999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

產油酵母的研究現狀與展望

2025-01-09 00:00:00喬代蓉冉雨鷺李維
關鍵詞:經濟性

摘要:生物能源是從生物來源的材料制成的可再生能源,主要分為生物質能、生物燃料、生物氣體三大類,具有綠色、低碳、清潔、可再生等優點.微生物油作為第三代生物柴油,有可能成為傳統化石燃料的綠色替代品,是緩解能源挑戰和環境問題的研究熱點.本文綜述產油酵母油脂合成與調控機制以及代謝工程等研究進展.產油酵母作為微生物油生產的主體,其異檸檬酸脫氫酶的活性依賴一磷酸腺苷(AMP),使得它們在限氮條件下大量積累油脂;酵母積累油脂受到各種條件的影響(比如碳氮源、溫度、溶氧、pH值等),相關碳氮源利用與脅迫調控轉錄因子GAT1、MIG1、ASG1、MYB、GRAS、CBF11、TORC1 bHLH8和PHD 等也調控其脂代謝.但產油酵母相對于釀酒酵母來說,其油脂合成機制與遺傳背景依舊不清晰,限制了其工業化應用.因此,未來還需要加強微生物油生產技術的研究,從提高菌株魯棒性、增加經濟性代謝副產物產量、提高廉價底物利用能力等方面降低微生物油的生產成本,使其成為傳統化石燃料的有效替代品.

關鍵詞:生物柴油; 產油酵母; 油脂合成; 調控機制; 代謝工程; 經濟性

中圖分類號:Q93

文章編號:1001-8395(2025)01-0001-14

doi:10.3969/j.issn.1001-8395.2025.01.001

當前,世界能源格局深刻調整,不斷增長的能源需求和氣候危機促使生物能源去代替對環境造成嚴重污染的傳統化石燃料[1].生物能源(bioenergy)是從生物來源的材料制成的可再生能源,主要分為生物質能、生物燃料、生物氣體三大類.生物柴油屬于生物燃料,是由植物、動物或微生物的脂肪與甲醇或乙醇經酯化而形成的脂肪酸甲酯或乙酯,具有燃料性能好、無毒、環保性能好、可生物降解以及再生、原料來源廣泛等特性,對于推進能源結構調整具有重要戰略意義.

作為第三代生物柴油的微生物油脂,是指細菌、酵母、霉菌和藻類等產油微生物在適當的條件下,將碳水化合物轉化并儲存在細胞內的油脂.與第一代和第二代生物燃料相比,微生物油脂不僅組分與能量與動植物油相似,而且具有生產周期短、可規模化生產、不與糧“爭地”、不與民“爭糧”、不受季節和氣候影響、原料來源廣泛等優點[2],并且可以作為生物燃料、平臺化學品、食品和飼料的成分.所以為了保護農業用地及糧食安全、降低原料成本,微生物油脂成為了生產生物柴油的理想原料.

1"產油酵母的種類

所有微生物都能合成以供其生存的結構脂質,但只有那些能夠積累占其細胞干重20%以上的脂質的微生物才稱為產油微生物[3].產油微生物多種多樣,包括微藻、細菌、酵母和霉菌,不同的菌株在脂質和生物質生產能力上不可避免地表現出細微或巨大的差異[2].數十年以來,產油酵母菌因其獨特優勢,逐漸成為微生物油脂生產領域的研究熱點.高產油物種的鑒定、促進油脂積累的優化條件、將廢物轉化為酵母油的技術以及大規模擴大生產推動了產油酵母菌在工業生產中的應用.與細菌和藻類相比,產油酵母具備顯著優勢.在嚴格控制條件下,酵母菌能夠快速增殖至高密度,并能積累高達70%(以干質量計)的油脂,這使其成為微生物油脂生產的有力候選者.產油酵母有許多種,不同種其脂質含量存在顯著差異,甚至在同一個種之間也是如此[3].目前已經發現的產油酵母主要分為Saccharomycetales、Sporidiobolales、Tremellales、Trichosporonales、Cystobasidiales等5個目(主要分布在子囊菌門和擔子菌門),其中被廣泛研究的產油酵母包括解脂耶氏酵母(Yarrowia lipolytica)、圓紅冬孢酵母( Rhodosporidium toruloides )、斯達油脂酵母(Lipomyces starkeyi)和產油毛孢子菌(Trichosporon oleaginosus)等4個種.除了上述的產油酵母,還從環境中分離出了許多能大量積累油脂的酵母,如表1所示.但目前產油酵母代謝工程改造的主要瓶頸是缺乏基因操作工具[4].提高這些物種的遺傳適應性,便于代謝工程改造的開展,這對于提高它們的生物量和脂質產量是至關重要的.幸運的是,轉化方法的優化、合成生物學元件的挖掘和遺傳工具的開發等方面已經取得了一些重要進展,或將深刻改變產油酵母菌株的研究格局[4].

2"產油酵母的油脂合成與調控機制

2.1"油脂合成代謝""真核生物的脂質合成是一個復雜的代謝過程,需要通過大量的酶催化不同反應.關于脂質的代謝與調控研究一般是以S.cerevisiae為研究對象,產油酵母的脂質代謝與S.cerevisiae在許多方面是相似的,但也有許多不同之處.一般來說,產油酵母能大量積累油脂的前提是限氮發酵條件[49],產油酵母TCA循環中的異檸檬酸脫氫酶的活性依賴一磷酸腺苷(adenosine monophosphate, AMP),但在非產油酵母中這種依賴性就不存在[50],這就導致產油酵母積累油脂的代謝流與S.cerevisiae有較大差異,如圖1所示[51].需要指出的是,產油酵母分散在子囊菌門和擔子菌門多個分支中.

這種分類歸屬的多樣性,成就了產油酵母物種或分支的表型或基因型特性的多樣性和不確定性.同時也表明含油脂性可能經歷了多次獨立的發展,因此可能存在多種脂質積累機制.在相同的生長條件下積累不同數量的脂質的近緣物種或一個物種內的菌株的基因組和轉錄組比較,可能可以揭示脂質積累機制[1].

產油酵母積累的油脂以脂肪酸和甘油三酯為主,還含有部分甾醇.脂肪酸是一類4~36個碳的一元羧酸,甘油三酯是脂肪酸與甘油縮合形成的酯,甾醇是一類含有羥基的類固醇.

2.1.1"脂肪酸的合成""產油酵母的脂肪酸從頭合成需要乙酰-CoA、丙二酸單酰-CoA與NADPH等3種原料,合成場所在細胞質.葡萄糖進入糖酵解途徑后產生丙酮酸,后者進入線粒體,在丙酮酸脫氫酶復合物(pyruvate dehydrogenase complex, PDH)的作用下產生乙酰-CoA, 乙酰-CoA進入TCA循環,在檸檬酸合酶的作用下與草酰乙酸縮合成檸檬酸.

在限氮發酵條件下,氮源的缺乏增強了一磷酸腺苷脫氨酶(adenosine monophosphate deaminase, AMPD)的活性[52],促進AMP分解為5′-磷酸-肌醇(inosine 5′-monophosphate, IMP)和NH+4,使胞內的AMP水平降低,銨氮增加[53-55],低濃度的AMP抑制了AMP依賴的異檸檬酸脫氫酶(isocitrate dehydrogenase, ICDH)的活性,TCA循環的活性降低,最終導致檸檬酸在線粒體中大量積累[53,56],該反應可以誘導產油酵母直接在細胞質中產生持續供應的乙酰-CoA[57].線粒體中積累的檸檬酸在蘋果酸/檸檬酸轉位酶系統作用下轉移到細胞質中,胞質檸檬酸在檸檬酸裂解酶(ATP-citrate lyase, ACL)的作用下產生草酰乙酸與大量的乙酰-CoA,而ACL在產油酵母中普遍存在,在S.cerevisiae中沒有[53],這一反應產生的乙酰-CoA就是脂肪酸合成的原料.然后,丙二酸單酰-CoA是乙酰-CoA在ACC的作用下生成的[58],同時胞質中的乙酰-CoA對乙酰-CoA羧化酶有別構激活信號作用.最后,氧化還原力NADPH主要是由磷酸戊糖途徑中葡萄糖-6-磷酸脫氫酶與6-磷酸葡萄糖酸脫氫酶與蘋果酸合酶(malate enzyme,ME)催化蘋果酸生成丙酮酸這兩步產生[53,59-60].3種脂肪酸合成原料在脂肪酸合成酶復合物FAS1與FAS2的作用下最終生成C16和C18脂肪酸.Wu等[61]研究表明,使用RNA干擾敲除RtFAS1和RtFAS2可以降低脂質含量,但沒有改變R. toruloides NP11的脂肪酸組分.產油酵母Y.lipolytica FAS的KS結構域的酶工程也提高了中鏈脂肪酸的含量.

2.1.2"甘油三酯的合成""產油酵母的甘油三酯合成前體是脂酰-CoA(Acyl-CoA)與3-磷酸甘油.脂酰-CoA來自脂肪酸的活化,3-磷酸甘油由磷酸二羥丙酮或甘油磷酸化形成.3-磷酸甘油酰基轉移酶(Glycerol-3-phosphate acyltransferase, G3PAT)催化3-磷酸甘油與脂酰-CoA生成的溶血磷脂,然后溶血磷脂酰基轉移酶(lysophospholipid acyltransferase,LPAT)催化溶血磷脂生成磷脂酸(phosphastidic acid,PA),最后磷脂酸產生的二酰甘油在二酰甘油酰基轉移酶(1,2-diacylglycerol acyltransferase, DGA1 and DGA2)與磷脂二酰甘油酰基轉移酶(phospholipid diacylglycerol acyltransferase,PDAT)的作用下生成TAG[53].Mondal等[52]在Y. lipolytica中通過分別過表達ACC1和DGAT1(二酰基甘油酰基轉移酶)使得脂質產量提高了2倍和4倍,聯合過表達使脂質積累增加了5倍.

2.1.3"甾醇酯的合成""以S.cerevisiae為研究材料揭示了甾醇酯(sterolesters,SE)的合成過程.研究發現其合成前體是甲羥戊酸,有兩分子乙酰-CoA先后在乙酰-CoA酰基轉移酶2(acetyl-CoA acetyltransferase 2, ACAT2)、甲羥戊酸合酶(HMG-CoA synthase, HMGS)和甲羥戊酸還原酶(HMG-CoA reductase, HMGR)的作用下生成[62].甲羥戊酸在多種酶的作用下生成角鯊烯,然后再在加氧酶、環化酶等多種酶的作用下最終生成SE[63].

2.2"油脂分解代謝

產油酵母油脂的分解代謝主要是脂肪酸的β-氧化途徑(fatty acid β-oxidation),該反應發生在線粒體,脂酰-CoA通過4步反應降解,每個循環通過釋放2個羧基末端的碳原子,使脂酰-CoA縮短為乙酰-CoA[64].最后一步是在乙酰-CoA酰基轉移酶1(acetyl -CoA acetyltransferase 1,ACAT1)的作用下裂解為兩分子乙酰-CoA[64].在動物體內,由脂肪酸降解產生的乙酰-CoA不能再形成丙酮酸或草酰乙酸,但是在植物與微生物體內由于特有的乙醛酸循環途徑中存在的異檸檬酸裂解酶(isocitrate lyase,ICL)與蘋果酸合酶(malate synthase,MLS),乙酰-CoA還能再生成草酰乙酸,進入TCA循環[65].

2.3"油脂合成調控機制

脂質的組成和脂質生物合成基因的表達都受到各種生長條件的影響,包括酵母菌株、生長階段、碳氮比、碳源、碳源和水平、曝氣率、溫度、酒精的存在、氮水平、氮源、磷水平、硫胺素、生物素、pH值和對碳源的適應[32],但調節油脂生物體中脂質積累的一般機制尚未完全明確.

對于產油微生物普遍來說最重要生長條件是培養基中的碳氮比,同時有許多研究報道調控細胞營養與能量穩態TOR信號通路、促進氮源吸收的氮代謝抑制(nitrogen catabolite repression, NCR)途徑與促進碳源吸收的碳代謝抑制(carbon catabolite repression, CCR)途徑對產油酵母的脂質代謝具有重要的調控作用.到目前為止,已經在多種微生物中發現西羅莫司處理抑制TORC1的活性,會促進胞內脂質的增加.比如低碳氮比條件下,西羅莫司處理S.cerevisiae、T. oleaginosus、微藻Chlamydomonas reinhardtii和Cyanidioschyzon merolae能在不影響生物量積累的同時促進胞內脂滴的增加[66-68],但也不是所有物種都有這個特性,比如在玉米黑穗病菌Ustilago maydis中,西羅莫司處理誘導了該菌大液泡與大脂滴的形成,但無明顯的甘油三酯積累[69].

綜上,TORC1對微生物油脂的積累具有調控作用.在西羅莫司或氮饑餓條件下,TORC1被抑制,Tap42-PP2A從囊泡上被釋放到胞質中,Tap42去磷酸化[70],胞質Tap42-PP2A和Tap42-PP2A-like磷酸酶復合物通過去磷酸化轉錄因子GAT1與GLN3從而激活與氮分解代謝產物抑制和應激反應相關的基因表達[71-72].Madeira等[66]研究發現,在S.cerevisiae中缺失GLN3與GAT1編碼基因會減少脂滴的形成,同時也會抑制細胞的生長;同時缺失磷酸酶SIT4(PP2A-like protein phosphatase)也會降低脂滴的積累,所以在酵母中TOR信號通路可能通過GAT1與GLN3轉錄因子調控酵母脂質代謝.Wang等[73]還在Y.lipolytica中發現Mhy1p轉錄因子在脂質合成、氨基酸與氮代謝中發揮重要調控作用,在Mhy1p突變體中脂質含量增加,GLN3與GAT1轉錄水平大大提高.在高產脂真菌Mucor circinelloides WJ11中鑒定的腺苷脫氨酶(adenosine deaminase,Ada)編碼基因導致工程菌株的脂質質量分數增加了20%(細胞干質量的25%)[74].研究報道在Y.lipolytica中,敲除SNF1及其途徑中的GAL83、SAK1、MIG1編碼基因能顯著促進生長和脂質積累,其中MIG1編碼基因的缺失會抑制脂肪酸降解[75-76].SNF1還參與INO1基因對磷脂代謝的調控[77].此外,激活的SNF1還能直接抑制ACC1合成丙二酸單酰-CoA的活性,從而抑制脂肪酸的合成,還可以抑制HMGR的活性來抑制甾醇的合成[78].在Saitozyma podzolica zwy-2-3菌株中,GAT1和CreA也能通過正調控油脂合成相關基因正調控脂代謝.除了調控碳氮代謝的轉錄因子能夠調控脂代謝以外,一些響應環境脅迫的轉錄因子,比如MYB、Asg1、GRAS、CBF11、TORC1 bHLH8和PHD TF家族,也能夠調節產油酵母的脂代謝[3,79].

3"產油酵母代謝工程

代謝途徑的調控和關鍵酶的過表達可以使代謝流向目的產物方向積累.野生微生物菌株的這種改造一直是食品、飲料和藥品生產等工業領域應用的優先策略.選擇優良的出發菌株是育種的關鍵步驟.微生物油脂合成途徑的改造,采用兩種截然不同的策略:改善產脂質微生物的常駐代謝途徑[80],或將產油微生物的脂肪酸合成途徑基因轉入大腸桿菌或釀酒酵母等工業微生物細胞中.為了提高產油酵母的油脂產量,對油脂合成的關鍵節點進行調控就顯得十分重要.

已有大量的研究利用代謝工程策略來增強不同微生物的脂質積累.大致可分為以下幾種不同的途徑:

1) 過表達脂肪酸生物合成途徑的酶;

2) 過表達酶增強TAG生物合成途徑;

3) 調控相關TAG生物合成旁路途徑;

4) 部分阻斷競爭途徑;

5) 多基因導入同一細胞的方法.促進胞質乙酰-CoA合成能促進產油.有2種途徑能促進胞質乙酰-CoA的增加:1) 通過ACI裂解檸檬酸產生乙酰-CoA[81];2) 丙酮酸旁路途徑,丙酮酸經丙酮酸脫羧酶(Pyruvate decarboxylase, PDC)轉化為乙醛,再經過脫氫酶和乙酰-CoA合成酶(Acetyl-CoA synthase, ACS)合成乙酰-CoA[82].在Chromochloris zofingiensis、C. reinhardtii和Schizochytrium sp.中過表達ACS均能增加其油脂產量,還發現在C.zofingiensis中ACS被GATA型轉錄因子所調控[83].此外,Donzella等[84] 在R. azoricum中過表達細菌來源的磷酸轉乙酰酶與磷酸轉酮酶,能在細胞質中直接合成乙酰-CoA.綜上,促進胞質乙酰-CoA的增加是促進產油的有效途徑.同時促進乙酰-CoA與TAG合成關鍵酶的表達也能促進產油.文獻[54,85]發現過表達ACC1、ACL、DGA、FAS、GPD1、ME、SCT1、SLC1、ZWF1等多個基因,L.starkeyi的產油量顯著提高到22.7 g/L,產油率高達85%,其野生型產油量為8.25 g/L,產油率僅為30%;Aburatani等[86]通過L.starkeyi全基因組代謝模型重構發現,DGA1與ACL1是油脂代謝中非常關鍵的調控基因,同時,在Y.lipolytica和L.starkeyi中都發現,過表達或者高活性的ACL促進脂質的積累[87-88];還有研究發現,限氮條件下R.toruloides、L.starkeyi與Y.lipolytica的IDH活性也被抑制;在限磷條件下,R.toruloides高產油,IDH活性也是降低的[56,89].Qiao等[90]研究發現,在Y.lipolytica中同時過表達SCD、ACC與DGA,使脂質產率達到84.7%,產量達到55 g/L,對葡萄糖與纖維素衍生糖的耐受性也大幅增強,而且工程菌相對于野生型有3倍的生長優勢.Blazeck等[91]同時過表達AMPD、ACL1、ACL2、ME、DGAT,敲除PEX10和MFE1能使油脂質量積累到干質量的90%.促進NADPH合成也能促進產油.與限氮密切相關的ME編碼基因過表達,也能促進產油真菌Mucor circinelloides與產油酵母R. glutinis的脂質積累[92],但是在L.starkeyi與Y.lipolytica中,胞質ME的缺失并不影響脂質積累[60],可能是這2種產油酵母的ME并不是NADPH依賴的酶;Yuzbasheva等[93]發現,在Y.lipolytica中同時共表達GPD與脂酰-CoA結合蛋白,相比于野生型油脂產量提高了41%.促進脂肪酸與TAG合成的關鍵酶能夠大幅提升油脂產量,某些時候外源基因的表達會比同源基因更加有效,比如在Y. lipolytica中過表達R.toruloides來源的DGA1與C.purpurea的DGA2[94],同時敲除TGL3基因[95],能使脂質產率最終達到71%[94].Dulermo等[96]在Y. lipolytica中過表達GDP1與DGA2,敲除POX1-6與TGL4,降低脂肪酸降解的同時又增強了TAG的合成,使脂質產率增加到65%~75%;除了促進油脂的產生,脂質代謝工程還能促進脂肪酸、長鏈不飽和脂肪酸(PUFAs)、脂肪醇和脂肪酸甲酯等衍生物的增加[89].

啟動子是調控原核生物和真核生物中天然基因表達和異源基因表達的重要元件.根據實驗需要,構成型或誘導型啟動子可以調控靶基因表達的時間和水平.適合產油酵母菌中脂質生物合成基因的重要啟動子主要包括POX2、LIP2、YAT1、NAR1、ICL1、CTR31、MET16、DAO1、PGK、GAPDH、ACC1、XYL1、TEFp、LDP1等基因的啟動子.轉錄組測序和功能表征也可以驗證其他非常規產油酵母菌株中的啟動子,以加快代謝工程研究.此外,除了通過啟動子改造對油脂代謝相關酶進行過表達外,改變轉錄因子、表觀遺傳因子的協同作用也可以調節油脂合成途徑關鍵酶的水平和豐度.但是目前對于產油酵母的脂代謝調控機制還不明確,還需要進一步的研究來指導代謝工程的應用.

4"產油酵母未來發展方向

盡管最近在資源穩定、原料利用和代謝工程技術方面取得了進展,但從酵母中生產油類化學品的成本仍然太高,無法獲得具有競爭力的燃料價格.因此,大幅降低產油成本才能使酵母基生物柴油在全球市場上的銷售價格具有競爭力.減少原料運輸、預處理和水解成本、降低曝氣和pH控制成本、減少污染潛力、全年生產、提高木質纖維素水解物中碳水化合物的利用、加快微生物生長到更高的細胞密度、更高的石油積累、改進的集油技術、將殘留的酵母細胞質量轉化為有價值的副產品以及降低廢物處理成本等都是需要努力的方向.

對于產油酵母本身來講,需要選擇高油、高細胞產量以及其他理想特性(比如能夠利用纖維素水解物、耐受抑制劑、耐滲透性)的產油酵母作為工業菌株,生產合適的脂肪酸的最終產品,同時利用葡萄糖和木糖來減少加工時間[97].工業菌株具備用于預處理木質纖維素酶解的高溫耐受性,允許同時糖化和發酵,并具備易于裂解、促進油回收的能力和快速生長等特性.這些特性可能會促進統一的生物加工,降低成本.許多新發現的非常規產油菌種在原料利用方面具有一定的優勢,在相關工業條件下也具有良好的脂質滴度和生長動力學性能.然而,如果要通過菌株改進作為生物技術的主力,就需要探索它們的遺傳可操作性.這里有4種可能的途徑來改善非傳統產油酵母菌株的脂肪衍生化學品和燃料生產(圖2):廢物原料利用、代謝重塑、共培養和細胞外脂質生產.廢物利用和代謝重構有助于提高脂質產量和過程的經濟性,而共培養和細胞外脂質生產分別有助于更好地利用營養物質和降低耐受脂質毒性.

4.1"菌株魯棒性的提高""纖維素水解液的存在會使產油能力大大下降.木質纖維素由幾種聚合物組成,包括纖維素、半纖維素、木質素和果膠.這些聚合物的相對數量和類型在不同的植物中也會有所不同.預處理是必要的,以打開和分離這些聚合物,降解晶體結構,并使每個聚合物更容易進行酶解.由于酵母缺乏顯著的纖維素降解活性,在被產油酵母轉化為脂質之前,必須對木質纖維素材料進行預處理和酶水解以釋放游離糖.水解液中可能包括D-葡萄糖、D-木糖、D-阿拉伯糖、甘露糖和半乳糖等.此外,纖維素和半纖維素水解后的副產物糠醛,5-羥甲基糠醛,以及木質素的降解釋放的多種多酚和低分子量酚類物質(如丁香醛、4-羥基苯甲酸、香草酸和香蘭素等)對酶和微生物細胞生長產生抑制效應.糠醛抗性表型通常涉及應激反應中復雜的多基因調控,通過NADPH、NADH依賴的還原酶將糠醛還原為毒性更低的物質[8],NADPH依賴葡萄糖-6-磷酸脫氫酶(ZWF1)、NADH依賴酒精脫氫酶(ADH)、NADH依賴丙二醇氧化還原酶(FucO)的過表達均改善了糠醛耐受性.轉運體對糠醛的耐受性也至關重要.多胺轉運體還通過與帶負電荷的細胞成分,例如核酸、磷脂等結合,提高了糠醛耐受性,保護大腸桿菌菌株LY180免受糠醛損傷.已經發現木糖提高糠醛耐受性是通過改善NADH的再生實現的, N. crassa被發現30%耐糠醛羧甲基纖維素作為主要碳源而不是蔗糖,表明了碳水化合物代謝和糠醛耐受性之間的聯系[98],通過過表達假定的木糖轉運蛋白,可以提高菌株對糠醛的耐受.用代謝工程的方法去提高菌株耐受性,還可以通過適應性實驗室進化的方法提高菌株魯棒性.Zhou等[99]采用適應性實驗室進化方法提高解脂耶氏酵母菌對芳香醛的耐受性,結合轉錄組學、酶學和遺傳驗證發現,醛酮還原酶YALI0_B07117g和醛脫氫酶YALI0_B01298g在脂菌芳香醛耐受能力中起重要作用.

4.2"代謝副產物""除了脂類,產油酵母還同時生產代謝副產物,比如葡萄糖酸、富馬酸、山梨醇、木糖醇、檸檬酸、脯氨酸等.通過優化生長培養基中的初始碳源、氮源、溶解氧、葡萄糖濃度等營養物質以及培養時間來控制碳流,使酵母細胞通量分布在兩種不同的代謝途徑之間,從而最大限度地實現廢物原料的資源化,提高生產過程的經濟性能.比如,S.podzolica菌株可以在利用葡萄糖發酵時產生葡萄糖酸[41],利用木糖發酵時產生木糖酸[100];同時Rhodosporidium toruloides也可以在產油的同時生產類胡蘿卜素.

4.3"胞外油脂""生物柴油生產商業化的另一個障礙是石油提取下游工藝的高能耗.迄今為止,有機溶劑萃取和機械破碎仍然是最有效和最經濟的微生物油提取技術,但這個過程涉及的機械細胞破裂、提取和相分離等傳統油提取工藝需要大量的能量,占了生物柴油總生產成本的40%以上.因此,應通過正確設計的提取工藝實現能量平衡經濟性.Huang等[101]發現在耐酸產游菌Cryptococcus curvatus MUCL 29819中添加質量濃度超過20 g/L的乙酸時,有利于細胞中的油脂釋放.當乙酸質量濃度為40 g/L時,酵母胞外的油脂產量最高,達到5.01 g/L.這也是降低脂質回收成本的可能途徑.此外,還可以從環境中篩選能天然產生胞外油脂的菌株,王致鵬[102]篩選到一株Rhodosporidium paludigenum p1721能夠積累胞外油脂,當酵母提取物質量濃度為3 g/L時,胞外油脂產量最大,達到14.1 g/L,生物細胞質量濃度(biomass)為15.1 g/L.

5"結束語

雖然已經進行了多項研究以開發和加強微生物油生產技術,使其成為傳統化石燃料的有效替代品.但是,由于技術局限,產業化還有很長的路要走.首先需要確定和采用可用于脂質生產的大量、可持續和低成本的碳源和氮源.如今,一些可行的低成本碳源已經成功地用于微生物油脂的產生,但如何保持可持續供應仍然是一個挑戰.然后是如何選擇或編碼高效菌株?雖然已有不少關于油脂合成的基因工程改造的研究,已經明確了部分基因的作用效果和機制,但這些研究均是建立在單個基因的研究基礎上,對于2個或多個基因的協同作用的研究還極少.廉價的預處理也是必要的.脂質提取是從微生物中提取脂質的最后一個重要步驟,但沒有標準來指導高效和綠色操作.然而,研究人員幾乎將所有注意力都放在脂質合成上,而不是如何利用脂質生產生物柴油.微生物油產業化的每個方面都被分開研究,沒有系統考慮.總之,有限的技術、低效率和高成本分離提取工藝使產業化仍在路上.

參考文獻

[1] SITEPU I R, GARAY L A, SESTRIC R, et al. Oleaginous yeasts for biodiesel: current and future trends in biology and production[J]. Biotechnology Advances,2014,32(7):1336-1360.

[2] NAVEIRA-PAZOS C, VEIGA M C, KENNES C. Accumulation of lipids by the oleaginous yeast Yarrowia lipolytica grown on carboxylic acids simulating syngas and carbon dioxide fermentation[J]. Bioresource Technology,2022,360:127649.

[3] SREEHARSHA R V, MOHAN S V. Obscure yet promising oleaginous yeasts for fuel and chemical production[J]. Trends in Biotechnology,2020,38(8):873-887.

[4] WEN Z Q, AL MAKISHAH N H.Recent advances in genetic technology development of oleaginous yeasts[J]. Applied Microbiology and Biotechnology,2022,106(17):5385-5397.

[5] NOGU V S I, BLACK B A, KRUGER J S, et al. Integrated diesel production from lignocellulosic sugars via oleaginous yeast[J]. Green Chemistry,2018,20(18):4349-4365.

[6] SLININGER P J, DIEN B S, KURTZMAN C P, et al. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers[J]. Biotechnology and Bioengineering,2016,113(8):1676-1690.

[7] HUANG X F, LIU J N, LU L J, et al.Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides[J]. Bioresource Technology,2016,206:141-149.

[8] MATSAKAS L, BONTURI N, MIRANDA E A, et al.High concentrations of dried sorghum stalks as a biomass feedstock for single cell oil production by Rhodosporidium toruloides[J]. Biotechnology for Biofuels,2015,8(1):6.

[9] YAEGASHI J, KIRBY J, ITO M, et al. Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts[J]. Biotechnology for Biofuels,2017,10:241.

[10] JIRU T M, STEYN L, POHL C, et al. Production of single cell oil from cane molasses by Rhodotorula kratochvilovae(syn, Rhodosporidium kratochvilovae) SY89 as a biodiesel feedstock[J]. Chemistry Central Journal,2018,12(1):91.

[11] JOHNRAVINDAR D, KARTHIKEYAN O P, SELVAM A, et al. Lipid accumulation potential of oleaginous yeasts: a comparative evaluation using food waste leachate as a substrate[J]. Bioresource Technology,2018,248:221-228.

[12] CHAIYASO T, MANOWATTANA A, TECHAPUN C, et al. Efficient bioconversion of enzymatic corncob hydrolysate into biomass and lipids by oleaginous yeast Rhodosporidium paludigenum KM281510[J]. Preparative Biochemistry amp; Biotechnology,2019,49(6):545-556.

[13] MUNCH G, SESTRIC R, SPARLING R, et al. Lipid production in the under-characterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum from biodiesel-derived waste glycerol[J]. Bioresource Technology,2015,185:49-55.

[14] LIU L, CHEN J H, LIM P E, et al. Enhanced single cell oil production by mixed culture of Chlorella pyrenoidosa and Rhodotorula glutinis using cassava bagasse hydrolysate as carbon source[J]. Bioresource Technology,2018,255:140-148.

[15] LIU Y T, WANG Y P, LIU H J, et al. Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy[J]. Bioresource Technology,2015,180:32-39.

[16] BRANDENBURG J, BLOMQVIST J, PICKOVA J, et al. Lipid production from hemicellulose with Lipomyces starkeyi in a pH regulated fed-batch cultivation[J]. Yeast,2016,33(8):451-462.

[17] JUANSSILFERO A B, KAHAR P, AMZA R L, et al. Effect of inoculum size on single-cell oil production from glucose and xylose using oleaginous yeast Lipomyces starkeyi[J]. Journal of Bioscience and Bioengineering,2018,125(6):695-702.

[18] LI J M, YAN G H, LIU S C, et al. Target of rapamycin complex 1 and Tap42-associated phosphatases are required for sensing changes in nitrogen conditions in the yeast Saccharomyces cerevisiae[J]. Molecular Microbiology,2017,106(6):938-948.

[19] PROBST K V, VADLANI P V. Production of single cell oil from Lipomyces starkeyi ATCC 56304 using biorefinery by-products[J]. Bioresource Technology,2015,198:268-275.

[20] RAHMAN S, ARBTER P, POPOVIC M, et al. Microbial lipid production from lignocellulosic hydrolyzates: effect of carbohydrate mixtures and acid-hydrolysis byproducts on cell growth and lipid production by Lipomyces starkeyi[J]. J Chem Technol Biotechnol,2017,92(8):1980-1989.

[21] SITEPU I, SELBY T, LIN T, et al. Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species[J]. Journal of Industrial Microbiology amp; Biotechnology,2014,41(7):1061-1070.

[22] ANNAMALAI N, SIVAKUMAR N, OLESKOWICZ-POPIEL P. Enhanced production of microbial lipids from waste office paper by the oleaginous yeast Cryptococcus curvatus[J]. Fuel,2018,217:420-426.

[23] CHEN J X, ZHANG X L, TYAGI R D, et al. Utilization of methanol in crude glycerol to assist lipid production in non-sterilized fermentation from Trichosporon oleaginosus[J]. Bioresource Technology,2018,253:8-15.

[24] LIU J, YUAN M, LIU J N, et al. Bioconversion of mixed volatile fatty acids into microbial lipids by Cryptococcus curvatus ATCC 20509[J]. Bioresource Technology,2017,241:645-651.

[25] MEO A, PRIEBE X L, WEUSTER-BOTZ D. Lipid production with Trichosporon oleaginosus in a membrane bioreactor using microalgae hydrolysate[J]. Journal of Biotechnology,2017,241:1-10.

[26] PARK G W,CHANG H N,JUNG K, et al. Production of microbial lipid by Cryptococcus curvatus on rice straw hydrolysates[J]. Process Biochem,2017,56:147-153.

[27] YAGUCHI A, ROBINSON A, MIHEALSICK E, et al. Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous[J]. Microbial Cell Factories,2017,16(1):206.

[28] ZHANG X L, CHEN J X, YAN S, et al. Lipid production for biodiesel from sludge and crude glycerol[J]. Water Environment Research: a Research Publication of the Water Environment Federation,2017,89(5):424-439.

[29] LIU N, QIAO K J, STEPHANOPOULOS G. 13C metabolic flux analysis of acetate conversion to lipids by Yarrowia lipolytica[J]. Metabolic Engineering,2016,38:86-97.

[30] BATI N, HAMMOND E G, GLATZ B A. Biomodification of fats and oils-trials with Candida-lipolytica[J]. Journal of the American Oil Chemists’ Society,1984,61(11):1743-1746.

[31] DOBROWOLSKI A, MITUA P, RYMOWICZ W, et al. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica[J]. Bioresource Technology,2016,207:237-243.

[32] LAZAR Z, DULERMO T, NEUVGLISE C, et al. Hexokinase: a limiting factor in lipid production from fructose in Yarrowia lipolytica[J]. Metabolic Engineering,2014,26:89-99.

[33] FONTANILLE P, KUMAR V, CHRISTOPHE G, et al. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica[J]. Bioresource Technology,2012,114:443-449.

[34] PAPANIKOLAOU S, CHEVALOT I, KOMAITIS M, et al. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures[J]. Applied Microbiology and Biotechnology,2002,58(3):308-312.

[35] MICHELY S, GAILLARDIN C, NICAUD J M, et al. Comparative physiology of oleaginous species from the Yarrowia clade[J]. PLoS One,2013,8(5):e63356.

[36] TSIGIE Y A, WANG C Y, TRUONG C T, et al. Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate[J]. Bioresource Technology,2011,102(19):9216-9222.

[37] MANOWATTANA A, TECHAPUN C, WATANABE M, et al. Bioconversion of biodiesel-derived crude glycerol into lipids and carotenoids by an oleaginous red yeast Sporidiobolus pararoseus KM281507 in an airlift bioreactor[J]. Journal of Bioscience and Bioengineering,2018,125(1):59-66.

[38] LIU J, LIU J N, YUAN M, et al. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus[J]. Bioresource Technology,2016,211:548-555.

[39] LIU J N, HUANG X F, CHEN R, et al. Efficient bioconversion of high-content volatile fatty acids into microbial lipids by Cryptococcus curvatus ATCC 20509[J]. Bioresource Technology,2017,239:394-401.

[40] CAO X, XU H, LI F, et al. One-step direct transesterification of wet yeast for biodiesel production catalyzed by magnetic nanoparticle-immobilized lipase[J]. Renewable Energy,2021,171:11-21.

[41] QIAN X J, GORTE O, CHEN L, et al. Co-production of single cell oil and gluconic acid using oleaginous Cryptococcus podzolicus DSM 27192[J]. Biotechnology for Biofuels,2019,12:127.

[42] DEEBA F, PRUTHI V, NEGI Y S. Fostering triacylglycerol accumulation in novel oleaginous yeast Cryptococcus psychrotoleransIITRFD utilizing groundnut shell for improved biodiesel production[J]. Bioresource Technology,2017,242:113-120.

[43] DEEBA F, PRUTHI V, NEGI Y S. Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production[J]. Bioresource Technology,2016,213:96-102.

[44] SATHIYAMOORTHI E, KUMAR P, KIM B S. Lipid production by Cryptococcus albidus using biowastes hydrolysed by indigenous microbes[J]. Bioprocess and Biosystems Engineering,2019,42(5):687-696.

[45] WANG J, GAO Q Q, ZHANG H Z, et al. Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock[J]. Bioresource Technology,2016,218:892-901.

[46] YU Y, XU Z X, CHEN S T, et al. Microbial lipid production from dilute acid and dilute alkali pretreated corn stover via Trichosporon dermatis[J]. Bioresource Technology,2020,295:122253.

[47] CHEN J X, ZHANG X L, TYAGI R D, et al. Utilization of methanol in crude glycerol to assist lipid production in non-sterilized fermentation from Trichosporon oleaginosus[J]. Bioresource Technology,2018,253:8-15.

[48] TANIMURA A, SUGITA T, ENDOH R, et al. Lipid production via simultaneous conversion of glucose and xylose by a novel yeast, Cystobasidium iriomotense[J]. PLoS One,2018,13(9):e0202164..

[49] CALVEY C H, SU Y K, WILLIS L B, et al. Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi[J]. Bioresource Technology,2016,200:780-788.

[50] XUE S J, CHI Z, ZHANG Y, et al. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications[J]. Critical Reviews in Biotechnology,2018,38(7):1049-1060.

[51] SPAGNUOLO M, YAGUCHI A, BLENNER M. Oleaginous yeast for biofuel and oleochemical production[J]. Current Opinion in Biotechnology,2019,57:73-81.

[52] MONDAL S, HALDER S K, MONDAL K C. State-of-art engineering approaches for ameliorated production of microbial lipid[J]. Systems Microbiology and Biomanufacturing,2024,4(1):20-38.

[53] TAKAKU H, MATSUZAWA T, YAOI K, et al. Lipid metabolism of the oleaginous yeast Lipomyces starkeyi[J]. Applied Microbiology and Biotechnology,2020,104(14):6141-6148.

[54] ZHANG L, LEE J T E, OK Y S, et al. Enhancing microbial lipids yield for biodiesel production by oleaginous yeast Lipomyces starkeyi fermentation: a review[J]. Bioresource Technology,2022,344:126294.

[55] JIN M J, SLININGER P J, DIEN B S, et al. Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges[J]. Trends in Biotechnology,2015,33(1):43-54.

[56] TANG W, ZHANG S F, WANG Q, et al. The isocitrate dehydrogenase gene of oleaginous yeast Lipomyces starkeyi is linked to lipid accumulation[J]. Canadian Journal of Microbiology,2009,55(9):1062-1069.

[57] LIANG M H, JIANG J G. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology[J]. Progress in Lipid Research,2013,52(4):395-408.

[58] MUNIRAJ I K, UTHANDI S K, HU Z H, et al. Microbial lipid production from renewable and waste materials for second-generation biodiesel feedstock[J]. Environmental Technology Reviews,2015,4(1):1-16.

[59] JIN M J, SLININGER P J, DIEN B S, et al. Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges[J]. Trends in Biotechnology,2015,33(1):43-54.

[60] RATLEDGE, C. The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems[J]. Biotechnology Letters,2014,36(8):1557-1568.

[61] WU C C, HONDA K,KAZUHITO F. Current advances in alteration of fatty acid profile in Rhodotorula toruloides: a mini-review[J]. World Journal of Microbiology amp; Biotechnology,2023,39(9):234.

[62] JORD T, PUIG S. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae[J]. Genes,2020,11(7):795.

[63] ESPENSHADE P J, HUGHES A L. Regulation of sterol synthesis in eukaryotes[J]. Annual Review of Genetics,2007,41:401-427.

[64] HOUTEN S M, VIOLANTE S, VENTURA F V, et al. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders[J]. Annual Review of Physiology,2016,78:23-44..

[65] VUORISTO K S, MARS A E, SANDERS J P M, et al. Metabolic engineering of TCA cycle for production of chemicals[J]. Trends in Biotechnology,2016,34(3):191-197.

[66] MADEIRA J B, MASUDA C A, MAYA-MONTEIRO C M, et al. TORC1 inhibition induces lipid droplet replenishment in yeast[J]. Molecular and Cellular Biology,2015,35(4):737-746

[67] IMAMURA S, KAWASE Y, KOBAYASHI I, et al. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae[J]. Plant Molecular Biology,2015,89(3):309-318.

[68] BRACHARZ F, REDAI V, BACH K, et al. The effects of TORC signal interference on lipogenesis in the oleaginous yeast Trichosporon oleaginosus[J]. BMC Biotechnology,2017,17(1):27.

[69] ROMERO-AGUILAR L, GUERRA-SNCHEZ G, TENORIO E P, et al. Rapamycin induces morphological and physiological changes without increase in lipid content in Ustilago maydis[J]. Archives of Microbiology,2020,202(5):1211-1221.

[70] ARONOVA S, WEDAMAN K, ANDERSON S, et al. Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae[J]. Molecular Biology of the Cell,2007,18(8):2779-2794.

[71] DVEL K, SANTHANAM A, GARRETT S, et al. Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast[J]. Molecular Cell,2003,11(6):1467-1478.

[72] ZHANG W P, DU G C, ZHOU J W, et al. Regulation of sensing, transportation, and catabolism of nitrogen sources in Saccharomyces cerevisiae[J]. Microbiology and Molecular Biology Reviews:MMBR,2018,82(1):e00040-e00017.

[73] WANG G Y , LI D L, MIAO Z G, et al. Comparative transcriptome analysis reveals multiple functions for Mhy1p in lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica[J]. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids,2018,1863(1):81-90.

[74] LI S Q, YANG J H, MOHAMED H, et al. Identification and functional characterization of adenosine deaminase in Mucor circinelloides: a novel potential regulator of nitrogen utilization and lipid biosynthesis[J]. Journal of Fungi,2022,8(8):774.

[75] SEIP J, JACKSON R, HE H X, et al. Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica[J]. Applied and Environmental Microbiology,2013,79(23):7360-7370.

[76] WANG Z P, XU H M, WANG G Y, et al. Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109[J]. Biochimica et Biophysica Acta,2013,1831(4):675-682.

[77] CHUMNANPUEN P, ZHANG J, NOOKAEW I, et al. Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol-choline and Snf1 in controlling lipid biosynthesis in yeast[J]. Molecular Genetics and Genomics:MGG,2012,287(7):541-554.

[78] LIN S C, HARDIE D G. AMPK: sensing glucose as well as cellular energy status[J]. Cell Metabolism,2018,27(2):299-313.

[79] JANSURIYAKUL S, SOMBOON P, RODBOON N, et al. The zinc cluster transcriptional regulator Asg1 transcriptionally coordinates oleate utilization and lipid accumulation in Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology,2016,100(10):4549-4560.

[80] LIANG M H, JIANG J G. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology[J]. Progress in Lipid Research,2013,52(4):395-408.

[81] ZENG S Y, LIU H H, SHI T Q, et al. Recent advances in metabolic engineering of Yarrowia lipolytica for lipid overproduction[J]. European Journal of Lipid Science and Technology,2018,120(3):1700352.

[82] MARKHAM K A, PALMER C M, CHWATKO M, et al. Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(9):2096-2101.

[83] WU T, MAO X M, KOU Y P, et al. Characterization of microalgal acetyl-CoA synthetases with high catalytic efficiency reveals their regulatory mechanism and lipid engineering potential[J]. Journal of Agricultural and Food Chemistry,2019,67(34):9569-9578.

[84] DONZELLA S, CUCCHETTI D, CAPUSONI C, et al. Engineering cytoplasmic acetyl-CoA synthesis decouples lipid production from nitrogen starvation in the oleaginous yeast Rhodosporidium azoricum[J]. Microbial Cell Factories,2019,18(1):199.

[85] MATSUZAWA T, MAEHARA T, KAMISAKA Y, et al. Identification and characterization of Δ12 and Δ 12/Δ15 bifunctional fatty acid desaturases in the oleaginous yeast Lipomyces starkeyi[J]. Applied Microbiology and Biotechnology,2018,102(20):8817-8826.

[86] ABURATANI S, ISHIYA K, ITOH T, et al. Inference of regulatory system for TAG biosynthesis in Lipomyces starkeyi[J]. Bioengineering,2020,7(4):148

[87] ZHANG H Y, ZHANG L N, CHEN H Q, et al. Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP: citrate lyase from Mus musculus[J]. Journal of Biotechnology,2014,192:78-84.

[88] SATO R, ARA S, YAMAZAKI H, et al. Citrate-mediated acyl-CoA synthesis Is required for the promotion of growth and triacylglycerol production in oleaginous yeast Lipomyces starkeyi[J]. Microorganisms,2021,9(8):1693.

[89] CHATTOPADHYAY A, MITRA M, MAITI M K. Recent advances in lipid metabolic engineering of oleaginous yeasts[J]. Biotechnology Advances,2021,53:107722.

[90] QIAO K J, IMAM ABIDI S H, LIU H J, et al. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica[J]. Metabolic Engineering,2015,29:56-65.

[91] BLAZECK J, HILL A, LIU L Q, et al. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production[J]. Nature Communications,2014,5:3131.

[92] LI Z, SUN H X, MO X M, et al. Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis[J]. Applied Microbiology and Biotechnology,2013,97(11):4927-4936.

[93] YUZBASHEVA E Y, MOSTOVA E B, ANDREEVA N I, et al. Co-expression of glucose-6-phosphate dehydrogenase and acyl-CoA binding protein enhances lipid accumulation in the yeast Yarrowia lipolytica[J]. New Biotechnology,2017,39:18-21.

[94] FRIEDLANDER J, TSAKRAKLIDES V, KAMINENI A, et al. Engineering of a high lipid producing Yarrowia lipolytica strain[J]. Biotechnology for Biofuels,2016,9(1):77.

[95] DULERMO T, TRTON B, BEOPOULOS A, et al. Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organisation[J]. Biochimica et Biophysica Acta(BBA)-Molecular and Cell Biology of Lipids,2013,1831(9):1486-1495.

[96] DULERMO T, NICAUD J M. Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica[J]. Metabolic Engineering,2011,13(5):482-491.

[97] HU C M, WU S G, WANG Q, et al. Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum[J]. Biotechnology for Biofuels,2011,4(1):25.

[98] RAN Y L, YANG Q, ZENG J, et al. Potential xylose transporters regulated by CreA improved lipid yield and furfural tolerance in oleaginous yeast Saitozyma podzolica zwy-2-3[J]. Bioresource Technology,2023,386:129413.

[99] ZHOU L L, XU Z X, WEN Z Q, et al. Combined adaptive evolution and transcriptomic profiles reveal aromatic aldehydes tolerance mechanisms in Yarrowia lipolytica[J]. Bioresource Technology,2021,329:124910.

[100] GORTE O, KUGEL M, OCHSENREITHER K. Optimization of carbon source efficiency for lipid production with the oleaginous yeast Saitozyma podzolica DSM 27192 applying automated continuous feeding[J]. Biotechnology for Biofuels,2020,13(1):181.

[101] HUANG X F, SHEN Y, LUO H J, et al. Enhancement of extracellular lipid production by oleaginous yeast through preculture and sequencing batch culture strategy with acetic acid[J]. Bioresource Technology,2018,247:395-401.

[102] 王致鵬. 產油酵母菌合成生物油脂的研究[D]. 青島:中國海洋大學,2014.

Research Progress and Prospect of Oleaginous Yeast

QIAO Dairong1,2,"RAN Yulu1,2,"LI Wei3

(1. Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, Sichuan;

2. College of Life Science, Sichuan University, Chengdu 610065, Sichuan;

3. College of Life Science, Sichuan Normal University, Chengdu 610101, Sichuan)

With the advantages of being green, low-carbon, clean, and renewable, bioenergy is a form of energy that is produced from biologically based materials. It is primarily divided into three categories: biomass, biofuel, and biogas. In light of their potential to replace conventional fossil fuels with a greener alternative, microbial oils, the third generation of biodiesel, have gained attention as a focus of study to address energy and environmental issues. This paper reviews the progress of research on lipid synthesis, regulation mechanisms, and metabolic engineering in oleaginous yeast, which is the mainstay of microbial lipid production and whose isocitrate dehydrogenase activity is dependent on adenosine monophosphate (AMP), allowing them to accumulate large amounts of lipids under nitrogen-limiting conditions. Because various conditions (e.g., carbon and nitrogen sources, temperature, dissolved oxygen, pH, etc.) affect lipid accumulation, the related carbon and nitrogen source utilization and stress-regulated transcription factors, GAT1, MIG1, ASG1, MYB, GRAS, CBF11, TORC1 bHLH8, and PHD, among others, also regulate lipid metabolism in oleaginous yeast. However, unlike Saccharomyces cerevisiae, the lipid synthesis process and genetic background of oleaginous yeasts are still unknown, limiting their potential for industrial application. As a result, several studies will be needed in the future to develop technologies for microbial lipid production "in terms of improving strain robustness, increasing the production of economical metabolic by-products, and improving the ability to utilize economical substrates, so that it can become an effective alternative to traditional fossil fuels.

biodiesel fuel; oleaginous yeast; lipid synthesis; regulatory mechanism; metabolic engineering; economical

(編輯"陶志寧)

收稿日期:2023-12-19""接受日期:2024-01-27

基金項目:國家自然科學基金(32271535和32071479)

第一作者簡介:喬代蓉(1956—),女,教授,主要從事微生物資源保護、微生物油脂合成分子機制、工業酶分子改造等研究,E-mail:qiaodairong@scu.edu.cn

引用格式:喬代蓉,冉雨鷺,李維. 產油酵母的研究現狀與展望[J]. 四川師范大學學報(自然科學版),2025,48(1):1-14.

猜你喜歡
經濟性
高層建筑結構設計經濟性探討與分析
房地產導刊(2022年4期)2022-04-19 09:04:10
基于經濟性和熱平衡的主動進氣格柵策略開發(續2)
300MW和600MW等級汽輪機通流改造經濟性研究
能源工程(2021年6期)2022-01-06 02:04:36
基于經濟性和熱平衡的主動進氣格柵策略開發(續1)
超高層建筑結構經濟性研究
討論如何提高建筑電氣設計的可靠性和經濟性
快速解體機拆解報廢汽車的經濟性研究
600MW超臨界機組熱經濟性定量分析
論測量的經濟性
窄基鋼管塔應用的技術經濟性研究
主站蜘蛛池模板: 蜜芽国产尤物av尤物在线看| 国产精品开放后亚洲| 人妻21p大胆| 国产浮力第一页永久地址| 国产日韩丝袜一二三区| 亚洲天堂日韩av电影| 亚洲国产欧美自拍| 欧美成人怡春院在线激情| 无码国产伊人| 国产91麻豆免费观看| 好久久免费视频高清| 国内精品伊人久久久久7777人| 亚洲中文字幕手机在线第一页| 天堂网国产| 色综合久久无码网| 亚洲免费福利视频| 国产在线精品网址你懂的| 国产噜噜在线视频观看| 亚洲第一视频免费在线| 一级毛片在线免费看| 国产精品久久久久久影院| 亚洲国产精品无码久久一线| 国产91视频免费| 国产嫖妓91东北老熟女久久一| 欧美在线一二区| 国产视频一二三区| 亚洲男人在线天堂| 国产视频一区二区在线观看| 国产激情国语对白普通话| 99re在线免费视频| 日本精品αv中文字幕| 综合五月天网| 波多野结衣在线一区二区| 色噜噜在线观看| 91免费国产高清观看| 精品国产美女福到在线直播| 亚洲美女高潮久久久久久久| 免费在线a视频| 亚洲乱码精品久久久久..| 欧美午夜在线视频| 亚洲精品国偷自产在线91正片| 青青青国产视频| 亚洲AV成人一区国产精品| 亚洲a级在线观看| jizz国产在线| 成人精品午夜福利在线播放| 中文无码毛片又爽又刺激| 91麻豆精品国产高清在线 | 在线观看国产精品一区| 欧美区一区| 国产69囗曝护士吞精在线视频| 日本中文字幕久久网站| 亚洲天堂区| 国产亚洲一区二区三区在线| 啪啪永久免费av| 亚洲男人天堂久久| 欧美国产精品不卡在线观看| 日韩区欧美区| …亚洲 欧洲 另类 春色| 久久黄色视频影| 亚洲色图欧美在线| 精品99在线观看| 国产中文一区a级毛片视频| 黄片一区二区三区| 国产亚卅精品无码| 黄网站欧美内射| 亚洲专区一区二区在线观看| 99re在线视频观看| 国产一区二区精品福利| 日本黄色不卡视频| 亚洲无码精彩视频在线观看 | 国产一区二区三区精品久久呦| 婷婷开心中文字幕| 国产一区二区三区视频| av大片在线无码免费| 欧美亚洲一二三区| 亚洲高清在线播放| 18禁影院亚洲专区| 国产在线精品香蕉麻豆| 亚洲综合第一区| 欧美日韩在线国产| 国产乱人伦精品一区二区|