克飚,吳普特,雷金銀,班乃榮. 不同類型耐鹽植物對鹽堿土生物改良研究[J]. 農業環境科學學報,2012,31(12):2433-2440.
XIAO Kebiao,WU Pute,LEI Jinyin,BAN Nairong. Bio-reclamation of different halophytes on saline-alkali soil[J]. Journal of Agro-Environment Science,2012,31(12):2433-2440.
[6] 高彥花,張華新,楊秀艷,劉濤. 耐鹽堿植物對濱海鹽堿地的改良效果[J]. 東北林業大學學報,2011,39(8):43-46.
GAO Yanhua,ZHANG Huaxin,YANG Xiuyan,LIU Tao. Ameliorative effect of saline-alkali tolerant plants in coastal saline-alkali land[J]. Journal of Northeast Forestry University,2011,39(8):43-46.
[7] 劉玉新,謝小丁. 耐鹽植物對濱海鹽漬土的生物改良試驗研究[J]. 山東農業大學學報(自然科學版),2007,38(2):183-188.
LIU Yuxin,XIE Xiaoding. Biological improvement of salt-tolerent plants on solt lands[J]. Journal of Shandong Agricultural University (Natural Science Edition),2007,38(2):183-188.
[8] 劉永信,王玉珍. 鹽堿地種植耐鹽植物經濟效益分析[J]. 北方園藝,2011(10):44-46.
LIU Yongxin,WANG Yuzhen. Analysis of economical efficacy of planting halophytes in salt-affected soils[J]. Northern Horticulture,2011(10):44-46.
[9] 練冬梅,李洲,姚運法,張少平,林碧珍,洪建基,賴正鋒. 干旱和鹽脅迫對冰菜生長及光合特性的影響[J]. 中國瓜菜,2023,36(4):118-123.
LIAN Dongmei,LI Zhou,YAO Yunfa,ZHANG Shaoping,LIN Bizhen,HONG Jianji,LAI Zhengfeng. Effect of drought and saline stress on the growth and photosynthetic characteristics of Mesembryanthemum crystallinum Linn.[J]. China Cucurbits and Vegetables,2023,36(4):118-123.
[10] QIN J,HE N J,WANG Y,XIANG Z H. Ecological issues of mulberry and sustainable development[J]. Journal of Resources and Ecology,2012,3(4):330-339.
[11] 劉開莉,周靜華,陳朝蓉,龐洪梅,曹振木. 桑蠶產業多元化價值開發的現狀與建議[J]. 農村經濟與科技,2022,33(23):13-15.
LIU Kaili,ZHOU Jinghua,CHEN Chaorong,PANG Hongmei,CAO Zhenmu. Present situation and suggestions on diversified value development of silkworm industry[J]. Rural Economy and Science-Technology,2022,33(23):13-15.
[12] 薛忠民,蘇超,焦鋒,陳旗. 陜北沙地桑資源類型:桑樸子[J]. 北方蠶業,2012,33(3):10-12.
XUE Zhongmin,SU Chao,JIAO Feng,CHEN Qi. The northern Shaanxi Desert type mulberry-“Sangpuzi”[J]. North Sericulture,2012,33(3):10-12.
[13] 張超,熊嘉武,舒勇,劉揚晶,宿明. 桑樹及其生態功能的研究進展[J]. 中南林業調查規劃,2016,35(3):53-56.
ZHANG Chao,XIONG Jiawu,SHU Yong,LIU Yangjing,SU Ming. Research progress of Morus alba L. and its ecological functions[J]. Central South Forest Inventory and Planning,2016,35(3):53-56.
[14] 王宏恩,孟寶奎,韓紅發. 對桑樹作為造林綠化樹種的探討[J]. 北方蠶業,2010,31(1):45-47.
WANG Hongen,MENG Baokui,HAN Hongfa. Discussion on mulberry as afforestation tree species[J]. North Sericulture,2010,31(1):45-47.
[15] 許萃敏,李瑞雪,周榮,蘇雪強,汪泰初. 桑樹在生態環境修復中的應用前景探討[J]. 中國蠶業,2024,45(1):44-50.
XU Cuimin,LI Ruixue,ZHOU Rong,SU Xueqiang,WANG Taichu. Discussion on the application prospect of mulberry in ecological environment restoration[J]. China Sericulture,2024,45(1):44-50.
[16] 柴乖強,馬曙皓陽,李琳,段義忠,霍彥波,亢福仁. 陜北風沙草灘區沙地蛋白桑最優氮、磷、鉀配比的篩選[J]. 農學學報,2023,13(5):35-43.
CHAI Guaiqiang,MA Shuhaoyang,LI Lin,DUAN Yizhong,HUO Yanbo,KANG Furen. Screening the optimum ratio of nitrogen,phosphorus and potassium for protein mulberry (Morus alba L.) in wind-sand grassland area of northern Shaanxi[J]. Journal of Agriculture,2023,13(5):35-43.
[17] 常風云,陳啟航,史建國,李佳奇,李正雄,王飛云,紀俊娥,段義忠,亢福仁,羅竹梅. 留茬高度對陜北采煤沉陷區飼料桑生長特性的影響[J]. 草地學報,2024,32(3):952-957.
CHANG Fengyun,CHEN Qihang,SHI Jianguo,LI Jiaqi,LI Zhengxiong,WANG Feiyun,JI June,DUAN Yizhong,KANG Furen,LUO Zhumei. Effects of stubble height on growth characteristics of feed mulberry in coal mining subsidence areas of northern Shaanxi[J]. Acta Agrestia Sinica,2024,32(3):952-957.
[18] 王晶晶,史建國,宋珊珊,常風云,段義忠,亢福仁,薛忠民. 陜北風沙草灘區不同飼料桑引種研究[J]. 干旱區資源與環境,2023,37(1):120-126.
WANG Jingjing,SHI Jianguo,SONG Shanshan,CHANG Fengyun,DUAN Yizhong,KANG Furen,XUE Zhongmin. Study on introduction of different forage mulberry in sand marsh area of Northern Shaanxi,China[J]. Journal of Arid Land Resources and Environment,2023,37(1):120-126.
[19] 張鐘強,袁瑞芬,薛忠民,劉新宇. 榆林市生態桑模式及產業化發展前景[J]. 北方蠶業,2021,42(1):53-56.
ZHANG Zhongqiang,YUAN Ruifen,XUE Zhongmin,LIU Xinyu. Ecological mulberry mode and industrial development potential in Yulin City[J]. North Sericulture,2021,42(1):53-56.
[20] 李玲利,楊衛. 淺談桑樹資源的開發利用[J]. 廣西蠶業,2010,47(4):35-39.
LI Lingli,YANG Wei. On the development and utilization of mulberry resources[J]. Guangxi Sericulture,2010,47(4):35-39.
[21] 戴玉偉,朱弘,杜宏志,張劍斌,溫寶陽. 論桑樹資源經濟價值和生態功能[J]. 防護林科技,2009(1):78-80.
DAI Yuwei,ZHU Hong,DU Hongzhi,ZHANG Jianbin,WEN Baoyang. On the economic value and ecological function of mulberry resources[J]. Protection Forest Science and Technology,2009(1):78-80.
[22] 薛忠民,蘇超,馬云戩,趙曉峰,陳旗,焦鋒,劉勛勃. 茶菜桑品種及栽培技術試驗[J]. 北方蠶業,2018,39(4):9-13.
XUE Zhongmin,SU Chao,MA Yunjian,ZHAO Xiaofeng,CHEN Qi,JIAO Feng,LIU Xunbo. Rabdosiaadenantha species and cultivation technology[J]. North Sericulture,2018,39(4):9-13.
[23] 宋尚文. 鹽脅迫下6個桑樹品種反應特性研究[D]. 泰安:山東農業大學,2011.
SONG Shangwen. Response characteristics of six clonal varieties of Morus alba L. to salt stress[D]. Tai’an:Shandong Agricultural University,2011.
[24] HARINASUT P,SRISUNAK S,PITUKCHAISOPOL S,CHAROENSATAPORN R. Mechanisms of adaptation to increasing salinity of mulberry:Proline content and ascorbate peroxidase activity in leaves of multiple shoots[J].Science Asia,2000,26:207-211.
[25] 李燕. 5個雜交桑種質的耐鹽性評價及耐鹽種質創制[D]. 泰安:山東農業大學,2021.
LI Yan. Evaluation of salt tolerance of five hybrid mulberry germplasms and creation of salt tolerance germplasms[D]. Tai’an:Shandong Agricultural University,2021.
[26] 張秀玲. 鹽對夏至草種子萌發以及鹽脅迫解除后種子萌發能力恢復的影響[J]. 植物生理學通訊,2008,44(3):436-440.
ZHANG Xiuling. Effect of salt on seed germination of Lagopsis supina (Steph.) IK. -Gal. ex Knorr and its recovery after release from salt stress[J]. Plant Physiology Communications,2008,44(3):436-440.
[27] 閆晶秋子,李鋼鐵,王月林,麻云霞,楊穎. 鹽脅迫對蒙桑種子萌發及幼苗生長的影響[J]. 中國農業科技導報,2020,22(1):28-37.
YAN Jingqiuzi,LI Gangtie,WANG Yuelin,MA Yunxia,YANG Ying. Effects of salt stress on seed germination and seedling physiological characteristics of Morus mongolica[J]. Journal of Agricultural Science and Technology,2020,22(1):28-37.
[28] 張國英,談建中,劉美娟. 鹽脅迫對桑種子發芽及幼苗生理生化特性的影響[J]. 蠶業科學,2004,30(2):191-194.
ZHANG Guoying,TAN Jianzhong,LIU Meijuan. The effect of salt stress on the germination of seed and physiological characteristics of seedling in mulberry[J]. Acta Sericologica Sinica,2004,30(2):191-194.
[29] 班月圓,方榮俊,杜偉,殷朝瑞,曹旭,劉利,程嘉翎. 鹽脅迫下3個地域來源桑種子的萌發率及部分生化性狀差異[J]. 蠶業科學,2016,42(6):960-967.
BAN Yueyuan,FANG Rongjun,DU Wei,YIN Chaorui,CAO Xu,LIU Li,CHENG Jialing. Variations in germination rate and biochemical property of mulberry seeds from three different geological regions under salt stress[J]. Science of Sericulture,2016,42(6):960-967.
[30] 祝娟娟,丁天龍,魏從進,邊晨凱,劉雪琴,范麗,曾其偉,何寧佳,趙愛春. 鹽脅迫下不同桑品種種子萌發特性研究[J]. 蠶學通訊,2013,33(1):1-6.
ZHU Juanjuan,DING Tianlong,WEI Congjin,BIAN Chenkai,LIU Xueqin,FAN Li,ZENG Qiwei,HE Ningjia,ZHAO Aichun. Study on seed germination characteristics of different mulberry materials under salt stress[J]. Newsletter of Sericultural Science,2013,33(1):1-6.
[31] 齊琪,馬書榮,徐維東. 鹽脅迫對植物生長的影響及耐鹽生理機制研究進展[J]. 分子植物育種,2020,18(8):2741-2746.
QI Qi,MA Shurong,XU Weidong. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance[J]. Molecular Plant Breeding,2020,18(8):2741-2746.
[32] 張利琴,殷紅燕,穆淑媛,付均惠,李燕. 5個雜交桑種質的耐鹽性評價[J]. 中國農學通報,2022,38(17):62-68.
ZHANG Liqin,YIN Hongyan,MU Shuyuan,FU Junhui,LI Yan. Evaluation of the salt tolerance of five hybrid mulberry germplasms[J]. Chinese Agricultural Science Bulletin,2022,38(17):62-68.
[33] 孫景波,孫廣玉,劉曉東,胡彥波,趙雨森. 鹽脅迫對桑樹幼苗生長、葉片水分狀況和離子分布的影響[J]. 應用生態學報,2009,20(3):543-548.
SUN Jingbo,SUN Guangyu,LIU Xiaodong,HU Yanbo,ZHAO Yusen. Effects of salt stress on mulberry seedlings growth,leaf water status,and ion distribution in various organs[J]. Chinese Journal of Applied Ecology,2009,20(3):543-548.
[34] 胡博. 鹽脅迫下四個種源桑苗生理特性變化的研究[D]. 呼和浩特:內蒙古農業大學,2020.
HU Bo. Studies on changes of physiological characteristics of mulberry seedlings from four provenances under salt stress[D]. Hohhot:Inner Mongolia Agricultural University,2020.
[35] 董亞茹,孫景詩,趙東曉,杜建勛,王照紅,陳傳杰. NaCl脅迫對兩種桑樹種子萌發及幼苗生長的影響[J]. 北方蠶業,2017,38(2):16-19.
DONG Yaru,SUN Jingshi,ZHAO Dongxiao,DU Jianxun,WANG Zhaohong,CHEN Chuanjie. Effect of NaCl stress on seed germination and seedling growth of two kinds of mulberry seeds[J]. North Sericulture,2017,38(2):16-19.
[36] 朱光書,林強,邱長玉,曾燕蓉,張朝華,李韜,盧德,朱方容. 6個桑樹品種的耐鹽性鑒定試驗[J]. 蠶學通訊,2021,41(4):1-8.
ZHU Guangshu,LIN Qiang,QIU Changyu,ZENG Yanrong,ZHANG Chaohua,LI Tao,LU De,ZHU Fangrong. Salt tolerance test and identification of six mulberry varieties[J]. Newsletter of Sericultural Science,2021,41(4):1-8.
[37] 梁云媚,李燕,多立安,劉捷. 不同鹽分脅迫對苜蓿種子萌發的影響[J]. 草業科學,1998,15(6):21-25.
LIANG Yunmei,LI Yan,DUO Li’an,LIU Jie. Effect of salt stress on germination of lucerne seeds[J]. Pratacultural Science,1998,15(6):21-25.
[38] 沈禹穎,閆順國,余玲. 鹽分濃度對堿茅草種子萌發的影響[J]. 草業科學,1991,8(3):68-71.
SHEN Yuying,YAN Shunguo,YU Ling. Effects of salt caacentrations on the seed germination of kareanalkalgeaes[J]. Pratacultural Science,1991,8(3):68-71.
[39] 武德,曹幫華,劉欣玲,張大鵬. 鹽堿脅迫對刺槐和絨毛白蠟葉片葉綠素含量的影響[J]. 西北林學院學報,2007,22(3):51-54.
WU De,CAO Banghua,LIU Xinling,ZHANG Dapeng. Effect of salt-alkalic stress on content of chlorophyll in leaves of Robinia pseudoacacia and Fraxinus velutina seeding[J]. Journal of Northwest Forestry University,2007,22(3):51-54.
[40] 柯裕州,周金星,張旭東,孫啟祥,左力. 鹽脅迫對桑樹幼苗光合生理生態特性的影響[J]. 林業科學,2009,45(8):61-66.
KE Yuzhou,ZHOU Jinxing,ZHANG Xudong,SUN Qixiang,ZUO Li. Effects of salt stress on photosynthetic characteristics of mulberry seedlings[J]. Scientia Silvae Sinicae,2009,45(8):61-66.
[41] 柯裕州,周金星,盧楠,張旭東,孫啟祥. 鹽脅迫對桑樹幼苗光合生理及葉綠素熒光特性的影響[J]. 林業科學研究,2009,22(2):200-206.
KE Yuzhou,ZHOU Jinxing,LU Nan,ZHANG Xudong,SUN Qixiang. Effects of salinity on photosynthetic physiology and chlorophyll fluorescence characteristics of mulberry(Morus alba) seedlings[J]. Forest Research,2009,22(2):200-206.
[42] 張會慧,張秀麗,李鑫,丁俊男,朱文旭,齊飛,張婷,田野,孫廣玉. NaCl和Na2CO3脅迫對桑樹幼苗生長和光合特性的影響[J]. 應用生態學報,2012,23(3):625-631.
ZHANG Huihui,ZHANG Xiuli,LI Xin,DING Junnan,ZHU Wenxu,QI Fei,ZHANG Ting,TIAN Ye,SUN Guangyu. Effects of NaCl and Na2CO3 stresses on the growth and photosynthesis characteristics of Morus alba seedlings[J]. Chinese Journal of Applied Ecology,2012,23(3):625-631.
[43] 張會慧,張秀麗,朱文旭,許楠,李鑫,岳冰冰,王良再,孫廣玉. 桑樹葉片光系統Ⅱ對NaCl和Na2CO3脅迫的響應[J]. 北京林業大學學報,2011,33(6):15-20.
ZHANG Huihui,ZHANG Xiuli,ZHU Wenxu,XU Nan,LI Xin,YUE Bingbing,WANG Liangzai,SUN Guangyu. Responses of photosystem Ⅱ in leaves of mulberry to NaCl and Na2CO3 stress[J]. Journal of Beijing Forestry University,2011,33(6):15-20.
[44] 李鑫,張秀麗,張會慧,許楠,孫廣玉. 桑樹葉片光系統Ⅱ對鹽脅迫的生理響應[J]. 安徽農業科學,2013,41(33):12827-12829.
LI Xin,ZHANG Xiuli,ZHANG Huihui,XU Nan,SUN Guangyu. Reactions of photosystem Ⅱ in mulberry leaves for salt stress[J]. Journal of Anhui Agricultural Sciences,2013,41(33):12827-12829.
[45] 張倍寧,高世醒,車延輝,孫廣玉. 不同濃度鹽脅迫對桑樹光合系統的影響[J]. 東北林業大學學報,2021,49(12):1-7.
ZHANG Beining,GAO Shixing,CHE Yanhui,SUN Guangyu. Effects of salt stress at different concentrations on photosynthetic system II of mulberry[J]. Journal of Northeast Forestry University,2021,49(12):1-7.
[46] 張會慧,張秀麗,胡彥波,李鑫,許楠,王鵬,梁明,孫廣玉. 堿性鹽脅迫對桑樹幼苗葉片葉綠素熒光和激發能分配的影響[J]. 經濟林研究,2012,30(1):6-12.
ZHANG Huihui,ZHANG Xiuli,HU Yanbo,LI Xin,XU Nan,WANG Peng,LIANG Ming,SUN Guangyu. Effects of chlorophyll fluorescence characteristics and energy allocation pathways in leaves of mulberry seedlings under alkali salt stress[J]. Non-wood Forest Research,2012,30(1):6-12.
[47] 張會慧,張秀麗,胡彥波,李鑫,田野,王娟,孫廣玉. 桑樹幼苗葉片葉綠素熒光特性對不同pH值堿性鹽脅迫的響應[J]. 華北農學報,2013,28(增刊1):155-160.
ZHANG Huihui,ZHANG Xiuli,HU Yanbo,LI Xin,TIAN Ye,WANG Juan,SUN Guangyu. Responses of chlorophyll fluorescence characteristics in leaves of mulberry seedlings to alkaline salt stress with different pH value[J]. Acta Agriculturae Boreali-Sinica,2013,28(Suppl. 1):155-160.
[48] 張會慧,張秀麗,胡彥波,許楠,李鑫,孫廣玉. 中堿鈉鹽脅迫對桑樹幼苗生長及光合特性的影響[J]. 南京林業大學學報(自然科學版),2013,37(1):55-60.
ZHANG Huihui,ZHANG Xiuli,HU Yanbo,XU Nan,LI Xin,SUN Guangyu. Effects of NaCl and Na2CO3 stresses on growth and photosynthetic characteristics characteristics of mulberry seedlings[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2013,37(1):55-60.
[49] 張會慧,張秀麗,胡彥波,許楠,金微微,李鑫,王良再,孫廣玉. 施用農家肥和化肥對鹽堿地桑樹生長和葉片光合日變化的影響[J]. 土壤,2013,45(3):444-450.
ZHANG Huihui,ZHANG Xiuli,HU Yanbo,XU Nan,JIN Weiwei,LI Xin,WANG Liangzai,SUN Guangyu. Effects of organic and chemical fertilizers on characteristics of growth and photosynthetic diurnal variation of mulberry grown in saline-alkali soil[J]. Soils,2013,45(3):444-450.
[50] 張會慧. 北方桑樹葉片光化學機構對鹽堿的響應機理及其肥料效應研究[D]. 哈爾濱:東北林業大學,2014.
ZHANG Huihui. Responses of photosynthetic apparatus in leaves of northern mulberry to salt and alkali stress and fertilizer effect research[D]. Harbin:Northeast Forestry University,2014.
[51] 張書博. 嫁接提高桑樹耐鹽性的光合生理功能研究[D]. 哈爾濱:東北林業大學,2019.
ZHANG Shubo. Studyon photosynthetic physiological functionof graftingto improve salt toleranceof mulberry[D]. Harbin:Northeast Forestry University,2019.
[52] 李仕洪,姚凱,劉映良,吳沿友. 碳酸氫鹽處理下桑樹和構樹的生長、光合和抗逆性差異[J]. 廣西植物,2022,42(7):1248-1258.
LI Shihong,YAO Kai,LIU Yingliang,WU Yanyou. Differences in growth,photosynthesis and resistance physiology of Morus alba and Broussonetia papyrifera under bicarbonate treatments[J]. Guihaia,2022,42(7):1248-1258.
[53] CIRILLO C,DE MICCO V,ARENA C,CARILLO P,PANNICO A,DE PASCALE S,ROUPHAEL Y. Biochemical,physiological and anatomical mechanisms of adaptation of Callistemon citrinus and Viburnum lucidum to NaCl and CaCl2 salinization[J]. Frontiers in Plant Science,2019,10:742.
[54] 逄好勝,張會慧,田野,敖紅,孫廣玉. 硝態氮對Na2CO3脅迫下桑樹幼苗生長和光合特性的影響[J]. 草業科學,2014,31(8):1515-1522.
PANG Haosheng,ZHANG Huihui,TIAN Ye,AO Hong,SUN Guangyu. Effects of NO3--N on growth and photosynthetic characteristics of mulberry seedlings under Na2CO3 stress[J]. Pratacultural Science,2014,31(8):1515-1522.
[55] 王佺珍,劉倩,高婭妮,柳旭. 植物對鹽堿脅迫的響應機制研究進展[J]. 生態學報,2017,37(16):5565-5577.
WANG Quanzhen,LIU Qian,GAO Yani,LIU Xu. Review on the mechanisms of the response to salinity-alkalinity stress in plants[J]. Acta Ecologica Sinica,2017,37(16):5565-5577.
[56] 趙可夫,李法曾. 中國鹽生植物[M]. 北京:科學出版社,1999:45-50.
ZHAO Kefu,LI Fazeng. Halophytes in China[M]. Beijing:Science Press,1999:45-50.
[57] 蘇國興. 桑樹的抗鹽性及其與活性氧代謝的關系研究[J]. 江蘇蠶業,1997,19(2):50-52.
SU Guoxing. Study on salt tolerance of mulberry and its relationship with reactive oxygen species metabolism[J]. Jiangsu Sericulture,1997,19(2):50-52.
[58] 胡博,閆偉,劉宇,郝艷玲. 三種桑生理特性對鹽脅迫的響應[J]. 中國農業科技導報,2020,22(4):61-67.
HU Bo,YAN Wei,LIU Yu,HAO Yanling. Physiological characteristics of three mulberry species in response to salt stress[J]. Journal of Agricultural Science and Technology,2020,22(4):61-67.
[59] 馬娟. NaCl脅迫下一年生黑桑移栽苗的耐鹽特性研究[D]. 烏魯木齊:新疆農業大學,2014.
MA Juan. Studies on salt tolerance characteristics of one year old transplanted seeldings of black mulberry under NaCl stress[D]. Urumqi:Xinjiang Agricultural University,2014.
[60] 蓋英萍,冀憲領,牟志美,劉訓理,王洪利. 氯化鈉脅迫對桑樹超氧化物歧化酶和過氧化氫酶的影響[J]. 蠶業科學,2006,32(1):99-102.
GAI Yingping,JI Xianling,MU Zhimei,LIU Xunli,WANG Hongli. Effect of NaCl stress on superoxide dismutase and catalase of mulberry[J]. Science of Sericulture,2006,32(1):99-102.
[61] 殷朝瑞,方榮俊,尚春瓊,沈萩荻,曹旭,程嘉翎. 3個實用桑樹品種的耐鹽性生理生化特征及耐鹽害的能力評價[J]. 蠶業科學,2018,44(3):359-366.
YIN Chaorui,FANG Rongjun,SHANG Chunqiong,SHEN Qiudi,CAO Xu,CHENG Jialing. Salt-tolerance related physiological and biochemical characteristics and salt tolerance evaluation of three practical mulberry varieties[J]. Science of Sericulture,2018,44(3):359-366.
[62] 許祥明,葉和春,李國鳳. 植物抗鹽機理的研究進展[J]. 應用與環境生物學報,2000,6(4):379-387.
XU Xiangming,YE Hechun,LI Guofeng. Progress in research of plant tolerance to saline stress[J]. Chinese Journal of Applied and Environmental Biology,2000,6(4):379-387.
[63] 李衛國,宋尚文,孫明高,苗良,牟志美,冀憲領. 鹽分脅迫對桑樹葉片中滲透調節物質含量的影響[J]. 蠶業科學,2010,36(2):313-318.
LI Weiguo,SONG Shangwen,SUN Minggao,MIAO Liang,MU Zhimei,JI Xianling. Effect of salt stress on contents of osmotic regulatory substances in mulberry leaves[J]. Science of Sericulture,2010,36(2):313-318.
[64] JDAY A,BEN REJEB K,SLAMA I,SAADALLAH K,BORDENAVE M,PLANCHAIS S,SAVOURé A,ABDELLY C. Effects of exogenous nitric oxide on growth,proline accumulation and antioxidant capacity in Cakile maritima seedlings subjected to water deficit stress[J]. Functional Plant Biology,2016,43(10):939-948.
[65] 廖巖,彭友貴,陳桂珠. 植物耐鹽性機理研究進展[J]. 生態學報,2007,27(5):2077-2089.
LIAO Yan,PENG Yougui,CHEN Guizhu. Research advances in plant salt-tolerance mechanism[J]. Acta Ecologica Sinica,2007,27(5):2077-2089.
[66] 楊莎,侯林琳,郭峰,張佳蕾,耿耘,孟靜靜,李新國,萬書波. 鹽脅迫下外源Ca2+對花生生長發育、生理及產量的影響[J]. 應用生態學報,2017,28(3):894-900.
YANG Sha,HOU Linlin,GUO Feng,ZHANG Jialei,GENG Yun,MENG Jingjing,LI Xinguo,WAN Shubo. Effects of exogenous Ca2+ on growth and development,physiology and yield of peanut under salt stress[J]. Chinese Journal of Applied Ecology,2017,28(3):894-900.
[67] 韋存虛,王建波,陳義芳,周衛東,孫國榮. 鹽生植物星星草葉表皮具有泌鹽功能的蠟質層[J]. 生態學報,2004,24(11):2451-2456.
WEI Cunxu,WANG Jianbo,CHEN Yifang,ZHOU Weidong,SUN Guorong. Epicuticular wax of leaf epidermis:A functional structure for salt excretion in a halophyte Puccinellia tenuiflora[J]. Acta Ecologica Sinica,2004,24(11):2451-2456.
[68] 蘇國興. 鹽脅迫下桑樹器官和組織K+、Na+分布特點研究[J]. 蠶業科學,2002,28(3):256-260.
SU Guoxing. Study on distributive characteristics of K+ and Na+ in organs and tissues of mulberry under salt stress[J]. Acta Sericologica Sinica,2002,28(3):256-260.
[69] 李彥,張英鵬,孫明,高弼模. 鹽分脅迫對植物的影響及植物耐鹽機理研究進展[J]. 中國農學通報,2008,24(1):258-265.
LI Yan,ZHANG Yingpeng,SUN Ming,GAO Bimo. Research advance in the effects of salt stress on plant and the mechanism of plant resistance[J]. Chinese Agricultural Science Bulletin,2008,24(1):258-265.
[70] ULLAH S,SAJJAD F. The promotive effects of nephthyl acetic acid on maize cultivars grown under saline conditions[J]. Communications in Soil Science and Plant Analysis,2017,48(18):2155-2169.
[71] KHAN M N,MUKHERJEE S,AL-HUQAIL A A,BASAHI R A,ALI H M,AL-MUNQEDHI B M A,SIDDIQUI M H,KALAJI H M. Exogenous potassium (K+) positively regulates Na+/H+ antiport system,carbohydrate metabolism,and ascorbate-glutathione cycle in H2S-Dependent manner in NaCl-stressed tomato seedling roots[J]. Plants,2021,10(5):948.
[72] COLEBROOK E H,THOMAS S G,PHILLIPS A L,HEDDEN P. The role of gibberellin signalling in plant responses to abiotic stress[J]. Journal of Experimental Biology,2014,217(Pt 1):67-75.
[73] 楊曉慧,蔣衛杰,魏珉,余宏軍. 提高植物抗鹽能力的技術措施綜述[J]. 中國農學通報,2006,22(1):88-91.
YANG Xiaohui,JIANG Weijie,WEI Min,YU Hongjun. The technical approaches of improving the plant salt-resistant ability[J]. Chinese Agricultural Science Bulletin,2006,22(1):88-91.
[74] 張秀麗,張倩倩,許天修,凌飛,孫廣玉. 施用化肥和農家肥緩解鹽堿地桑樹光合午休PSⅡ光抑制[J]. 草業科學,2015,32(5):745-753.
ZHANG Xiuli,ZHANG Qianqian,XU Tianxiu,LING Fei,SUN Guangyu. Amelioration of chemical and organic fertilizer on photo-inhibition of PSⅡ at photosynthetic noon-break in mulberry leaves grew in saline-sodic soils[J]. Pratacultural Science,2015,32(5):745-753.
[75] 柯裕州. 桑樹抗鹽性研究及其在鹽堿地中的應用[D]. 北京:中國林業科學研究院,2008.
KE Yuzhou. Mulberry adaptability to salinity and its salt-tolerant mechanism and application to saline-alkali soils[D]. Beijing:Chinese Academy of Forestry,2008.
[76] 李新梅,孫丙耀,談建中,賈俊麗. 根施甜菜堿對鹽脅迫下桑樹幼苗生理生化反應的影響[J]. 蠶業科學,2006,32(3):414-417.
LI Xinmei,SUN Bingyao,TAN Jianzhong,JIA Junli. Effects of root-applied glycinebetaine on physiological and biochemical responses of mulberry seedlings under salt stress[J]. Science of Sericulture,2006,32(3):414-417.
[77] 談建中,承建平,孫丙耀,張國英,李新梅. 外源甜菜堿對桑樹抗鹽生理的影響及其作用機理的研究[J]. 蠶業科學,2005,31(4):404-408.
TAN Jianzhong,CHENG Jianping,SUN Bingyao,ZHANG Guoying,LI Xinmei. Studies on physiological effects of exogenous betaine on the salt tolerance and their mechanisms in mulberry[J]. Acta Sericologica Sinica,2005,31(4):404-408.
[78] 張國英,談建中,吳志平,李新梅. 外源甜菜堿對桑種子抗鹽性效應的影響[J]. 蠶業科學,2005,31(2):199-202.
ZHANG Guoying,TAN Jianzhong,WU Zhiping,LI Xinmei. The effect of the external glycinebetaine on the salt tolerance of mulberry seeds and seedlings[J]. Acta Sericologica Sinica,2005,31(2):199-202.
[79] 張國英. 甜菜堿調節桑樹逆境反應及其機理的研究[D]. 蘇州:蘇州大學,2004.
ZHANG Guoying. Research on the reaction and mechanism of resistance against adversity regulated by glycinebetaine in mulberry (Morus alba L.)[D]. Suzhou:Soochow University,2004.
[80] 張利琴,殷紅燕,張波,楊健,李燕. γ-氨基丁酸(GABA)對桑樹耐鹽能力的影響[J]. 北方蠶業,2021,42(3):25-29.
ZHANG Liqin,YIN Hongyan,ZHANG Bo,YANG Jian,LI Yan. γ- Effects of aminobutyric acid (GABA) on salt tolerance of mulberry[J]. North Sericulture,2021,42(3):25-29.
[81] WANG Y,JIANG W,CHENG J S,GUO W,LI Y Q,LI C L. Physiological and proteomic analysis of seed germination under salt stress in mulberry[J]. Frontiers in Bioscience (Landmark Edition),2023,28(3):49.
[82] MUNNS R,TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology,2008,59:651-681.
[83] ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology,2002,53:247-273.
[84] 董亞茹,聶玉霞,李云芝,趙東曉,耿兵,王照紅. 瞬時過表達MnERF2基因對桑樹耐鹽性的影響[J]. 山東農業科學,2022,54(4):9-16.
DONG Yaru,NIE Yuxia,LI Yunzhi,ZHAO Dongxiao,GENG Bing,WANG Zhaohong. Effects of MnERF2 gene on salt tolerance in transient overexpression mulberry[J]. Shandong Agricultural Sciences,2022,54(4):9-16.
[85] 甘甜甜. 轉錄組和蛋白組聯合分析解析雜交桑耐鹽機制[D]. 楊凌:西北農林科技大學,2022.
GAN Tiantian. Combined transcriptome and proteome analysis reveals the salt tolerance mechanism of hybrid mulberry[D]. Yangling:Northwest A amp; F University,2022.
[86] 劉巖,計東風,朱燕,魏佳,林天寶,范明亮,呂志強. 超表達桑樹MaNHX1和擬南芥AVP1基因增強擬南芥耐鹽性的研究[J]. 蠶業科學,2016,42(3):386-392.
LIU Yan,JI Dongfeng,ZHU Yan,WEI Jia,LIN Tianbao,FAN Mingliang,Lü Zhiqiang. Co-overexpression of mulberry MaNHX1 gene and Arabidopsis AVP1 gene enhances salt tolerance in transgenic Arabidopsis[J]. Science of Sericulture,2016,42(3):386-392.
[87] 邊晨凱,龍定沛,劉雪琴,魏從進,龔加紅,趙愛春. 桑樹Na+/H+逆向轉運蛋白基因(MnNHX1)的克隆與耐鹽力表達[J]. 林業科學,2015,51(8):16-25.
BIAN Chenkai,LONG Dingpei,LIU Xueqin,WEI Congjin,GONG Jiahong,ZHAO Aichun. Cloning and expression to salt stress of Na+/H+ antiporter gene (MnNHX1) in mulberry tree[J]. Scientia Silvae Sinicae,2015,51(8):16-25.
[88] SUI D Z,WANG B S. Transcriptome analysis reveals complex defensive mechanisms in salt-tolerant and salt-sensitive shrub willow genotypes under salinity stress[J]. International Journal of Genomics,2020,2020:6870157.
[89] 胡景濤,李彥杰,段艷艷,阮宇,顧欣,肖國生. 桑樹HD-ZipⅠ亞家族基因的鑒定及表達分析[J]. 林業科學研究,2022,35(4):130-142.
HU Jingtao,LI Yanjie,DUAN Yanyan,RUAN Yu,GU Xin,XIAO Guosheng. Identification and expression analysis of the HD-ZipⅠ subfamily genes in mulberry[J]. Forest Research,2022,35(4):130-142.
[90] 賀文敏. 桑樹Jacalin類凝集素基因的耐鹽和抗旱功能初探[D]. 重慶:西南大學,2021.
HE Wenmin. Studies on salt and drought stress resistance of mulberry jacalin related lectin genes[D]. Chongqing:Southwest University,2021.
[91] 張夢茹. 桑樹Na+/H+逆向轉運蛋白基因的表達特征及Mul-NHX5基因的耐鹽功能研究[D]. 泰安:山東農業大學,2022.
ZHANG Mengru. Expression characteristics of Na+/H+ antiporter genes in mulberry (Morus multicaulis) and salt-tolerance function of Mul-NHX5 gene[D]. Tai’an:Shandong Agricultural University,2022.
[92] 吳萌萌. 桑樹鹽脅迫相關基因的克隆及功能分析[D]. 鎮江:江蘇科技大學,2022.
WU Mengmeng. Cloning and functional analysis of genes related to salt stress in mulberry[D]. Zhenjiang:Jiangsu University of Science and Technology,2022.
基金項目:陜西林業科技創新重點專項(SXLK2023-02-36,SXLK2023-02-13);陜西省教育廳重點科研計劃項目(22JS044);榆林市科技局項目(2023-CXY-171);榆林學院高層次青年科學啟動基金(18GK08);陜西省林業科學院創新團隊建設“沙產業研究與開發創新團隊”(SXLK2020-0309)
作者簡介:曾玉理,女,在讀碩士研究生,研究方向為農藝與種業。E-mail:1928565301@qq.com
*通信作者Author for correspondence. E-mail:378279015@qq.com