


摘要:目的 探討柚皮素(NAR)在低氧性肺動脈高壓(HPH)誘導的右心室重塑中的作用及相關機制。方法 將SD大鼠隨機分為對照(NC)組、NC+NAR組、HPH組、HPH+NAR組,每組15只。后兩組采用低壓低氧人工艙建立HPH大鼠模型成功后,NC+NAR組和HPH+NAR組給予NAR 100 mg/(kg·d)灌胃,而NC組和HPH組給予同等體積的生理鹽水灌胃,每日1次,連續4周。心臟超聲檢測舒張末期右室游離壁厚度(RVEDWT)和舒張末期右室內徑(RVEDD);心導管檢測大鼠右心室收縮壓(RVSP)和平均肺動脈壓(mPAP);計算右心室體質量比(RV/BW)和右心室肥厚指數(RVHI);Masson染色和天狼星染色右心室,計算膠原容積分數(CVF);TUNEL染色評估右心室心肌細胞凋亡情況;檢測右心室心肌組織中丙二醛(MDA)含量和超氧化物歧化酶(SOD)活性;Western blot檢測Rho相關激酶(ROCK)蛋白表達。結果 與NC組和NC+NAR組相比,HPH組RVEDWT、mPAP、RVSP、RVHI、RV/BW、右心室CVF、右心室心肌細胞凋亡率,右心室心肌組織中MDA含量、ROCK1和ROCK2蛋白表達增加,RVEDD、右心室心肌組織中SOD活性降低(P<0.05);與HPH組相比,HPH+NAR組RVEDWT、mPAP、RVSP、RVHI、RV/BW、右心室CVF、右心室心肌細胞凋亡率,右心室心肌組織中MDA含量、ROCK1和ROCK2蛋白表達降低,RVEDD、右心室心肌組織中SOD活性增加(P<0.05)。結論 NAR可減輕HPH誘發的右心室重塑,其機制可能與抑制ROCK信號通路并進一步改善右心室心肌凋亡和氧化應激水平有關。
關鍵詞:低氧;高血壓,肺性;rho相關激酶類;細胞凋亡;氧化性應激;柚皮素;心肌纖維化
中圖分類號:R544,R541.3 文獻標志碼:A DOI:10.11958/20242178
Abstract: Objective To investigate the effect of naringenin (NAR) on right ventricular remodeling induced by hypoxic pulmonary hypertension (HPH) and its related mechanism. Methods SD rats were randomly divided into the control group (NC), the NC+NAR group,the HPH group and the HPH+NAR group, with 15 rats in each group. HPH model was established in a low-pressure hypoxic artificial chamber. After the successful construction of the model, rats in the NC+NAR group and the HPH+NAR group were given NAR 100 mg/ (kg·d) gavage once a day for 4 weeks, while rats in the NC group and the HPH group were given the same volume of normal saline once a day for 4 weeks. Right ventricular free wall thickness (RVEDWT) and end-diastolic right ventricular diameter (RVEDD) were measured by echocardiography. Right ventricular systolic pressure (RVSP) and mean pulmonary artery pressure (mPAP) were measured by cardiac catheter. Right ventricular mass ratio (RV/BW) and right ventricular hypertrophy index (RVHI) were calculated. Masson and Sirius staining of right ventricle was used to calculate the collagen volume fraction (CVF). TUNEL staining was used to evaluate the apoptosis of right ventricular cardiomyocytes. The contents of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) in right ventricular myocardium were detected. The expression of Rho associated kinase (ROCK) protein was detected by Western blot assay. Results Compared with the NC group and the NC+NAR group, mPAP, RVSP, RVEDWT, RV/BW, RVHI, right ventricular CVF, right ventricular myocardial cell apoptosis rate, MDA content and ROCK1 and ROCK2 protein expression in right ventricular myocardial tissue were increased in the HPH group. RVEDD and SOD activity in right ventricular myocardium were decreased (P<0.05). Compared with the HPH group, mPAP, RVSP, RVEDWT, RV/BW, RVHI, right ventricular CVF, right ventricular myocardial cell apoptosis rate, MDA content, ROCK1 and ROCK2 protein expression in right ventricular myocardial tissue were decreased in the HPH+NAR group, and RVEDD and SOD activity in right ventricular myocardium were increased (P<0.05). Conclusion NAR can reduce HPH-induced right ventricular remodeling, and its mechanism may be related to inhibiting ROCK signaling pathway and further improving apoptosis and oxidative stress in right ventricular myocardium.
Key words: hypoxia; hypertension, pulmonary; rho-associated kinases; apoptosis; oxidative stress; Naringenin; myocardial fibrosis
低氧性肺動脈高壓(hypoxia-induced pulmonary hypertension,HPH)是肺動脈高壓(pulmonary arterial hypertension,PAH)中一種嚴重的心肺血管疾病。其特征是進行性肺動脈壓升高,肺血管阻力增加,最終導致右心衰竭[1]。內皮功能受損、血管平滑肌細胞過度增殖和基質沉積、右心室重塑是HPH發生發展的主要環節[2]。HPH發病機制及關鍵致病靶點尚不清晰,患者出現右心功能衰竭、氣短等癥狀時已到中晚期,目前臨床上的藥物治療主要針對改善癥狀,并不能有效改善患者生活質量和降低死亡率[3]。因此,尋找有效治療靶點以改善HPH誘發的右心室重塑具有重要意義。柚皮素(Naringenin,NAR)是從植物中提取的黃酮類物質,主要存在于葡萄柚、西紅柿、櫻桃等蔬果和一些藥用植物衍生食品中[4]。現有證據表明,NAR具有抗炎、抗氧化、保護神經、保肝、抗癌等藥理作用[5]。NAR在糖尿病心肌病、心肌缺血/再灌注損傷、阿霉素誘導的心肌損傷、慢性心力衰竭等多種心血管疾病中發揮保護作用[6],但NAR在HPH誘發的右心功能損傷中的作用少見報道。本研究通過建立HPH大鼠模型,探討NAR在HPH誘發的右心室重塑中的作用,為HPH尋找有效治療靶點。
1 材料與方法
1.1 材料
1.1.1 實驗動物 8周齡SPF級雄性SD大鼠60只購自新疆醫科大學動物中心,動物生產許可證號:SCXK(新)2018-0002。所有大鼠飼養于新疆軍區總醫院實驗動物科,動物使用許可證號:SYXK(軍)2017-0050,光照保持12 h明暗交替,溫度22~26 ℃,相對濕度為45%~60%。本研究通過醫院動物倫理委員會審核批準(批號:DWLL-2023-08019)。
1.1.2 試劑與儀器 NAR(純度≥95%)購自美國Sigma公司;天狼星染色試劑盒、TUNEL染色試劑盒、Masson染色試劑盒購自上海碧云天生物技術有限公司;超氧化物歧化酶(SOD)、丙二醛(MDA)檢測試劑盒購自南京建成生物有限公司;兔源一抗Rho相關激酶(RHO-associated kinase 1,ROCK)1和兔源一抗ROCK2抗體購自武漢三鷹公司,兔源內參GAPDH抗體、辣根過氧化物酶(HRP)標記的羊抗兔熒光二抗購自美國CST公司。小動物超聲系統購自Visual Sonics公司,普通光學顯微鏡和偏振光顯微鏡購自日本Olympus公司,全自動酶標儀、電泳及轉膜裝置、ECL發光成像系統購自美國Bio-Rad公司。
1.2 方法
1.2.1 動物分組與HPH造模 SD大鼠按照隨機數字表法分為對照(NC)組、NC+NAR組、HPH組、HPH+NAR組,每組15只。其中,HPH組和HPH+NAR組大鼠利用低壓低氧實驗艙進行造模,NC組和NC+NAR組大鼠在常壓常氧環境下飼養,各組均以普通飼料喂養。HPH模型建立依托我院低壓低氧人工艙,低壓低氧環境為每天白天8 h(大氣壓控制在55 kPa,氧流量控制在100 mL/L),大鼠在人工艙內可自由飲水及飲食,在此環境條件下維持6周。各組大鼠均無死亡,HPH組大鼠平均肺動脈壓(mean pulmonary arterial,mPAP)和右心室收縮壓(right ventricular systolicpressure,RVSP)較NC組大鼠增高差異無統計學意義,即為造模成功。從第3周開始,參照文獻[7],NC+NAR組和HPH+NAR組給予NAR 100 mg/(kg·d)灌胃,而NC組和HPH組給予等體積的生理鹽水灌胃,每日" 1次,連續4周,4周后行大鼠心臟超聲和血流動力學檢測。
1.2.2 大鼠心臟超聲檢測右心室功能 大鼠心前區脫毛備皮,充分暴露心前區,異氟烷吸入麻醉,大鼠仰臥于操作臺上。大鼠超聲M型采樣記錄和分析舒張末期右室游離壁厚度(right ventricular end-diastolic free-wall thickness,RVEDWT),同時記錄和分析舒張末期右室內徑(right ventricular end-diastolic diameter,RVEDD)。
1.2.3 心導管檢測大鼠血流動力學改變 參照文獻[8-9],0.3%戊巴比妥鈉腹腔注射麻醉大鼠(30 mg/kg),右頸部備皮,逐層切開頸部軟組織,將右頸外靜脈分離出來,使用PE微導管穿刺,微導管通過壓力傳感器連接至Powerlab生理記錄儀,通過壓力波形變化來判斷導管所處位置。逐漸向前推入右心室,此時在生理記錄儀顯示屏上可以見到振幅較大的心室波,監測并記錄肺動脈壓間接指標RVSP,待導管行至肺動脈后記錄mPAP。
1.2.4 右室肥厚指數評估 大鼠稱重并記錄體質量(BW),脫頸法處死大鼠,迅速分離心臟,分離出左心室(LV)、室間隔(S)、右心室(RV),將各部分稱重,計算右心室體質量比(RV/BW)。右心室肥厚指數(right ventricular hypertrophy index,RVHI)=RV/(LV+S)。
1.2.5 Masson染色和天狼星染色 脫頸法處死大鼠,剪開胸壁后迅速取出心臟,分離右心室,使用多聚甲醛常規固定,石蠟包埋并切片。分別按Masson染色和天狼星染色試劑盒說明書要求進行常規染色,封片。普通顯微鏡觀察Masson染色切片,藍色代表膠原組織,同時計算膠原容積分數(CVF)=(膠原面積/總面積)×100%;偏振光顯微鏡觀察天狼星染色切片,金黃色代表Ⅰ型膠原纖維。
1.2.6 TUNEL染色評估右心室心肌細胞凋亡情況 分離大鼠右心室,使用多聚甲醛常規固定,石蠟包埋并切片。心臟切片脫蠟,用熒光素標記的-dUTP在潮濕室中孵育1 h,按TUNEL檢測試劑盒說明書提示配置和孵育切片,凋亡細胞核用DAPI染色。隨機選取共聚焦顯微鏡下5個視野,計算平均凋亡率=(肌鈣蛋白T/TUNEL陽性細胞數)/(肌鈣蛋白T/DAPI陽性細胞數)×100%。
1.2.7 右心室氧化應激水平評估 按說明書要求配置相應工作液,檢測右心室心肌組織中MDA含量和SOD活性。
1.2.8 Western blot檢測ROCK蛋白表達 用RIPA裂解緩沖液提取右心室心肌組織蛋白,利用BCA法蛋白定量,配置SDS-PAGE凝膠,將40 μg蛋白在100 V恒壓下經電泳分離,然后將蛋白凝膠在0.6 mA/cm2的恒流電流作用下轉移2 h,將蛋白轉移至PVDF膜上,再將PVDF膜在5%脫脂奶粉中封閉2 h。孵育一抗過夜(ROCK1、ROCK2和GAPDH稀釋比例均為1∶1 000),次日孵育二抗(稀釋比例為1∶5 000),ECL發光,保存圖片,Image Lab分析灰度值,以GAPDH為內參,計算各目的蛋白的相對表達量。
1.3 統計學方法 采用GraphPad Prism 10.2.3進行數據分析,符合正態分布的計量資料用[[x] ±s
]表示。多組間比較采用單因素方差分析,用Student-Newman-Keuls檢驗進行組間多重比較。P<0.05為差異有統計學意義。
2 結果
2.4 NAR對HPH大鼠右心室心肌膠原含量的影響 Masson染色結果顯示,NC組和NC+NAR組中,有極少量膠原組織沉積;在HPH組中,可見大量的膠原組織沉積;HPH+NAR組心肌中沉積的膠原纖維較HPH組減少,見圖1。NC組、NC+NAR組、HPH組和HPH+NAR組右心室CVF值(%)分別為2.03±0.34、1.89±0.42、27.12±1.93、16.33±2.13(n=15,F=" " 1 050.000,P<0.01)。與NC組和NC+NAR組相比,HPH組右心室CVF值增加(P<0.05);與HPH組相比,HPH+NAR組右心室CVF值降低(P<0.05)。天狼星(偏振光)染色結果顯示,NC組和NC+NAR組Ⅰ型膠原纖維分布較少;HPH組可見粗大的Ⅰ型膠原沉積,排列分布紊亂,反復重疊;HPH+NAR組Ⅰ型膠原纖維沉積顯著減少,見圖2。
2.5 NAR對HPH大鼠右心室心肌細胞凋亡的影響 TUNEL法評估右心室心肌細胞凋亡情況,綠色熒光為TUNEL陽性心肌細胞,提示為凋亡細胞。NC組、NC+NAR組、HPH組和HPH+NAR組心肌細胞凋亡率(%)分別為1.43±1.02、2.38±0.92、21.63±2.32、12.81±1.28(n=15,F=615.000,P<0.01)。與NC組和NC+NAR組相比,HPH組右心室心肌細胞凋亡率增加(P<0.05);與HPH組相比,HPH+NAR組右心室心肌細胞凋亡率降低(P<0.05)。見圖3。
2.6 NAR對HPH大鼠右心室氧化應激的影響 與NC組和NC+NAR組相比,HPH組MDA含量增加,而SOD活性降低(P<0.05);與HPH組相比,HPH+NAR組MDA含量降低,而SOD活性增加(P<0.05)。見表4。
2.7 NAR對HPH大鼠右心室心肌ROCK1和ROCK2表達的影響 與NC組和NC+NAR組相比,HPH組ROCK1和ROCK2蛋白表達增加(P<0.05);與HPH組相比,HPH+NAR組ROCK1和ROCK2蛋白表達降低(P<0.05)。見圖4、表5。
3 討論
肺在低壓低氧條件下的主要反應之一是缺氧性肺血管收縮,以使得血流重新分配到肺通氣功能更好的區域,從而改善肺通氣/血流灌注平衡和氧攝取;而持續性肺血管收縮會激活或抑制肺動脈內多種信號通路,進一步導致HPH和繼發性右心室重塑,最終可導致右心功能衰竭[10]。本研究發現,與NC組相比,HPH大鼠RVEDWT、RVHI、RV/BW、右心室心肌細胞凋亡率增加,mPAP、RVSP、右心室CVF升高,膠原組織沉積增加,RVEDD降低,右心室心肌氧化應激指標MDA含量增加,而SOD活性降低,與既往研究一致[11-12]。
NAR的化學名是4’5’7-三羥基黃酮。由于其具有抗氧化、抗炎和抗病毒特性,故被認為是最重要的黃酮類化合物之一;NAR是柚皮苷的苷元,也是柑橘類水果的苦味成分[13]。NAR廣泛存在于各種水果和蔬菜中,口服生物利用度約為5.81%,其吸收主要通過胃腸道被動擴散和主動轉運實現[6]。NAR經胃腸道吸收,并存在胃腸道和肝臟首過代謝,生物利用率相對較低,既往研究通過延長給藥天數來降低灌胃給藥對NAR吸收的影響[7]。盡管有研究曾報道NAR在多種心血管疾病的發生發展中發揮心臟保護作用[6,14-15],然而其在HPH中相關研究甚少,作用機制及分子靶點也尚未明確。mPAP和RVSP進行性增高是HPH進展的基本病理生理改變,其中RVSP是反映肺動脈壓的間接指標[16-17]。本研究通過給予HPH大鼠NAR灌胃治療,發現NAR可降低HPH大鼠mPAP、RVSP、mPAP和RVSP,表明NAR可降低HPH大鼠肺動脈壓力,NAR可能是抑制HPH進展的重要活性藥物。
HPH誘發的右心室壓力負荷增加可直接刺激心肌細胞生長,進一步引發右心室肥厚[18]。心肌纖維化與心臟肥厚互為促發因素,心肌纖維化表現為心肌間質膠原纖維增多[19-20]。本研究發現,NAR可改善HPH大鼠右心室肥厚和右心室纖維化,表明NAR在HPH誘導的右心損傷中發揮了重要的保護作用。凋亡和氧化應激參與了HPH誘導的病理性右心室重塑。本研究發現,NAR可減少HPH大鼠右心室TUNEL陽性心肌細胞,同時降低心肌氧化應激指標MDA含量和增加抗氧化指標SOD活性,表明NAR可能通過改善右心室心肌細胞凋亡和氧化應激平衡障礙減輕HPH誘導的右心室損傷,NAR可能作為HPH誘導的右心損傷的重要保護性藥物。
HPH誘導的病理性心臟纖維化通過纖維母細胞細胞外基質蛋白沉積過多、促纖維化免疫反應和血管硬化,最終導致右心功能衰竭和心律失常[21]。ROCK是GTP酶Rho家族下游的一種絲氨酸/蘇氨酸激酶,主要包括ROCK1和ROCK2兩個同源異構體[22]。有研究顯示,ROCK異構體在HPH誘導的右心室纖維化中發揮重要作用,ROCK異構體特異性抑制劑可改善心臟纖維化[23],而NAR能否通過抑制ROCK表達來改善HPH誘發的右心室重塑尚不清楚。本研究發現,與NC大鼠相比,HPH大鼠右心室心肌組織中ROCK1和ROCK2表達均顯著增高,經NAR治療的HPH大鼠右心室心肌組織中ROCK1和ROCK2表達下降,提示NAR可能通過抑制ROCK1和ROCK2表達改善右心室心肌纖維化和右心功能,NAR可作為ROCK信號通路的抑制劑發揮心肌保護作用。
綜上所述,本研究發現NAR可減輕HPH誘發的右心室重塑,其機制可能與抑制ROCK信號通路并進一步改善右心室心肌凋亡和氧化應激水平有關。目前HPH誘發的右心功能受損尚無明確且有效的治療靶點,而本研究探討NAR在保護HPH誘發右心室重塑中的潛在意義,可為NAR用于HPH并發癥的治療提供實驗依據。本研究的不足之處:一是未在細胞實驗中驗證NAR在HPH誘導的右心室重塑中的作用;二是NAR對RCOK抑制作用的具體機制尚不明確;三是未設置陽性對照組。以上均需在后期工作中加以完善和驗證。
參考文獻
[1] RUOPP N F,COCKRILL B A. Diagnosis and treatment of pulmonary arterial hypertension:A review[J]. JAMA,2022,327(14):1379-1391. doi:10.1001/jama.2022.4402.
[2] MARON B A,ABMAN S H,ELLIOTT C G,et al. Pulmonary arterial hypertension:Diagnosis,treatment,and novel advances[J]. Am J Respir Crit Care Med,2021,203(12):1472-1487. doi:10.1164/rccm.202012-4317SO.
[3] 王嵐,易群. 《中國肺動脈高壓診斷與治療指南(2021版)》解讀——肺部疾病和(或)低氧所致肺動脈高壓[J]. 中國實用內科雜志,2022,42(1):55-59. WANG L,YI Q. Interpretation of the Chinese Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension(2021 edition)-Pulmonary hypertension due to lung disease and/or hypoxia[J]. Chinese Journal of Practical Internal Medicine,2022,42(1):55-59. doi:10.19538/j.nk2022010111.
[4] MOTALLEBI M,BHIA M,RAJANI H F,et al. Naringenin:A potential flavonoid phytochemical for cancer therapy[J]. Life Sci,2022,305:120752. doi:10.1016/j.lfs.2022.120752.
[5] ZENG W,JIN L,ZHANG F,et al. Naringenin as a potential immunomodulator in therapeutics[J]. Pharmacol Res,2018,135:122-126. doi:10.1016/j.phrs.2018.08.002.
[6] HEIDARY MOGHADDAM R,SAMIMI Z,MORADI S Z,et al. Naringenin and naringin in cardiovascular disease prevention:A preclinical review[J]. Eur J Pharmacol,2020,887:173535. doi:10.1016/j.ejphar.2020.173535.
[7] 張璐. 柚皮素對肺結核大鼠肺組織損傷的影響及其機制[J]. 山西醫科大學學報,2024,55(4):466-472. ZHANG L. Effect of naringenin on lung tissue damage in rats with pulmonary tuberculosis and its mechanism[J]. Journal of Shanxi Medical University,2024,55(4):466-472. doi:10.13753/j.issn.1007-6611.2024.04.009.
[8] 盛艷玲,宮小薇,李志娟,等. 藏紅花素緩解野百合堿誘導動脈型肺動脈高壓大鼠右心室損傷的機制研究[J]. 中國病理生理雜志,2024,40(2):221-229. SHENG Y L,GONG X W,LI Z J,et al. Mechanism of crocin alleviating monocrotaline-induced right ventricular injury in rats with pulmonary arterial hypertension[J]. Chinese Journal of Pathophysiology,2024,40(2):221-229. doi:10.3969/j.issn.1000-4718.2024.02.004.
[9] 譚駿嵐,易健,曹閑雅,等. 基于PPAR-γ/NF-κB信號通路探討肺心湯對野百合堿誘導肺動脈高壓大鼠模型的作用及機制[J]. 中藥新藥與臨床藥理,2024,35(3):307-316. TAN J L,YI J,CAO X Y,et al. Exploration of the effects and mechanisms of feixin decoction on monocrotaline-induced pulmonary arterial hypertension in rats based on PPAR-γ/NF-κB signaling pathway[J]. Traditional Chinese Drug Research and Clinical Pharmacology,2024,35(3):307-316. doi:10.19378/j.issn.1003-9783.2024.03.001.
[10] 張朝霞,南星梅,李占強,等. 鉀離子通道在低氧性肺動脈高壓中的作用及藥物干預研究進展[J]. 天津醫藥,2023,51(8):892-896. ZHANG Z X,NAN X M,LI Z Q,et al. Research progress on the role of potassium channels and drug intervention in hypoxic pulmonary hypertension[J]. Tianjin Med J,2023,51(8):892-896. doi:10.11958/20221822.
[11] 吳賓,張婧,衛瑋,等. PHB2抑制低氧性肺動脈高壓小鼠右心室重塑的作用[J]. 現代生物醫學進展,2024,24(1):25-30. WU B,ZHANG J,WEI W,et al. PHB2 inhibits right ventricular remodeling in mice with hypoxia-induced pulmonary hypertension[J]. Progress in Modern Biomedicine,2024,24(1):25-30. doi:10.13241/j.cnki.pmb.2024.01.005.
[12] MANDRAS S A,MEHTA H S,VAIDYA A. Pulmonary hypertension:A brief guide for clinicians[J]. Mayo Clin Proc,2020,95(9):1978-1988. doi:10.1016/j.mayocp.2020.04.039.
[13] NOR MUHAMAD M L,EKEUKU S O,WONG S K,et al. A scoping review of the skeletal effects of Naringenin[J]. Nutrients,2022,14(22):4851. doi:10.3390/nu14224851.
[14] XU S,WU B,ZHONG B,et al. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2(Nrf2)/System xc-/ glutathione peroxidase 4(GPX4)axis to inhibit ferroptosis[J]. Bioengineered,2021,12(2):10924-10934. doi:10.1080/21655979.2021.1995994.
[15] XU N,LIU S,ZHANG Y,et al. Oxidative stress signaling in the pathogenesis of diabetic cardiomyopathy and the potential therapeutic role of antioxidant naringenin[J]. Redox Rep,2023,28(1):2246720. doi:10.1080/13510002.2023.2246720.
[16] YAN S,RESTA T C,JERNIGAN N L. Vasoconstrictor mechanisms in chronic hypoxia-induced pulmonary hypertension:Role of oxidant signaling[J]. Antioxidants(Basel),2020,9(10):999. doi:10.3390/antiox9100999.
[17] MAIMAITIAILI N,ZENG Y,JU P,et al. NLRC3 deficiency promotes hypoxia-induced pulmonary hypertension development via IKK/NF-κB p65/HIF-1α pathway[J]. Exp Cell Res,2023,431(2):113755. doi:10.1016/j.yexcr.2023.113755.
[18] SMITH K A,WAYPA G B,DUDLEY V J,et al. Role of hypoxia-inducible factors in regulating right ventricular function and remodeling during chronic hypoxia-induced pulmonary hypertension[J]. Am J Respir Cell Mol Biol,2020,63(5):652-664. doi:10.1165/rcmb.2020-0023OC.
[19] GHIO S,RAINERI C,SCELSI L,et al. Pulmonary hypertension and right ventricular remodeling in HFpEF and HFrEF[J]. Heart Fail Rev,2020,25(1):85-91. doi:10.1007/s10741-019-09810-4.
[20] KOCKEN J,DA COSTA MARTINS P A. Epigenetic regulation of pulmonary arterial hypertension-induced vascular and right ventricular remodeling:New opportunities?[J]. Int J Mol Sci,2020,21(23):8901. doi:10.3390/ijms21238901.
[21] NAEIJE R,DEDOBBELEER C. Pulmonary hypertension and the right ventricle in hypoxia[J]. Exp Physiol,2013,98(8):1247-1256. doi:10.1113/expphysiol.2012.069112.
[22] YU B,SLADOJEVIC N,BLAIR J E,et al. Targeting Rho-associated coiled-coil forming protein kinase(ROCK)in cardiovascular fibrosis and stiffening[J]. Expert Opin Ther Targets,2020,24(1):47-62. doi:10.1080/14728222.2020.1712593.
[23] ZHANG Y,YUAN R X, BAO D. TGF-β1 promotes pulmonary arterial hypertension in rats via activating RhoA/ROCK signaling pathway[J]. Eur Rev Med Pharmacol Sci,2020,24(9):4988-4996. doi:10.26355/eurrev_202005_21190.
(2024-12-11收稿 2025-01-10修回)
(本文編輯 李志蕓)