




摘要:設(shè)f(z)是全模群上權(quán)為偶數(shù)k的全純本原尖形式,L(s,sym4f)是與f對應(yīng)的4次對稱冪L-函數(shù),λsym4f(n)是L(s,sym4f)的Fourier展開的第n個標準化系數(shù).本文借助對稱冪L-函數(shù)的解析性質(zhì)研究了算術(shù)數(shù)列中4次對稱冪L-函數(shù)Fourier系數(shù)的均值估計,即∑n≤xn≡lqλsym4f(n2).
關(guān)鍵詞:全純本原尖形式;對稱冪L-函數(shù);算術(shù)數(shù)列;Fourier系數(shù)
中圖分類號:O156.4"" 文獻標志碼:A" 文章編號:2095-6991(2025)01-0001-06
Estimation of Mean Value of Fourier Coefficients in Arithmetic Series
WU Yi
(School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)
Abstract:Let f(z) be a holomorphic primitive cusp form of even integral weightk for the full modular group. Denote by λsym4f(n) the nth normalized coefficient of the Fourier expansion of the 4th symmetric power L-function associated to f. By using the properties of symmetric power L-functions, the average behavior of the Fourier coefficients of the 4th symmetric power L-function over arithmetic progressions is studied in this paper, i.e.
∑n≤xn≡lqλsym4f(n2).
Key words:holomorphic primitive cusp form; symmetric power L-function; arithmetic progressions; Fourier coefficient
0 引言
設(shè)H*k是由全模群SL2,Z上所有權(quán)為偶數(shù)k的全純尖形式構(gòu)成的集合.設(shè)fz∈H*k是所有Hecke算子的特征函數(shù),則其在尖點SymboleB@處具有以下Fourier展開式
f(z)=∑SymboleB@n=1λf(n)n(k-1)/2enz,
其中,λfn是第n個標準化Fourier系數(shù),且滿足λf1=1.容易驗證:λfn是可乘函數(shù)且滿足Hecke關(guān)系式,
λf(m)λf(n)=∑d|(m,n)λf(mnd2),
其中,m≥1 ,n≥1為任意整數(shù).
1974年,Deligne[1]證明了全純模形式的Ramanujan-Petersson猜想,即
λfn≤dn,(1)
其中,dn是除數(shù)函數(shù),且對于任意的素數(shù)p,存在復(fù)數(shù)αf(p)和βf(p),滿足
λf(p)=αf(p)+βf(p),αf(p)βf(p)=|αf(p)|=|βf(p)|=1.(2)
設(shè)f∈H*k,定義j次對稱冪L-函數(shù)L(s,symjf)為
L(s,symjf):=∏p∏jm=0(1-αf(p)j-2mp-s)-1.(3)
當Resgt;1時,它可以表示為Dirichlet級數(shù),
L(s,symjf)=∑SymboleB@n=1λsymjf(n)ns=∏p1+∑k≥1λsymjf(pk)pks,(4)
其中,λsymjf(n)為j次對稱冪L-函數(shù)L(s,symjf)的第n個標準化Fourier系數(shù).
設(shè)χ是一個模q的Dirichlet原特征,定義特征扭乘j次對稱冪L-函數(shù)為j+1階歐拉乘積,
L(s,symjfχ)=∏p∏jm=0(1-αf(p)j-2mχ(p)p-s)-1,(5)
同樣,當Resgt;1時,它可以表示為Dirichlet級數(shù),
L(s,symjfχ)=∑SymboleB@n=1λsymjf(n)χpns=∏p1+∑k≥1λsymjf(pk)χkppks.(6)
上述j次對稱冪L-函數(shù)與特征扭乘j次對稱冪L-函數(shù)的定義見文獻[2].
Fourier系數(shù)的均值估計是解析數(shù)論中的熱點問題,近年來一些數(shù)論學(xué)者對其進行了廣泛的研究并取得了重要的成果.
IVIC A[3]研究了平方序列上Fourier系數(shù)的均值估計,得到非顯然估計
∑n≤xλ(n2)=fxexp-A(logx)35[log(logx)]-15,
其中,A為正常數(shù).
利用對稱冪L-函數(shù)的性質(zhì), LU G S[4]證明了對任意的εgt;0,有
∑n≤xλ(n3)=f,εx34+ε,
∑n≤xλ(n4)=f,εx79+ε.
Rankin 等[5]研究了Fourier系數(shù)平方的均值估計,得到了漸近公式
∑n≤xλ2(n)=cx+Of(x35).
其中c為一個常數(shù).
Ichihara [6]研究了算術(shù)數(shù)列上的Fourier系數(shù)平方的均值估計,證明了如果x=q2,有
∑n≤xn≡lmod qλ2fn=cφq∏p|q(1-αf(p)2p-1)(1-p-1)(1-βf(p)2p-1)(1+p-1)-1x+Of,ε(x35q45+ε),
其中,φ(q)是歐拉函數(shù),c為常數(shù).
2009年,LAO H X [7]研究了稀疏序列中Fourier系數(shù)平方的均值估計,得到了漸近公式
∑n≤xλ2f(nj)=cjx+Of(x1-2(j+1)2+1),j=2,3,4,
其中cj為常數(shù).
2014年,JIANG Y J等[8]研究了算術(shù)數(shù)列中Fourier系數(shù)的高次均值估計,證明了對任意的εgt;0,j=2,3,4,如果q≤xθ2j,有
∑n≤xn≡lqλfn2j=
1φ(q)R2j(x,q)+Of,ε(qx1-32θ2j+ε),
其中,θ4=2/23,θ6=4/187,θ8=4/755,
R2jx,q=∑n2jk=0∑kd=0′-∑Ω(d)dL-1(m)2j,q(q-1)m!r0!…r2j!
Bk,d-log qq,…,(-log q)k-d+1q×
∏2ji=0Ci2j!((-α(q))2(j-i))ri(Ci2j-ri)!
1-α(q)2(j-i)qCi2j-rixPn2j-k(logx).
2022年,ZOU A Y等 [9]研究了如下算術(shù)數(shù)列中Fourier系數(shù)的均值估計,證明了對任意的εgt;0,j≥2,如果q≤x3/4θj,有
∑n≤xn≡lqλ2fnj=cjxφ(q)+Of,ε(qx1-32θj+ε),
其中,θ2=92597,θj=9269(j-1)(j+3)+247,j≥3.
基于上述研究, 本文將L4(s)分解成Riemann ζ函數(shù)與L-函數(shù)的乘積,借助L-函數(shù)的均值估計和亞凸界結(jié)果,利用復(fù)函數(shù)積分方法與特征的正交性,研究了算術(shù)數(shù)列中4次對稱冪L-函數(shù)Fourier系數(shù)在算術(shù)數(shù)列上的均值估計結(jié)果,在一定條件下得到了均值估計的如下漸近公式.
∑n≤xn≡lqλsym4f(n2)=[SX(]cx[]f(q)[SX)]+Of,εqx[SX(]19[]22[SX)]+ε,
其中qlt;x.
定理1 設(shè)f∈H*k,l∈Z,q是一個素數(shù)且q,l = 1.對于任意的εgt;0,如果q≤x3/44,有
∑n≤xn≡lqλsym4fn2=cxφ(q)+Of,ε(qx1922+ε),
其中c為實效常數(shù).
1 基本引理
引理1 設(shè)f∈H*k,定義
L4(s)=∑SymboleB@n=1λsym4f(n2)ns,Rsgt;1,
則有
L4(s)=ζsLs,sym4fLs,sym8fUs,
其中,Us是在右半平面Rsgt;1/2上絕對收斂的Dirichlet級數(shù).
證明 由(3),(4)可知
∑jm=0αf(p)j-2m=λsymjf(p),j≥1.(7)
當j=4時,有
L(s,sym4f):=∏p∏4m=0(1-αf(p)4-mβf(p)mp-s)-1,(8)
L(s,sym4f)=∑SymboleB@n=1λsym4f(n)ns=∏p1+∑k≥1λsym4f(pk)pks,Rsgt;1.(9)
可得
λsym4f(p2)=αf8+βf8+αf6+βf6+2αf4+2βf4+2αf2+2βf2+3=λsym8fp+λsym4fp+1.(10)
當Rsgt;1,可以將ζ(s)L(s,sym4f)L(s,sym8f)寫成歐拉乘積
ζsLs,sym4fLs,sym8f=:∏p1+∑k≥1bpkpks,(11)
可知
bp=λsym8fp+λsym4fp+1=λsym4f(p2),(12)
則
L4(s)=∑SymboleB@n=1λsym4f(n2)ns=∏p1+∑k≥1λsym4fp2kpks=ζsLs,sym4fLs,sym8f×∏p1+λsym4fp4-bp2p2s+… =:ζsLs,sym4fLs,sym8fUs,Rsgt;1.
由(1)知Us在半平面Rsgt;12上絕對收斂,引理得證.
引理2 設(shè)f∈H*k,定義
L4(s,χ)=∑SymboleB@n=1λsym4f(n2)χnns,Rsgt;1,
當Rs≥1時,有
L4(s,χ)=Ls,χLs,sym4fχ
Ls,sym8fχU~s,
其中,U~s是在半平面Rsgt;12上絕對收斂的Dirichlet級數(shù).
證明.由(5) (6)和引理1可得.
引理3[9-14] 設(shè)f∈H*k, j次對稱冪L-函數(shù)L(s,symjf)定義如上,對j≥1,L(s,symjf)是一個可以解析延拓至整個復(fù)平面的整函數(shù),且滿足一個確定的階為j+1的黎曼ζ型函數(shù)方程.
引理4[15-17] 設(shè)Ls是一個階為m的L-函數(shù),對任意的εgt;0,
∫2TTL(σ+it)|2dt=Tmaxm(1-σ),1+ε(13)
對于1/2≤σ≤1,T≥1一致成立;
L(σ+it)=(1+|t|)m2(1-σ)+ε(14)
對于12≤σ≤1+ε,t≥1一致成立.
引理5[18-19] 對任意的εgt;0,12≤σ≤1+ε,|t|≥2,有
ζ(σ+it)=(1+|t|)max1342(1-σ),0+ε.(15)
引理6[20] 對任意的εgt;0,T≥1,有
∫T1ζ(1/2+it)|12dt=T2+ε.(16)
引理7[21-22] 設(shè)χ是一個模q的原特征,對任意的εgt;0,T≥1,且q=T2,有
L(σ+iT,χ)(q(1+|T|))max13(1-σ),0+ε,(17)
如果q是一個素數(shù),有
∫T0L(σ+it,χ)|12dtq4(1-σ)T3-2σ+ε.(18)
[HTH][STHZ]引理8[HT][ST][9] 設(shè)f∈H*k,χ是一個模q的原特征,設(shè)Ldm,n(s,χ)是一個階為2A的L-函數(shù),對任意的εgt;0,有
∫2TTLdm,n(σ+it,χ)|2dt=
(qT)2A(1-σ)+ε,(19)
對于12≤σ≤1,T≥1一致成立;
Ldm,n(σ+it,χ)=
(q(|t|+1))maxA(1-σ),0+ε(20)
對于-ε≤σ≤1+ε一致成立.
2 定理1 的證明
為了證明定理1,需要首先考慮∑n≤xλsym4f(n2)χn.
命題1 設(shè)f∈H*k,χ是一個模q的原特征,對任意的εgt;0,q≤xθ,有
∑n≤xλsym4f(n2)χn=Of,εqx1922+ε.(21)
證明 由Perron[23-26]公式和(1)可得
∑n≤xλsym4f(n2)χn=12πi∫1+ε+iT1+ε-iTL4(s,χ)xssds+Of,εx1+εT,(22)
其中s=σ+it,1≤T≤x.
將積分線移動到Rs=12+ε,不經(jīng)過L4(s,χ)的極點,且U~s一致收斂.由柯西留數(shù)定理得
∑n≤xλsym4f(n2)χn=
-12πi∫12+ε+iT1+ε+iT+∫1+ε-iT12+ε-iT+∫12+ε-iT12+ε+iT
L4(s,χ)xssds +Of,ε(x1+ε/T):=I1+I2+I3+Of,ε(x1+ε/T).(23)
對于水平方向上的積分,應(yīng)用式(17)和式(20),
I1+I2=
∫1+ε12+εxσLσ+it,χLσ+it,sym4fχ
Lσ+it,sym8fχT-1dσ=
x1+ε/T+max12+ε≤σ≤1+εxσ(qT)2231-σ+εT-1=
x1+ε/T+max12+ε≤σ≤1+εx(qT)223σ(qT)223+εT-1=
x1+ε/T+x12+εq113T83.(24)
對于豎直方向上的積分,應(yīng)用(18)(19)(20)和Hlder’s不等式,有
I3=x12+εlogTsup1≤T1≤T
1T1∫T1T12L12+ε+it,χ12dt112×
∫T1T12L12+ε+it,sym8fχ125dt512
∫T1T12L12+ε+it,sym4fχ2dt12
x12+εsup1≤T1≤T1T1qT112×52+51294×25+92+16
x12+εq113+εT83+ε. (25)
綜上所述,令T=x322/q,有
∑n≤xλsym4f(n2)χn=Of,εqx1922+ε.
命題2 設(shè)f∈H*k,χ0是一個模q的主特征,對任意的εgt;0,q=x,有
∑n≤xλsym4f(n2)χ0n=
cx+Of,εx1922+ε.(26)
證明 由引理2可得
L4(s,χ0)=∑SymboleB@n=1λsym4f(ni)χ0nns,
使用Perron公式,對2≤T≤x,有
∑n≤xλsym4f(n2)χ0n=
12πi∫1+ε+iT1+ε-iTL4(s,χ0)xssds+
Of,ε(x1+ε/T).(27)
將積分線移動到Rs=12+ε,發(fā)現(xiàn)在s=1有一個一階極點,由柯西留數(shù)定理,有
∑n≤xλsym4f(n2)χ0n=
-12πi∫12+ε+iT1+ε+iT+∫1+ε-iT12+ε-iT+∫12+ε-iT12+ε+iT
L4(s,χ0)xssds+Ress=1L4(s,χ0)xss+Of,ε(x1+ε/T):=J1+J2+J3+cx+Of,ε(x1+ε/T),(28)
其中Ress=1L4(s,χ0)xss=cx, c是常數(shù).
又
L(s,χ0)=∏p1-χ0pps=∏p,q=11-χ0pps-1∏p,qgt;11-χ0pps-1=∏p,q=11-1ps-1∏p,qgt;11-1ps-1∏p,qgt;11-1ps=ζs,
可證
L4(s,χ0)=ζsLs,sym4fLs,sym8f.
對于水平方向上的積分,與命題1的證明類似,由(14) (15),有
J1+J2=
∫1+ε12+εxσζσ+itLσ+it,sym4f
Lσ+it,sym8fT-1dσ=
x1+ε/T+max12+ε≤σ≤1+εxσT307421-σ+εT-1=
x1+ε/T+x12+εT22384+ε .(29)
對于豎直方向上的積分,應(yīng)用引理4-6和Hlder’s不等式,有
J3=x12+εlogT
sup1≤T1≤T1T1∫T1T12ζ12+ε+it12dt112×
∫T1T12L12+ε+it,sym8f125dt512×
∫T1T12L12+ε+it,sym4f2dt12=
x12+εlogT
sup1≤T1≤T1T1∫T1T12ζ12+ε+it12dt112×
L12+ε+it,sym8f25
∫T1T12L12+ε+it,sym8f2dt512×
∫T1T12L12+ε+it,sym4f2dt12=
x12+εT83+ε.(30)
綜上所述,令T=x322,得
∑n≤xλsym4f(n2)χ0n=
cx+Of,εx1+ε/T+Of,εx12+εT83=
cx+Of,εx1922+ε.
定理1的證明.由特征的正交性可得
∑n≤xn≡lqλsym4f(n2)=
1φ(q)∑χ(modq)χ(n)χ(l)∑n≤xλsym4f(n2)=
1φ(q)∑χ(modq)χ(l)∑n≤xλsym4f(n2)χ(n)=
1φ(q)∑n≤xλsym4f(n2)χ0(n)+
1φ(q)∑χ(modq)χ≠χ0∑n≤xλsym4f(n2)χ(n)=
1φ(q)∑n≤xλsym4f(n2)χ0(n)+
Ο∑n≤xλsym4f(n2)χ(n),(31)
其中φ(q)是歐拉函數(shù),φ(q)=q-1.
由命題1和2,我們得到
∑n≤xn≡lqλsym4f(n2)=cxφ(q)+Of,εqx1922+ε.
定理得證.
參考文獻:
[1] PIERRE D.La conjecture de Weil I[J].Institut des Hautes Ctudes scientifiques,1974,43(43):273-307.
[2] LAO H X,SANKARANARAYANAN A.The average behavior of Fourier coefficients of cusp forms over sparse sequences[J].Proceedings of the American Mathematical Society,2009,137(8):2557-2565.
[3] IVI[KG-*4][XCJ6-1-1.TIF;%86%86;P] A.On sums of Fourier coefficients of cusp forms[J].Mathematics,2003,131(2):517-543.
[4] LU G S.On an open problem of Sankaranarayanan[J].Science China Mathematics,2010,53:1319-1324.
[5] FOUVRY ,GANGULY S.Strong orthogonality between the Mbius function,additive characters and Fourier coefficients of cusp forms[J].Compositio Mathematica,2014,150(5):763-797.
[6] ICHIHARA Y.The evaluation of the sum over arithmetic progressions for the coefficients of the Rankin-Selberg series[J].Japanese Journal of Mathematics,2003,29(2):297-314.
[7] LAO H X,SANKARANARAYANAN A.The distribution of Fourier coefficients of cusp forms over sparse sequences[J].Acta Arithmetica,2014,163(2):101-110.
[8] JIANG Y J,LU G S.On the higher mean over arithmetic progressions of Fourier coefficients of cusp forms[J].Acta Arithmetica,2014,166 (3):231-252.
[9] ZOU A Y,LAO H X,WEI L L.Distributions of fourier coefficients of cusp forms over arithmetic progressions[J].Integers,2022,22:10.
[10] CLOZEL L,THORNE J A.Level raising and symmetric power functoriality,II[J].Annals of Mathematics,2015,181(1):303-359.
[11] DIEULEFAIT L.Automorphy of Symm5 (GL (2)) and base change[J].Journal de Mathématiques Pures et Appliquées,2015,104(4):619-656.
[12] GELBART S,JACQUET H.A relation between automorphic representations of GL(2) and GL(3)[J].Annales Scientifiques de l’cole Normale Supérieure,1978,11(4):471-542.
[13] KIM H.Functoriality for the exterior square of GL4 and the symmetric fourth of GL2[J].Journal of the American Mathematical Society,2003,16(1):139-183.
[14] NEWTON J,THORNE J A.Symmetric power functoriality for holomorphic modular forms,Ⅱ[J].Publications mathématiques de l’IHS,2021,134(1):117-152.
[15] LU G S,SANKARANARAYANAN A.On the coefficients of triple product L-functions[J].Rocky Mountain Journal of Mathematics,2017,47(2):553-570..
[16] LIU H F,ZHANG R.Some problems involving Hecke eigenvalues[J].Acta Mathematica Hungarica,2019,159(1):287-298.
[17] PERELLI A.General L-functions[J].Annali di Matematica Pura ed Applicata,1982,130:287-306.
[18] BOURGAIN J.Decoupling,exponential sums and the Riemann zeta function[J].Journal of the American Mathematical Society,2017,30(1):205-224.
[19] LIN Y,NUNES R,QI Z.Strong subconvexity for self-dual GL (3) L-functions[J].International Mathematics Research Notices,2023,2023(13):11453-11470.
[20] HEATH-BROWN D R.The twelfth power moment of the Riemann-function[J].The Quarterly Journal of Mathematics,1978,29(116):443-462.
[21] HUANG B R.Hybrid subconvexity bounds for twisted L-functions on GL (3)[J].Science China Mathematics,2021,64(3):443-478.
[22] KIM H H,SHAHIDI F.Functorial products for GL2× GL3 and the symmetric cube for GL2[J].Annals of mathematics,2002,155(3):837-893.
[23] IWANIEC H,KOWALSKI E.Analytic number theory[M].New York:American Mathematical Soc,2021.
[24] XU C.General asymptotic formula of Fourier coefficients of cusp forms over sum of two squares[J].Journal of Number Theory,2022,236:214-229.
[25] 劉暉.兩個整數(shù)平方和序列中傅里葉系數(shù)的變號問題[J].蘭州文理學(xué)院學(xué)報(自然科學(xué)版),2023,37(1):1-5.
[26] 華國棟.兩平方和整數(shù)列上尖形式傅里葉系數(shù)的高階矩[J].數(shù)學(xué)進展,2024,53(1):115-124.
[責(zé)任編輯:趙慧霞]
作者簡介:武毅(1993-),男,河南濟源人,在讀博士,研究方向為數(shù)論.E-mail:770920232@qq.com.