摘要:腦卒中是全球第三大死因,缺血性腦卒中是腦卒中的主要類型,目前治療急性缺血性腦卒中最有效的手段是藥物溶栓和機械取栓。腦血管再通后通常伴隨著缺血再灌注損傷(IRI),探索IRI機制并提出有效的保護措施,既能盡早恢復腦組織的血流,又能減輕或防止IRI的發(fā)生,可對IRI患者的預后產生積極的影響。小膠質細胞是大腦的常住免疫細胞,在IRI后觸發(fā)神經免疫反應,目前神經免疫反應介導的炎癥已成為腦IRI治療的靶點,然而,迄今為止,將有希望的實驗結果轉化為臨床應用還未取得成功。部分原因可能是未考慮小膠質細胞形態(tài)和功能的動態(tài)變化,及與其他神經細胞的交互作用,片面的使用抗炎藥物長期抑制小膠質細胞導致?lián)p傷惡化,故本文對小膠質細胞的功能變化情況及與其他神經細胞的交互作用進行綜述,有望為小膠質細胞在腦IRI中的研究和實驗室結果的臨床轉化提供參考。
關鍵詞:腦缺血再灌注損傷;小膠質細胞;神經免疫
中圖分類號:R743.3 " " " " " " " " " " " " " " " " 文獻標識碼:A " " " " " " " " " " " " " " " " DOI:10.3969/j.issn.1006-1959.2024.13.039
文章編號:1006-1959(2024)13-0179-06
Research Progress on the Mechanism of Microglia in Cerebral Ischemia-reperfusion Injury
XIE Guan-li1,DENG Li2,LIAO Jiang-long2
(1.The Second Clinical Medical College,Yunnan University of Chinese Medicine,Kunming 650000,Yunnan,China;
2.Department of Orthopedics,Kunming Municipal Hospital of Traditional Chinese Medicine,Kunming 650000,Yunnan,China)
Abstract:Stroke is the third leading cause of death in the world. Ischemic stroke is the main type of stroke. At present, the most effective treatment for acute ischemic stroke is drug thrombolysis and mechanical thrombectomy. Cerebral vascular recanalization is usually accompanied by ischemia-reperfusion injury (IRI). Exploring the mechanism of IRI and proposing effective protective measures can not only restore the blood flow of brain tissue as soon as possible, but also reduce or prevent the occurrence of IRI, which has a positive impact on the prognosis of IRI patients. Microglia are resident immune cells in the brain, which trigger a neuroimmune response after IRI. At present, neuroimmune response-mediated inflammation has become a target for the treatment of cerebral IRI. However, the transformation of promising experimental results into clinical applications has not been successful. Part of the reason may be that the dynamic changes in the morphology and function of microglia and their interaction with other nerve cells are not considered. The one-sided use of anti-inflammatory drugs to inhibit microglia for a long time leads to deterioration of damage. Therefore, this article reviews the functional changes of microglia and their interaction with other nerve cells, which is expected to provide a reference for the study of microglia in brain IRI and the clinical transformation of laboratory results.
Key words:Cerebral ischemia-reperfusion injury;Microglia;Neuroimmune
據(jù)《全球疾病、傷害和危險因素負擔研究》(GBD 2017)報道,腦卒中是全球第三大死因,全球因腦卒中損失的傷殘調整壽命年(disability adjusted life years, DALYs)高達1.32億(位列第2)[1]。2019年8月發(fā)表在Lancet的研究顯示[2],腦卒中是中國居民死亡、DALYs和損失生命年(years of life lost, YLLs)的主要原因。缺血性腦卒中占腦卒中總數(shù)的60%~70%,該病的發(fā)生主要是由于腦部血液供應不足導致腦組織缺血缺氧以及營養(yǎng)物質的供給不足,引起神經細胞損傷,繼而出現(xiàn)一系列的臨床癥狀,比如運動功能障礙、認知功能障礙、吞咽功能障礙、語言言語功能障礙等。目前治療急性缺血性腦卒中最有效的手段是通過藥物溶栓或機械取栓及時恢復腦部的血液供應和營養(yǎng)補給[3]。臨床病例研究證實[4],組織的突然再灌注可能是有害的,導致腦血屏障的破壞和出血轉化或大面積腦水腫,并觸發(fā)神經免疫反應,即缺血再灌注損傷(ischemia-reperfusion injury, IRI)。因此探索IRI的機制,針對這一過程提出有效的保護措施,做到既能盡早恢復缺血組織的血流,又減輕或防止IRI損傷的發(fā)生,對IRI患者的預后可能產生良性的影響。
小膠質細胞是大腦的常住免疫細胞,是中樞神經損傷的第一道防線,在IRI觸發(fā)的神經免疫反應中扮演著重要角色。目前神經免疫介導的炎癥反應及小膠質細胞活性調節(jié)已成為腦IRI治療靶點,諸多的實驗室研究亦證明應用抗炎抑制小膠質細胞活性對腦IRI有益。然而,普遍抑制炎癥反應的臨床試驗遭遇失敗,說明普遍的抗炎策略不適用于腦IRI治療。部分原因可能在于普遍應用抗炎藥物時,未考慮小膠質細胞的“雙相”作用及動態(tài)變化過程,長期抑制了小膠質細胞的活性,導致?lián)p傷加重。本文就小膠質細胞在腦IRI中激活的狀態(tài)及功能的動態(tài)變化情況及其與其他神經細胞的交互作用進行綜述,以期為以小膠質細胞作為治療靶點的研究和臨床轉化提供依據(jù)和參考。
1腦缺血再灌注損傷
實驗研究證明[5,6],在腦IRI過程中,當含氧血突然涌入缺血的腦組織時產生過多的活性氧(ROS),缺血的線粒體無法有效中和ROS,導致DNA、RNA損傷,脂質過氧化,并且激活了包括駐留在腦內的小膠質細胞的免疫細胞。缺血的大腦也可能形成損傷相關分子模式(damage-associated molecular pattern molecules, DAMPs),作用于存在于小膠質細胞表面的toll樣受體(TLR)。TLR激活通過上調細胞因子和趨化因子觸發(fā)免疫信號,從而上調參與循環(huán)白細胞招募和浸潤的黏附分子。白細胞一旦進入大腦,就會增強小膠質細胞觸發(fā)的免疫反應。一些白細胞和血小板可能留在血管內,形成堵塞,損害局部血流。被激活的免疫細胞會產生各種毒性介質,包括基質金屬蛋白酶(MMPs),可以破壞細胞外基質和血腦屏障(BBB),導致腦水腫和出血。其他免疫分子包括誘導型一氧化氮合酶(iNOS)和NADPH氧化酶2(NOX2),分別產生一氧化氮(NO)和超氧化物。線粒體還會釋放細胞色素C(cyto C)等促死亡因子,最終導致DNA損傷和細胞凋亡。
在人類腦組織中發(fā)現(xiàn)小膠質細胞在病變的缺血核心區(qū)域消失,在周圍(半暗區(qū))區(qū)域有明顯的小膠質細胞激活和增殖。利用TMEM119作為駐留小膠質細胞的特異性標記,結果顯示病變早期吸收階段巨噬細胞樣細胞中有相當大比例來自原始小膠質細胞池[7]。在病變的急性期,小膠質細胞和巨噬細胞呈現(xiàn)出主要的促炎激活模式,并伴有與抗原呈遞相關分子的表達和ROS或NO的產生。這種促炎激活在吸收階段達到高峰,隨后下降,在早期吸收階段達到最高水平。相反,與抗炎表型相關的分子表達在病變吸收晚期達到峰值,主要出現(xiàn)在病變中心的巨噬細胞中。在吸收晚期,表現(xiàn)為中間表型,并伴有促炎標志物和抗炎標志物的共同表達。最后,造血巨噬細胞從病變中消失,而具有靜息穩(wěn)態(tài)小膠質細胞表型的細胞重新出現(xiàn)在舊的膠質瘢痕組織中[7]。因此,抗炎治療在中風患者中可能是有益的。但是目前的臨床研究結果卻不盡如人意,有學者[8]提出盲目抑制炎癥反應的臨床試驗失敗的部分原因在于抗炎干預措施無法長期識別性抑制小膠質細胞的活性而導致?lián)p傷惡化。因此,了解觸發(fā)小膠質細胞激活的復雜分子調節(jié)機制和細胞機制,抑制有害方面同時促進有益方面,促使小膠質細胞促進神經修復保護大腦,對于尋找新的神經免疫調節(jié)策略至關重要。
2小膠質細胞在腦IRI中的作用
2.1小膠質細胞的生理功能 "自1919年小膠質細胞被發(fā)現(xiàn)以來,其起源就受到廣泛研究,目前已達成共識,一致認為小膠質細胞來源于卵黃囊中的髓樣干細胞[9],并且大多數(shù)小膠質細胞群是在血腦屏障形成后的產后階段產生的。由于血腦屏障的存在,導致小膠質細胞與其他任何組織內的巨噬細胞不同,小膠質細胞在高度專一的微環(huán)境中進化[9]。小膠質細胞在大腦發(fā)育過程中積極參與神經網(wǎng)絡的形成,維持神經回路的正常活動,并協(xié)助許多高級大腦功能,如學習、睡眠和記憶[10]。一旦小膠質祖細胞浸潤大腦,它們就會呈現(xiàn)出帶有小胞體的高度分支表型[11]。最初的研究認為小膠質細胞的分支表型為靜息狀態(tài)[12],而最近的研究表明小膠質細胞從不休息,并不斷在大腦中巡邏,以保持腦組織的完整性[12,13]。小膠質細胞利用它們的運動分支作為“哨兵”來調查和“掃描”其附近的微環(huán)境,以檢測腦內穩(wěn)態(tài)的變化。一旦微環(huán)境發(fā)生變化,小膠質細胞即通過改變表型迅速激活[11]。激活后的小膠質細胞發(fā)揮多重作用,包括了吞噬細胞碎片、免疫釋放和非免疫因子的生物活性物質的激活[14]。此外,在健康大腦中,小膠質細胞還通過其運動性分支與神經元、星形膠質細胞和內皮細胞建立特定的細胞接觸[10],維持大腦微環(huán)境的穩(wěn)態(tài)。
2.2小膠質細胞在腦IRI中的“雙刃劍”作用 "了解小膠質細胞活性的調節(jié),發(fā)揮其神經保護功能,對腦IRI具有重要的意義。而小膠質細胞的動態(tài)本質是其在整個生命周期中經歷極端重塑過程的能力。這要求嚴格控制多種細胞功能,包括調節(jié)衍生物運動、細胞整體運動、細胞形態(tài)、吞噬、免疫功能和生物活性分子的分泌等,故目前關于小膠質細胞活性的研究是多方面的。而小膠質細胞激活的功能演變過程及與其他神經細胞交互作用直接影響了其在IRI中的作用。
2.2.1小膠質細胞在腦I/R中的空間分布 "實驗研究證明[8],在短暫性大腦中動脈閉塞(transient middle cerebral artery occlusion, tMCAO)大鼠模型(一種腦缺血再灌注損傷模型)中,腦缺血損傷后,小膠質細胞收縮更細的突起,并可能對死亡和垂死細胞釋放的DAMP表現(xiàn)出趨化性。被激活的小膠質細胞經歷四種形態(tài)的變化,分別為分枝狀、中間狀、變形蟲狀和圓形。分枝狀小膠質細胞處于靜止狀態(tài),細胞體小,突起長,可見于缺血腦的對側和同側的遠端區(qū)域。活化小膠質細胞的中間狀態(tài)以胞體增大、突起短為特征。變形蟲小膠質細胞很短或無突起,呈變形蟲狀。梗死周圍區(qū)可發(fā)現(xiàn)中間型和變形蟲型細胞[8,15]。圓形小膠質細胞呈巨噬細胞樣,是小膠質細胞最活躍的形式,通常出現(xiàn)在梗死核心區(qū)域[8]。
2.2.2小膠質細胞隨時間推移的表型及功能演變 "小膠質細胞的胞內動力學和蛋白生產通常被歸類為可以被歸類為促炎表型(M1)或抗炎表型(M2)[16]。促炎表型(M1)也稱為經典(M1)激活的小膠質細胞,在腦IRI中M1表型通過釋放破壞性促炎介質而有害。抗炎表型也稱為替代型(M2),主要參與炎癥和吞噬作用的消退。目前多種M2亞表型也被觀察到,包括參與修復和再生過程的M2a表型、顯示免疫調節(jié)能力的M2b表型和獲得性失活的M2c表型[17]。IRI導致神經死亡和組織損傷,損傷組織釋放各種DAMPs、促炎細胞因子和ROS,導致小膠質細胞向M1或M2表型極化。M1小膠質細胞可通過釋放IL-6、TNF-α、IL-1β、MMPs和iNOS加劇神經死亡、星形細胞凋亡和血腦屏障破壞。相反,M2小膠質細胞在缺血后通過釋放BDGF、IGF-1、IL-4、IL-10等神經營養(yǎng)因子發(fā)揮保護作用。M2小膠質細胞可維持血腦屏障的完整性,促進神經干細胞(neural stem cells, NSCs)和少突膠質細胞祖細胞(oligodendrocyte, OPCs)的增殖和分化,促進髓鞘再生和組織修復[18,19]。因此,抑制小膠質細胞的有害方面同時促進小膠質細胞的有益方面可能成為治療腦IRI的作用靶點。以上研究表明,小膠質細胞的作用是一把“雙刃劍”,在不同的時期它們具有不同甚至相反的功能。
腦卒中后,靜息態(tài)小膠質細胞極化為M1型和M2型,M1小膠質細胞可通過釋放IL-6、TNF-α、IL-1β等加劇神經死亡、星形細胞凋亡和血腦屏障破壞。M2小膠質細胞在缺血后通過釋放BDGF、IGF-1、IL-4、IL-10等神經營養(yǎng)因子發(fā)揮保護作用。
在永久性大腦中動脈閉塞(permanent occlusion of the middle cerebral artery, pMCAO)模型中,急性期小膠質細胞主要極化為M1,并產生細胞因子、ROS和iNOS。因此,iNOS是導致NO生成的免疫細胞中的主要NOS,通常用作M1標記物[20]。與M2表型相關的細胞因子包括IL-4、IL-10、IL-13、IGF-1和轉化生長因子(TGF)-β。精氨酸酶1與iNOS競爭并下調NO產生,通常用作M2激活的標志物[21]。小膠質細胞對缺血的急性反應包括非特異性釋放和分泌促炎細胞因子、趨化因子和神經遞質進入細胞外環(huán)境。這種釋放是不受控制的和大規(guī)模的。阻斷炎癥過程在實驗性中風模型中是有益的。活化的小膠質細胞會分泌一系列炎性細胞因子,包括腫瘤壞死因子(TNF)、IL-1β和IL-6[22],促進炎癥發(fā)生,嚴重炎癥反應與預后呈負相關[23]。因此,部分學者認為在急性期給予抗炎治療很重要。急性期過后,炎癥反應逐漸減弱,主要為梗死區(qū)域的修復,在這一階段,小膠質細胞成為神經修復者[24]。
然而,一些研究也得出了相反的結果。有研究結果顯示[21,25],tMCAO和pMCAO后早期小膠質細胞主要表現(xiàn)為具有神經保護作用的M2表型,在梗死周圍區(qū)域逐漸轉變?yōu)镸1表型,在tMCAO后第7天,當神經退行性M1表型開始占主導地位時,M2表型減少。該結果提示缺血損傷后小膠質細胞和巨噬細胞先向M2型極化可能是通過清理壞死組織來限制損傷的一種嘗試。局灶性腦缺血后,梗塞周圍區(qū)域(皮質和紋狀體)出現(xiàn)動態(tài)小膠質細胞極化。在tMCAO模型中,第1天就在梗塞周圍區(qū)域觀察到CD206+ M2小膠質細胞,MCAO后7 d內短暫升高,然后逐漸下降。而CD16/32+ M1小膠質細胞在MCAO后第3天出現(xiàn)并逐漸增加,直至第14天。M1小膠質細胞標志物iNOS、CD11b、CD16、CD32、CD86和M2小膠質細胞標志物CD206、Arginase-1、CCL22、Ym1/2、IL-10、TGF-b的mRNA表達與上述免疫染色結果一致。導致這些矛盾結果的原因可能是模型的不同(比如梗塞時間不同)、誘導小膠質細胞的方式不同。
隨著全基因組學、表觀遺傳學、蛋白組學等技術的應用,發(fā)現(xiàn)在M1和M2狀態(tài)之間有更加動態(tài)和多樣的激活狀態(tài)譜,有學者[26]提出在研究小膠質細胞的生理病理過程時,應用M1/M2的分類方法過于簡單,建議跳出這個框架來研究小膠質細胞在神經系統(tǒng)疾病中的作用,更加有益于研究本身。
實驗室研究結果表明[27],tMCAO后3~6 d,吞噬單核細胞/巨噬細胞浸潤大腦,并在缺血中心區(qū)聚集。在tMCAO后4~7 d,梗死周圍和核心區(qū)域的小膠質細胞和巨噬細胞數(shù)量峰值同時出現(xiàn),并在卒中后14~21 d減少[28]。在tMCAO(梗塞2 h)腦室下區(qū)(SVZ)和紋狀體在術后仍然觀察到激活的小膠質細胞[27],在tMCAO(梗塞60 min)后6個月,丘腦中也可檢測到小膠質細胞的激活[27],并且在腦卒中患者的大腦中也得到同樣的結果[29]。
急性期過后,炎癥反應逐漸減弱,主要為梗死區(qū)域的修復,在這一階段,小膠質細胞成為神經修復者[14]。在短暫性腦缺血后數(shù)天的亞急性期,在梗死周圍區(qū)域小膠質細胞的形態(tài)和極化狀態(tài)發(fā)生變化,這是因為在亞急性期激活的小膠質細胞對梗死周圍區(qū)域的特定DAMP做出反應,研究證實[14],tMCAO(梗塞1.5 h)缺血嚴重時,梗死核心區(qū)因供養(yǎng)血流不足而導致小膠質細胞耗盡,在短暫性腦缺血后1 d開始圓形小膠質細胞重新進入梗死的核心區(qū)域。
小膠質細胞反應的長期效應包括梗死周圍區(qū)和遠端區(qū)域小膠質細胞的激活、病變區(qū)吞噬細胞的積累和繼發(fā)性損傷。在卒中后3~7 d的核心區(qū)域,圓形小膠質細胞和巨噬細胞數(shù)量最多。損傷遠端小膠質細胞形態(tài)也發(fā)生變化,在這一時期,小膠質細胞與缺血初期激活的小膠質細胞相比,對環(huán)境的反應是完全不同的。慢性期小膠質細胞激活的特征與激活的方式、激活的區(qū)域以及干預措施開始時間有關。
3小膠質細胞與其他神經細胞的交互作用
3.1小膠質細胞與神經元 "腦IRI時,神經元是主要受害者,神經元的死亡觸發(fā)了小膠質細胞的激活,神經元通過釋放“開”和“關”的信號調節(jié)小膠質細胞的激活,并且與小膠質細胞上的受體結合(CX3CR1、CD200R),影響小膠質細胞的功能,神經元還促進小膠質細胞發(fā)揮神經保護作用功能。同時小膠質細胞也通過吞噬作用和生化相互作用支持神經元功能,發(fā)揮其神經元功能調節(jié)器的作用[30]。小膠質細胞對神經元的吞噬作用受小膠質細胞對“吃我”和“不吃我”信號的識別調節(jié)。當小膠質細胞檢測到當前的一種信號時,就會對神經元或部分神經元進行快速的識別和吞噬[8]。研究表明[1],死亡或退化的神經元會被活化的小膠質細胞吞噬。在缺血半暗帶區(qū),應用補體引導小膠質細胞吞噬應激可挽救神經元[9,31],而選擇性去除小膠質細胞,導致神經細胞鈣反應和神經網(wǎng)絡活動異常,鈣積累增加,神經元丟失[2]。這些研究均表明小膠質細胞的吞噬作用有助于神經修復,小膠質細胞與神經元之間的相互作用是廣泛而復雜的,未來的研究需要關注這種相互作用,以及這種相互作用在不同時間、不同腦區(qū)的不同功能。
3.2小膠質細胞與星形膠質細胞 "小膠質細胞和星形膠質細胞都是大腦先天免疫系統(tǒng)的主要組成部分。小膠質細胞激活可以通過釋放三種細胞因子在體外和體內誘導A1反應性星形膠質細胞:IL-1α、TNF-α和補體成分亞基1q(C1q)[32]。A1星形膠質細胞隨后導致神經元損傷。最近的研究發(fā)現(xiàn)[33],碎片化和功能失調的小膠質細胞線粒體的釋放也能夠觸發(fā)A1星形膠質細胞反應。星形膠質細胞的小膠質細胞調節(jié)也可能涉及腸道/腦軸,微生物代謝物通過腸道/腦軸直接作用于中樞神經系統(tǒng)駐留的小膠質細胞和星形膠質細胞[34]。盡管A1星形膠質細胞由活化的小膠質細胞誘導,但A2誘導的細胞和分子基礎仍不清楚[35]。此外,星形膠質細胞對小膠質細胞也有調節(jié)作用。研究表明[36],來自星形膠質細胞的IL-33可以作為變阻器,從而幫助調節(jié)神經回路成熟和重塑過程中的小膠質細胞突觸吞噬。雖然對小膠質細胞和星形膠質細胞的交互作用做了相關研究,但是多集中在其他中樞神經系統(tǒng)疾病中,比如帕金森病、阿爾茨海默癥等,需進一步研究在腦IRI中小膠質細胞與星形膠質細胞的串擾的復雜關系。
3.3小膠質細胞與少突膠質細胞 "動脈閉塞30 min后,少突膠質細胞出現(xiàn)腫脹。大多數(shù)少突膠質細胞在缺血后3 h死亡,這比缺血區(qū)域的神經元死亡更早出現(xiàn)[16]。源自SVZ NPC的少突膠質祖細胞(OPCs)可以在缺血腦中增殖并分化為少突膠質細胞[16,19,37]。少突膠質細胞是白質的主要成分,少突膠質細胞和白質的損傷與缺血誘導的腦損傷后的功能障礙有關[38]。在tMCAO模型中,TNF、MMP3和MMP9介導的神經炎癥是少突膠質細胞白質損傷和凋亡的重要因素[19,39]。而缺血后小膠質細胞產生的血管內皮生長因子C(VEGF-C)通過VEGFR-3受體刺激OPC增殖[40]。目前的研究已經證明[41],在慢性局灶性腦缺血大鼠模型中,小膠質細胞的激活導致少突膠質細胞受損,少突膠質細胞丟失的增加與手術后2~4周的小膠質細胞活化增加。表達TNF-α的活化小膠質細胞出現(xiàn)在白質病變處,其中少突膠質細胞以caspase-3依賴性凋亡方式死亡[42]。這些研究表明,小膠質細胞激活介導的神經炎癥與缺血誘導的少突膠質細胞丟失之間存在聯(lián)系,但連接這種聯(lián)系的詳細分子機制尚不清楚。
4總結
小膠質細胞在腦IRI中發(fā)揮著“雙刃劍”作用(加重損傷和促進修復),抑制小膠質細胞有害方面的同時促進其有益方面可能成為治療腦IRI的有效途徑。但是由于小膠質細胞的形態(tài)和功能隨著時間的推移發(fā)生動態(tài)變化,并且在整個周期中,小膠質細胞與其他神經細胞之間存在交互作用,故片面地抑制或促進小膠質細胞的臨床干預措施遭到失敗。故在未來的研究中應該考慮小膠質細胞功能的動態(tài)變化情況及其與其他神經細胞的交互作用,針對不同區(qū)域、不同時間、不同生理病理條件,提出更有針對性的治療干預措施,為實驗室結果轉化為臨床效果提供參考和依據(jù)。
參考文獻:
[1]GBD 2017 DALYs and HALE Collaborators.Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J].Lancet,2018,392(10159):1859-1922.
[2]Zhou M,Wang H,Zeng X,et al.Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J].Lancet,2019,394(10204):1145-1158.
[3]Tekle WG,Hassan AE,Jadhav AP,et al.Impact of Periprocedural and Technical Factors and Patient Characteristics on Revascularization and Outcome in the DAWN Trial[J].Stroke,2020,51(1):247-253.
[4]Wu MY,Yiang GT,Liao WT,et al.Current Mechanistic Concepts in Ischemia and Reperfusion Injury[J].Cell Physiol Biochem,2018,46(4):1650-1667.
[5]Mizuma A,You JS,Yenari MA.Targeting Reperfusion Injury in the Age of Mechanical Thrombectomy[J].Stroke,2018,49(7):1796-1802.
[6]Shi K,Tian DC,Li ZG,et al.Global brain inflammation in stroke[J].Lancet Neurol,2019,18(11):1058-1066.
[7]Zrzavy T,Machado-Santos J,Christine S,et al.Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts[J].Brain Pathol,2018,28(6):791-805.
[8]Chen W,Zhang Y,Zhai X,et al.Microglial phagocytosis and regulatory mechanisms after stroke[J].J Cereb Blood Flow Metab,2022,42(9):1579-1596.
[9]Yenari MA.Microglia, the brain's double agent[J].J Cereb Blood Flow Metab,2020,40(1_suppl):S3-S5.
[10]Augusto-Oliveira M,Arrifano GP,Lopes-Araújo A,et al.What Do Microglia Really Do in Healthy Adult Brain?[J].Cells,2019,8(10):1293.
[11]Garaschuk O,Verkhratsky A.Physiology of Microglia[J].Methods Mol Biol,2019,2034:27-40.
[12]Smolders SM,Kessels S,Vangansewinkel T,et al.Microglia: Brain cells on the move[J].Prog Neurobiol,2019,178:101612.
[13]Prinz M,Jung S,Priller J.Microglia Biology: One Century of Evolving Concepts[J].Cell,2019,179(2):292-311.
[14]Jia J,Yang L,Chen Y,et al.The Role of Microglial Phagocytosis in Ischemic Stroke[J].Front Immunol,2022,12:790201.
[15]Teppo J,Vaikkinen A,Stratoulias V,et al.Molecular profile of the rat peri-infarct region four days after stroke: Study with MANF[J].Exp Neurol,2020,329:113288.
[16]Xu S,Lu J,Shao A,et al.Glial Cells: Role of the Immune Response in Ischemic Stroke[J].Front Immunol,2020,11:294.
[17]Tang Y,Le W.Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases[J].Mol Neurobiol,2016,53(2):1181-1194.
[18]Butovsky O,Weiner HL.Microglial signatures and their role in health and disease[J].Nat Rev Neurosci,2018,19(10):622-635.
[19]Raffaele S,Gelosa P,Bonfanti E,et al.Microglial vesicles improve post-stroke recovery by preventing immune cell senescence and favoring oligodendrogenesis[J].Mol Ther,2021,29(4):1439-1458.
[20]Mota M,Porrini V,Parrella E,et al.Neuroprotective epi-drugs quench the inflammatory response and microglial/macrophage activation in a mouse model of permanent brain ischemia[J].J Neuroinflammation,2020,17(1):361.
[21]Li Q,Dai Z,Cao Y,et al.Caspase-1 inhibition mediates neuroprotection in experimental stroke by polarizing M2 microglia/macrophage and suppressing NF-κB activation[J].Biochem Biophys Res Commun,2019,513(2):479-485.
[22]Lambertsen KL,Biber K,F(xiàn)insen B.Inflammatory cytokines in experimental and human stroke[J].J Cereb Blood Flow Metab,2012,32(9):1677-1698.
[23]Campbell BCV,Khatri P.Stroke[J].Lancet,2020,396(10244):129-142.
[24]Hiu T,F(xiàn)arzampour Z,Paz JT,et al.Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target[J].Brain,2016,139(Pt 2):468-480.
[25]Otxoa-de-Amezaga A,Miró-Mur F,Pedragosa J,et al.Microglial cell loss after ischemic stroke favors brain neutrophil accumulation[J].Acta Neuropathol,2019,137(2):321-341.
[26]Ransohoff RM.A polarizing question: do M1 and M2 microglia exist?[J].Nat Neurosci,2016,19(8):987-991.
[27]Lyu J,Xie D,Bhatia TN,et al.Microglial/Macrophage polarization and function in brain injury and repair after stroke[J].CNS Neurosci Ther,2021,27(5):515-527.
[28]Ito D,Tanaka K,Suzuki S,et al.Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain[J].Stroke,2001,32(5):1208-1215.
[29]Thiel A,Radlinska BA,Paquette C,et al.The temporal dynamics of poststroke neuroinflammation: a longitudinal diffusion tensor imaging-guided PET study with 11C-PK11195 in acute subcortical stroke[J].J Nucl Med,2010,51(9):1404-1412.
[30]Ji K,Miyauchi J,Tsirka SE.Microglia: an active player in the regulation of synaptic activity[J].Neural Plast,2013,2013:627325.
[31]Alawieh A,Langley EF,Tomlinson S.Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice[J].Sci Transl Med,2018,10(441):eaao6459.
[32]Liu M,Xu Z,Wang L,et al.Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte[J].J Neuroinflammation,2020,17(1):270.
[33]Joshi AU,Minhas PS,Liddelow SA,et al.Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration[J].Nat Neurosci,2019,22(10):1635-1648.
[34]Allen NJ,Lyons DA.Glia as architects of central nervous system formation and function[J].Science,2018,362(6411):181-185.
[35]Liddelow SA,Barres BA.Reactive Astrocytes: Production, Function, and Therapeutic Potential[J].Immunity,2017,46(6):957-967.
[36]Vainchtein ID,Chin G,Cho FS,et al.Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development[J].Science,2018,359(6381):1269-1273.
[37]Raffaele S,F(xiàn)umagalli M.Dynamics of Microglia Activation in the Ischemic Brain: Implications for Myelin Repair and Functional Recovery[J].Front Cell Neurosci,2022,16:950819.
[38]Li L,Harms KM,Ventura PB,et al.Focal cerebral ischemia induces a multilineage cytogenic response from adult subventricular zone that is predominantly gliogenic[J].Glia,2010,58(13):1610-1619.
[39]Xu J,Zhang L,Li M,et al.TREM2 mediates physical exercise-promoted neural functional recovery in rats with ischemic stroke via microglia-promoted white matter repair[J].J Neuroinflammation,2023,20(1):50.
[40]Miron VE,Boyd A,Zhao JW,et al.M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination[J].Nat Neurosci,2013,16(9):1211-1218.
[41]Hamner MA,McDonough A,Gong DC,et al.Microglial depletion abolishes ischemic preconditioning in white matter[J].Glia,2022,70(4):661-674.
[42]Puig B,Brenna S,Magnus T.Molecular Communication of a Dying Neuron in Stroke[J].Int J Mol Sci,2018,19(9):2834.
收稿日期:2023-05-17;修回日期:2023-06-29
編輯/王萌