



摘 "要""孤獨(dú)癥譜系障礙(Autism Spectrum Disorder, ASD)是一種復(fù)雜的神經(jīng)發(fā)育障礙, 其病因和表現(xiàn)形式具有高度異質(zhì)性, 目前臨床尚缺乏確切有效的治療方案。重復(fù)性經(jīng)顱磁刺激(repetitive Transcranial Magnetic Stimulation, rTMS)作為一種神經(jīng)調(diào)控技術(shù), 在ASD治療領(lǐng)域展現(xiàn)出應(yīng)用價(jià)值。研究發(fā)現(xiàn), 低頻rTMS能夠調(diào)節(jié)大腦皮層的神經(jīng)興奮?抑制平衡, 而高頻rTMS則可以提高目標(biāo)腦區(qū)的興奮性。本研究表明, 低頻rTMS靶向ASD背外側(cè)前額葉皮層可以改善重復(fù)和刻板行為, 而高頻rTMS靶向ASD顳頂聯(lián)合區(qū)可以改善社交與互動(dòng)障礙。未來(lái)研究應(yīng)著重關(guān)注以下方面:探索rTMS干預(yù)的最佳年齡窗口期, 采用嚴(yán)謹(jǐn)?shù)碾p盲、假刺激對(duì)照和隨機(jī)分組的交叉實(shí)驗(yàn)設(shè)計(jì), 以及整合臨床量表評(píng)估、行為學(xué)測(cè)量和靶點(diǎn)腦區(qū)的神經(jīng)生物學(xué)指標(biāo)進(jìn)行療效評(píng)估, 為相關(guān)臨床實(shí)踐提供更可靠的循證依據(jù)。
關(guān)鍵詞""孤獨(dú)癥譜系障礙, 重復(fù)經(jīng)顱磁刺激, 背外側(cè)前額葉皮層, 顳頂聯(lián)合區(qū)
分類號(hào)""B845
1""引言
孤獨(dú)癥譜系障礙(Autism Spectrum Disorder, ASD)是一種復(fù)雜且異質(zhì)性的神經(jīng)發(fā)育障礙, 其核心癥狀表現(xiàn)為受限的重復(fù)和刻板行為, 以及持續(xù)性的社交與互動(dòng)障礙(First, 2013)。ASD的患病率近年來(lái)顯著上升, 根據(jù)美國(guó)疾病控制與預(yù)防中心的最新報(bào)告, 每1000名8歲兒童中約有23名被診斷為ASD, 相當(dāng)于每44名兒童中有1名患有ASD (Maenner et al., 2020)。在中國(guó), ASD兒童的數(shù)量同樣呈現(xiàn)快速增長(zhǎng)趨勢(shì), 盡管2020年的患病率為0.7%, 但預(yù)計(jì)將增加到總?cè)丝诘?% (1300萬(wàn)人) (Sun et al., 2019)。
ASD的確診通常發(fā)生在癥狀顯現(xiàn)后的幼兒期至學(xué)齡前階段。美國(guó)最新的兩項(xiàng)全國(guó)性調(diào)查研究(2017年)顯示, 大多數(shù)兒童在3歲以后確診, 其中1/3到1/2的兒童是在6歲以后確診(Sheldrick et al., 2017)。相對(duì)而言, 中國(guó)最新的全國(guó)性調(diào)查(2022年)顯示, ASD癥狀顯現(xiàn)的中位年齡為24個(gè)月, 輕至中度ASD的確診中位年齡為30個(gè)月, 重度ASD的確診中位年齡為28個(gè)月。確診后, 密集的早期干預(yù)通常從33個(gè)月開(kāi)始, 其中36個(gè)月及以下的干預(yù)案例占比達(dá)61.7% (Long et al., 2022)。研究表明, 早期干預(yù)能夠顯著改善ASD兒童的發(fā)育預(yù)后, 并有效減輕家庭的壓力(Estes et al., 2015; Gliga et al., 2014; Hyman et al., 2020)。然而, 由于ASD癥狀的異質(zhì)性及其嚴(yán)重程度的多樣性, 目前尚缺乏針對(duì)核心癥狀的成熟醫(yī)學(xué)治療方法, 干預(yù)效果也因個(gè)體差異而存在顯著變異(Hyman et al., 2020; Towle et al., 2020)。
近些年, 重復(fù)性經(jīng)顱磁刺激(repetitive Transcranial Magnetic Stimulation, rTMS)憑借其神經(jīng)調(diào)控作用, 逐漸成為干預(yù)ASD的一種潛在療法并形成共識(shí)(Cole et al., 2019)。rTMS是一項(xiàng)非侵入性、適用于兒童且無(wú)顯著不良反應(yīng)的技術(shù)(Zewdie et al., 2020), 其首次應(yīng)用于ASD的臨床研究可追溯至2009年(Sokhadze et al., 2009)。后續(xù)的一些小樣本試驗(yàn)為其在ASD干預(yù)中的可行性和可接受性提供了初步證據(jù)(Sokhadze et al., 2018; 吳野"等, 2016; 李夢(mèng)青"等, 2018)。此外, 最近的系統(tǒng)綜述與元分析進(jìn)一步評(píng)估了rTMS及其他神經(jīng)調(diào)控技術(shù)在ASD治療中的效果(Barahona-Corrêa et al., 2018; Yuan et al., 2024)。研究結(jié)果表明, 無(wú)論年齡或智力水平如何, rTMS在改善ASD核心癥狀方面具有一定的潛在價(jià)值。這些研究成果為基于rTMS的個(gè)性化干預(yù)策略奠定了基礎(chǔ), 并為未來(lái)的大規(guī)模臨床研究指明了方向。
盡管關(guān)于rTMS治療ASD的研究逐漸增多, 但腦區(qū)靶點(diǎn)的選擇仍然是一個(gè)關(guān)鍵挑戰(zhàn)?,F(xiàn)有研究表明, ASD的神經(jīng)基礎(chǔ)顯示出顯著的異質(zhì)性。例如, 重復(fù)和刻板行為可能與背外側(cè)前額葉皮層(Dorsolateral Prefrontal Cortex, DLPFC)或基底神經(jīng)節(jié)的功能異常有關(guān)(Abbott et al., 2018; Di Martino et al., 2011); 而社交與互動(dòng)障礙則更有可能涉及社交相關(guān)腦區(qū)的異常, 包括顳頂聯(lián)合區(qū)(Temporoparietal Junction, TPJ)、后部顳上回(posterior Superior Temporal Sulcus, pSTS)及外側(cè)頂下小葉(Inferior Parietal Lobule, IPL)等(Lombardo et al., 2011; Saxe amp; Kanwisher, 2003)。然而, 目前針對(duì)不同靶點(diǎn)的系統(tǒng)性比較研究尚不充分, 難以明確不同核心癥狀與rTMS最優(yōu)靶點(diǎn)之間的關(guān)系。個(gè)體化靶點(diǎn)選擇也面臨困難, 盡管神經(jīng)成像技術(shù)如功能磁共振(functional Magnetic Resonance Imaging, fMRI)和腦電(Electrophysiological, EEG)為癥狀嚴(yán)重程度和神經(jīng)網(wǎng)絡(luò)特異性提供了評(píng)估依據(jù), 但尚未充分融入干預(yù)實(shí)踐。此外, 不同靶點(diǎn)的rTMS治療效果還受到參數(shù)設(shè)置(如頻率、強(qiáng)度及治療次數(shù))的影響。更重要的是, 不同靶點(diǎn)可能帶來(lái)的長(zhǎng)期療效也缺乏系統(tǒng)調(diào)查。這些問(wèn)題凸顯了全面評(píng)估不同靶點(diǎn)在改善ASD核心癥狀中的作用機(jī)制的必要性, 從而為開(kāi)發(fā)精準(zhǔn)化、個(gè)性化的rTMS干預(yù)方案提供科學(xué)依據(jù)。
在本研究中, 我們系統(tǒng)收集并回顧了2014~"2024年間使用rTMS治療ASD的相關(guān)文獻(xiàn)。本研究旨在總結(jié)和歸納rTMS對(duì)ASD干預(yù)的作用機(jī)制, 厘清rTMS靶點(diǎn)與治療ASD核心癥狀(包括重復(fù)和刻板行為, 社交與互動(dòng)障礙)之間的相互聯(lián)系。通過(guò)系統(tǒng)梳理現(xiàn)有研究成果, 本研究期望為未來(lái)rTMS在ASD臨床治療中的應(yīng)用和科學(xué)研究提供理論支持與實(shí)踐參考。
2 "方法
2.1""檢索策略
本研究通過(guò)多數(shù)據(jù)庫(kù)系統(tǒng)檢索了關(guān)于rTMS應(yīng)用于ASD的中英文文獻(xiàn)。檢索范圍涵蓋英文文獻(xiàn)數(shù)據(jù)庫(kù)Web Of Science和PubMed, 以及中文文獻(xiàn)檢索數(shù)據(jù)庫(kù)萬(wàn)方數(shù)據(jù)知識(shí)服務(wù)平臺(tái)和中國(guó)知網(wǎng)學(xué)術(shù)期刊(China National Knowledge Infrastructure, CNKI), 限定時(shí)間范圍為2014年至2024年9月。英文文獻(xiàn)檢索詞包括TMS, rTMS, transcranial magnetic stimulation, repetitive transcranial magnetic stimulation, ASD, Autism Spectrum Disorder, Autism。檢索表達(dá)式為:(TS=(ASD)OR TS=(Autism Spectrum"Disorder)OR TS=(Autism))AND (TS=(TMS)OR TS="(rTMS)OR TS=(transcranial magnetic stimulation)OR"TS=(repetitive transcranial magnetic stimulation))。中文文獻(xiàn)檢索詞包括TMS、rTMS、經(jīng)顱磁刺激、重復(fù)經(jīng)顱磁刺激、ASD、孤獨(dú)癥譜系障礙、孤獨(dú)癥、自閉癥。檢索表達(dá)式為:(主題=ASD + 孤獨(dú)癥譜系障礙"+ 孤獨(dú)癥"+ 自閉癥) AND (主題="TMS + rTMS + 經(jīng)顱磁刺激"+ 重復(fù)經(jīng)顱磁刺激)。最終檢索結(jié)果顯示, 符合條件的英文文獻(xiàn)共548篇, 中文文獻(xiàn)共271篇。
2.2""納入和排除標(biāo)準(zhǔn)
對(duì)符合檢索策略中的文獻(xiàn)進(jìn)行篩選, 如果符合以下標(biāo)準(zhǔn)則納入研究:(1)研究類型為實(shí)證研究; (2)研究樣本符合精神障礙診斷與統(tǒng)計(jì)手冊(cè)(Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition, DSM-5)或自閉癥診斷觀察表(Autism Diagnostic Observation Schedule?"Second Edition, ADOS-2)診斷的ASD個(gè)體, 無(wú)其他精神發(fā)育疾病; (3)ASD個(gè)體為幼兒期和兒童期(年齡小于和約等于12歲左右); (4)干預(yù)措施為rTMS。文獻(xiàn)如果符合以下排除標(biāo)準(zhǔn), 則排除在外:(1)以實(shí)驗(yàn)動(dòng)物或健康被試為主要研究對(duì)象; (2)干預(yù)過(guò)程中結(jié)合藥物治療; (3)干預(yù)效果的評(píng)估方法不明確。
2.3 "文獻(xiàn)綜述方法
根據(jù)以上標(biāo)準(zhǔn), 共篩選出符合要求的文獻(xiàn)有12篇。篩選流程如圖1所示。
3 "結(jié)果
本研究系統(tǒng)納入了12項(xiàng)采用rTMS干預(yù)ASD的研究。表1總結(jié)這些研究中的ASD人口學(xué)資料(樣本量、年齡和智力水平), rTMS干預(yù)參數(shù)(靶點(diǎn)、頻率、強(qiáng)度、干預(yù)脈沖和刺激療程), 以及結(jié)果評(píng)估。具體如下:
(1) ASD人口學(xué)資料:樣本量從10至106人次, 男女比例在各項(xiàng)研究中情況不同。ASD平均
年齡為4.1至14.4歲, 主要涵蓋ASD兒童期。在報(bào)告ASD智力的文獻(xiàn)中, IQ水平均較高。
(2) rTMS干預(yù)參數(shù):8篇文獻(xiàn)的研究者選擇DLPFC作為刺激部位, 另外4篇文獻(xiàn)選擇TPJ (pSTS/IPL)。在刺激頻率的設(shè)置上, 6篇靶向DLPFC的文獻(xiàn)選擇了低頻rTMS (0.5 Hz或1 Hz), 2篇選擇了高頻rTMS (10 Hz)或間歇脈沖刺激(Intermittent Theta Burst Stimulation, iTBS); 4篇靶向TPJ (pSTS/IPL)文獻(xiàn)選擇了高頻rTMS (15 Hz或20 Hz)或iTBS。各研究的刺激療程不一, 3篇文獻(xiàn)采用了相同的每周干預(yù)1次, 持續(xù)18周的模式; 2篇文獻(xiàn)采用了每周干預(yù)2次, 持續(xù)12周的模式; 3篇文獻(xiàn)采用了每周干預(yù)5次, 持續(xù)3周的模式; 其余的干預(yù)的持續(xù)時(shí)間則從12周至68周不等, 結(jié)果可見(jiàn)圖2A。
(3)結(jié)果評(píng)估:針對(duì)重復(fù)與刻板行為的評(píng)估主要基于如下量表:修訂的重復(fù)行為量表(Repetitive Behavior Scale-Revised, RBS-R), 包括其子量表如RBS-刻板行為, RBS-儀式行為, RBS-強(qiáng)迫; 異常行為檢查表(Aberrant Behavior Checklist, ABC)的刻板行為子量表; 耶魯?布朗強(qiáng)迫癥量表(Yale-"Brown Obsessive-Compulsive Scale, Y-BOCS)。
針對(duì)社交與互動(dòng)障礙的評(píng)估主要基于如下量表:社交反應(yīng)量表(Social Responsiveness Scale, SRS); 異常行為檢查表(Aberrant Behavior Checklist, ABC)的社交回避子量表; 自閉癥治療評(píng)估表(Autism Treatment Evaluation Checklist, ATEC)的社交子量表。
ASD診斷工具包括:兒童孤獨(dú)癥評(píng)定量表(Childhood Autism Rating Scale, CARS); 孤獨(dú)癥診斷訪談量表(Autism Diagnostic Interview-Revisited Edition, ADI-R); 以上兩個(gè)量表通過(guò)對(duì)兒童多方面行為進(jìn)行觀察評(píng)估, 為ASD診斷提供綜合依據(jù), 不具體區(qū)分核心癥狀。
執(zhí)行功能評(píng)估包括:威斯康星卡片分類測(cè)驗(yàn)(Wisconsin Card Sorting Test, WCST), 用于評(píng)估個(gè)體抽象思維、認(rèn)知靈活性與任務(wù)轉(zhuǎn)換能力等執(zhí)行功能表現(xiàn); 斯特魯普測(cè)試(Stroop)主要評(píng)估個(gè)體認(rèn)知過(guò)程中的干擾抑制能力, 以衡量執(zhí)行功能中的抑制控制情況。
3.1 "ASD的腦發(fā)育異常與rTMS治療機(jī)制
3.1.1 "ASD的腦發(fā)育特征
ASD的大腦發(fā)育過(guò)程中表現(xiàn)出廣泛的結(jié)構(gòu)異常。(1)在大腦微觀結(jié)構(gòu)方面, 研究表明ASD的額葉區(qū)域存在parvalbumin positive (PV+)神經(jīng)元數(shù)量的顯著減少(Casanova, Sokhadze,et al., 2020)。這些PV+神經(jīng)元是大腦皮層中關(guān)鍵的抑制性中間神經(jīng)元, 負(fù)責(zé)釋放γ-氨基丁酸(γ-aminobutyric acid, GABA)神經(jīng)遞質(zhì), 發(fā)揮快速抑制作用來(lái)調(diào)節(jié)神經(jīng)網(wǎng)絡(luò)活動(dòng), 從而維持大腦皮層興奮性/抑制性(Excitation/Inhibition, E/I)的平衡(Klausberger amp; Somogyi, 2008)。當(dāng)PV+神經(jīng)元數(shù)量減少時(shí), GABA濃度降低、傳遞功能受損, 導(dǎo)致皮層內(nèi)的抑制性神經(jīng)傳遞減弱, 從而破壞了大腦皮層的E/I平衡(Dickinson et al., 2016)。這一變化與ASD核心癥狀(如刻板行為、感官異常和社交障礙)密切相關(guān)(Frye et al., 2016; Oblak et al., 2010)。(2)在大腦宏觀結(jié)構(gòu)方面, 研究發(fā)現(xiàn)高危ASD嬰兒在6~12個(gè)月時(shí)出現(xiàn)大腦皮層表面積過(guò)度擴(kuò)張, 并且在12~"24個(gè)月間表現(xiàn)出大腦體積的過(guò)度生長(zhǎng)。這些早期的大腦結(jié)構(gòu)變化主要集中在與社會(huì)認(rèn)知和信息處理相關(guān)的腦區(qū), 尤其是額葉前部和顳葉。這些區(qū)域的異常發(fā)育與ASD的社交認(rèn)知缺陷密切相關(guān)(Hazlett et al., 2017)。
此外, ASD還表現(xiàn)出大腦功能連接的異常, 包括功能連接不足和過(guò)度連接共存。(1)在功能連接不足方面, ASD在默認(rèn)網(wǎng)絡(luò)(Default Mode Network, DMN)、社交認(rèn)知網(wǎng)絡(luò)和感覺(jué)運(yùn)動(dòng)網(wǎng)絡(luò)等關(guān)鍵神經(jīng)環(huán)路表現(xiàn)出功能整合的減弱(Hull et al., 2017; Uddin et al., 2013)。具體而言, DMN中內(nèi)側(cè)前額葉皮層與后扣帶回之間的功能連接減弱, 楔前葉與其他核心區(qū)域之間的同步性降低, 這些變化與ASD的社交認(rèn)知缺陷密切相關(guān)(Kennedy amp; Courchesne, 2008)。在社交認(rèn)知網(wǎng)絡(luò)中, 杏仁核與前額葉區(qū)域、以及顳頂聯(lián)合區(qū)與前額葉之間的功能整合能力顯著下降(Di Martino et al., 2014), 這進(jìn)一步加劇了ASD社交功能障礙(Uddin et al., 2010)。此外, 基底節(jié)?皮層環(huán)路的功能連接不足與ASD的重復(fù)性行為嚴(yán)重程度相關(guān)(Cerliani et al., 2015)。(2)在功能連接過(guò)度方面, ASD在額葉內(nèi)部區(qū)域、皮層下結(jié)構(gòu)以及感覺(jué)運(yùn)動(dòng)網(wǎng)絡(luò)等關(guān)鍵神經(jīng)環(huán)路表現(xiàn)出異常的高同步性(Di Martino et al., 2011)。例如, 額葉腹內(nèi)側(cè)與背內(nèi)側(cè)區(qū)域之間、基底核與丘腦之間的功能連接顯著增強(qiáng), 且初級(jí)感覺(jué)運(yùn)動(dòng)皮層與皮層下結(jié)構(gòu)之間呈現(xiàn)異常的過(guò)度同步(Keown et al., 2013; Uddin et al., 2013)。這些過(guò)度連接與ASD核心癥狀密切相關(guān):額葉的過(guò)度連接能夠預(yù)測(cè)執(zhí)行功能障礙和刻板行為的嚴(yán)重程度(Monk et al., 2009), 而感覺(jué)運(yùn)動(dòng)網(wǎng)絡(luò)的過(guò)度連接則與感覺(jué)異常和運(yùn)動(dòng)協(xié)調(diào)障礙相關(guān)(Keown et al., 2013)。這些功能連接的異常特征為理解ASD的神經(jīng)機(jī)制提供了重要線索。
3.1.2 "rTMS治療ASD的神經(jīng)調(diào)控機(jī)制
近年來(lái), 包括rTMS在內(nèi)的非侵入性大腦神經(jīng)調(diào)控技術(shù)(Non-Invasive Brain Stimulation,"NIBS)已在ASD的治療中被廣泛應(yīng)用, 并得到了臨床神經(jīng)科學(xué)家、精神病學(xué)家、兒童神經(jīng)科醫(yī)生、心理學(xué)家以及行為治療師等專業(yè)人士的高度認(rèn)可(Cole et al., 2019; McPartland et al., 2020)。相關(guān)研究成果進(jìn)一步加深了人們對(duì)rTMS在ASD干預(yù)中的機(jī)制與效果的理解, 具體表現(xiàn)為以下方面:
低頻rTMS (1 Hz或更低)的核心作用機(jī)制是調(diào)節(jié)GABA能神經(jīng)遞質(zhì)傳遞來(lái)提高皮層內(nèi)抑制功能, 從而改善ASD大腦皮層的神經(jīng)興奮與抑制平衡(Casanova, Shaban, et al., 2020; Wang et al., 2016)。ASD的動(dòng)物模型研究發(fā)現(xiàn), 低頻rTMS干預(yù)治療可以顯著提升ASD大鼠額葉皮層的GABA濃度, 并增加突觸水平的GABA受體密度, 最終改善皮層的興奮與抑制平衡。與此同時(shí), ASD大鼠經(jīng)低頻rTMS治療后, 其社交互動(dòng)時(shí)間增加, 刻板行為減少(Tan et al., 2018)。此外, 基于事件相關(guān)電位(Event-Related Potentials, ERP), Sokhadze等人(2010) 觀察到低頻rTMS干預(yù)后, ASD大腦皮層對(duì)無(wú)關(guān)干擾刺激的早期ERP響應(yīng)減少(抑制效應(yīng)), 而對(duì)目標(biāo)刺激的早期ERP響應(yīng)增強(qiáng)(興奮效應(yīng)), 這表明皮層的興奮性與抑制性調(diào)節(jié)功能得到改善(Sokhadze et al., 2010)。再者, GABA能抑制性神經(jīng)元作為腦電Gamma振蕩(30~80 Hz)的“節(jié)拍器”, 通過(guò)網(wǎng)絡(luò)同步化調(diào)控神經(jīng)群體活動(dòng), 從而影響感官信息的處理與整合(Grothe amp; Klump, 2000; Keil et al., 2001)。有研究發(fā)現(xiàn), 經(jīng)過(guò)低頻rTMS干預(yù)后, ASD的Gamma活動(dòng)顯著增強(qiáng), 這不僅提升了對(duì)目標(biāo)物的注意能力, 還有效抑制了對(duì)干擾物的反應(yīng), 同時(shí)改善了重復(fù)性和刻板行為(Baruth et al., 2010)。
高頻rTMS (通常定義為gt;5 Hz)的核心作用機(jī)制則通過(guò)誘發(fā)靶點(diǎn)腦區(qū)的突觸長(zhǎng)時(shí)程增強(qiáng)(Long-"term potentiation, LTP), 提升該腦區(qū)及其相關(guān)神經(jīng)網(wǎng)絡(luò)的整體興奮性(Chervyakov et al., 2015)。這一機(jī)制不僅改善了目標(biāo)腦區(qū)的突觸傳遞效率, 還通過(guò)網(wǎng)絡(luò)擴(kuò)散效應(yīng)調(diào)控相關(guān)的神經(jīng)回路(Fox et al., 2012)。具體而言, Enticott等人(2014)對(duì)ASD個(gè)體的左側(cè)DLPFC皮層施加高頻rTMS刺激, 每周治療5次, 持續(xù)2周。結(jié)果顯示治療組的皮層興奮性顯著增強(qiáng), 表現(xiàn)為rTMS誘發(fā)的電位幅度較假刺激組顯著增大(Enticott et al., 2014)。此外, 高頻rTMS的LTP效應(yīng)還可以增強(qiáng)ASD鏡像神經(jīng)元系統(tǒng)的興奮性, 從而改善了其社會(huì)認(rèn)知及行為模仿能力(Yang et al., 2019), 最終緩解ASD的核心癥狀。再者, 高頻rTMS的LTP效應(yīng)還可以改善ASD的覺(jué)醒調(diào)節(jié)和自主神經(jīng)系統(tǒng), 從而有效緩解其睡眠障礙(Gao et al., 2022)。
3.2 "rTMS干預(yù)的靶點(diǎn)選擇與ASD核心癥狀的關(guān)聯(lián)
3.2.1 "背外側(cè)前額葉皮層(DLPFC)
背外側(cè)前額葉皮層(DLPFC)位于大腦前額葉的中部外側(cè)區(qū)域, 是中央執(zhí)行功能的關(guān)鍵中樞(圖3)。DLPFC涉及多種高級(jí)認(rèn)知功能, 包括行為計(jì)劃、決策制定、問(wèn)題解決、注意力控制以及行為適應(yīng)性調(diào)節(jié)。在健康個(gè)體中, DLPFC可以調(diào)控個(gè)體的認(rèn)知行為, 以及抑制不適當(dāng)?shù)男袨榉磻?yīng), 從而在復(fù)雜的社會(huì)情境中實(shí)現(xiàn)目標(biāo)導(dǎo)向的行為。一項(xiàng)薈萃分析顯示, 與年齡和智商匹配的對(duì)照組相比, ASD個(gè)體在多個(gè)領(lǐng)域(如計(jì)劃能力、工作記憶、心理靈活性)的執(zhí)行功能表現(xiàn)存在受損(中等效應(yīng)量), 且這一現(xiàn)象在整個(gè)發(fā)展過(guò)程中表現(xiàn)出較高的穩(wěn)定性(Hill, 2004)。
對(duì)于ASD, 其核心癥狀中的重復(fù)性和刻板行為與DLPFC功能不足密切相關(guān)。一項(xiàng)結(jié)構(gòu)性磁共振研究發(fā)現(xiàn), ASD的DLPFC灰質(zhì)體積減少, 這一變化與重復(fù)性行為的嚴(yán)重程度顯著相關(guān)(Estes et"al., 2011)。Di Martino等人(2011)通過(guò)fMRI研究發(fā)現(xiàn), ASD在完成抑制性控制任務(wù)時(shí), DLPFC的激活顯著低于對(duì)照組, 表明DLPFC的功能不足可能限制其對(duì)既定行為的調(diào)節(jié)能力, 進(jìn)而導(dǎo)致重復(fù)性和刻板行為表現(xiàn)。此外, 在執(zhí)行時(shí)間相關(guān)任務(wù)時(shí), ASD組的平均反應(yīng)時(shí)顯著長(zhǎng)于對(duì)照組, 提示其對(duì)于信息處理速度顯著減緩, 并進(jìn)一步加劇重復(fù)性行為, 這與DLPFC功能受損一致(Solomon et al., 2008; Zapparrata et al., 2023)。最后, ASD還存在DLPFC與皮層下結(jié)構(gòu)之間的功能連接異常。Abbott等人(2018)的fMRI研究發(fā)現(xiàn), ASD的DLPFC-紋狀體功能連接顯著減弱, 這種功能連接異常與重復(fù)刻板行為的嚴(yán)重程度顯著相關(guān)(Abbott et al., 2018)。綜上所述, DLPFC的結(jié)構(gòu)和功能異常是ASD核心癥狀的重要神經(jīng)機(jī)制之一, 其對(duì)執(zhí)行功能和行為調(diào)節(jié)的影響尤為顯著。
從干預(yù)的角度來(lái)看, 利用rTMS靶向干預(yù)ASD的DLPFC能夠有效改善其核心癥狀, 包括減少重復(fù)和刻板行為, 以及提高社交互動(dòng)能力等(圖2B和圖3)。具體表現(xiàn)在:
(1) rTMS干預(yù)DLPFC可以有效減少ASD兒童的重復(fù)行為(5項(xiàng)研究)。Abujadi等人(2018)采用iTBS干預(yù)ASD的右側(cè)DLPFC, 并在三個(gè)月后的隨訪發(fā)現(xiàn)ASD的重復(fù)刻板行為(RBS-R)得分顯著降低, 這表明重復(fù)行為有所減少。另一些研究采用低頻rTMS干預(yù)雙側(cè)DLPFC, 在18周后ASD的重復(fù)刻板行為(RBS-R)得分顯著降低(Casanova, Sokhadze, et al., 2020; Sokhadze et al., 2018; Sokhadze et al., 2017)。此外, 李夢(mèng)青等人(2018)采用低頻rTMS干預(yù)雙側(cè)DLPFC, 12周后發(fā)現(xiàn)ASD的重復(fù)刻板行為(RBS-R)得分同樣顯著下降。
(2) rTMS干預(yù)DLPFC可以有效提升ASD兒童的社交行為(2項(xiàng)研究)。有研究采用低頻rTMS干預(yù)ASD的雙側(cè)DLPFC, 在18次的治療后發(fā)現(xiàn)ASD的社交行為有顯著改善, 表現(xiàn)在ABC-社交退縮量表分?jǐn)?shù)顯著降低(Kang et al., 2019)和SRS-2得分顯著降低(Sokhadze et al., 2017)。
(3) rTMS干預(yù)DLPFC對(duì)ASD執(zhí)行功能也有所改善(1項(xiàng)研究)。Abujadi等人(2018)采用了iTBS刺激右側(cè)DLPFC, 3周干預(yù)后, ASD在WCST任務(wù)中的錯(cuò)誤率顯著下降(并持續(xù)到3個(gè)月后的隨訪期), 在Stroop測(cè)樣中的反應(yīng)時(shí)顯著降低(但該效果在3個(gè)月后的隨訪期消失)。另外, Ameis等人(2020)的研究由于受試者為ASD青少年和成年人(16~35歲)而并未納入本研究中。然而, 他們的研究發(fā)現(xiàn)靶向雙側(cè)DLPFC的高頻rTMS能夠改善ASD的執(zhí)行功能, 并且對(duì)于基線水平較低的ASD個(gè)體改善效果較明顯。
3.2.2 "顳頂聯(lián)合區(qū)(后部顳上回/頂下小葉)
顳頂聯(lián)合區(qū)(TPJ)位于顳葉與頂葉交界處, 覆蓋后部顳上回(pSTS)、外側(cè)頂下小葉(IPL)以及部分緣上回和角回區(qū)域(圖3), 因其獨(dú)特解剖位置在多感官信息整合中發(fā)揮重要作用(Ahmad et al., 2021)。TPJ與鏡像神經(jīng)元系統(tǒng)(Mirror Neuron System, MNS)密切相關(guān), MNS在觀察和模仿行為時(shí)激活, 幫助個(gè)體理解他人意圖和情緒, 這對(duì)于社交互動(dòng)至關(guān)重要(Sperduti et al., 2014)。TPJ也被認(rèn)為是“社交腦” (Social Brain)的核心節(jié)點(diǎn), 腦成像研究發(fā)現(xiàn)TPJ在共情、社會(huì)推理以及自我與他人信息分離任務(wù)顯著激活(Philip et al., 2012)。此外, 在“心智理論” (Theory of Mind, ToM)任務(wù)中, TPJ激活有助于個(gè)體理解和預(yù)測(cè)他人行為(Lombardo et"al., 2011; Saxe amp; Kanwisher, 2003)。這些發(fā)現(xiàn)突顯了TPJ在社交認(rèn)知過(guò)程中的核心作用, 尤其是在與他人互動(dòng)和感知情感時(shí)的重要性。
ASD的社交與互動(dòng)障礙與TPJ的異常活動(dòng)密切相關(guān)。多項(xiàng)研究發(fā)現(xiàn), ASD個(gè)體在執(zhí)行社交認(rèn)知任務(wù)時(shí), TPJ的激活水平通常較低, 或其激活模式呈現(xiàn)非典型分布, 這可能消弱了對(duì)他人意圖和情緒的理解能力(Kana et al., 2011; Lombardo et al., 2011)。一些研究指出, ASD在觀察他人行為或情緒時(shí), TPJ的激活強(qiáng)度明顯減弱, 這與其社交困難和情感理解障礙相一致(Kirkovski et al., 2016; Patriquin et al., 2016)。此外, TPJ與前額葉皮層和杏仁核等關(guān)鍵社交腦區(qū)的連接強(qiáng)度較弱, 進(jìn)一步限制了ASD在動(dòng)態(tài)社交情境中的響應(yīng)靈活性, 這可能導(dǎo)致ASD在復(fù)雜社交情境下的適應(yīng)性不足(Lombardo et al., 2011)。靜息態(tài)研究也顯示, ASD的TPJ激活水平顯著低于健康對(duì)照組(Wang et al., 2018)。綜上, TPJ的這些異?;顒?dòng)模式, 不僅為理解ASD的社交與互動(dòng)障礙提供了神經(jīng)生物學(xué)基礎(chǔ), 還為T(mén)PJ作為潛在干預(yù)靶點(diǎn)的作用提供了理論依據(jù)。
從干預(yù)的角度來(lái)看, 利用rTMS靶向干預(yù)ASD的TPJ (pSTS/IPL)能夠有效改善其社交行為和語(yǔ)言方面的能力(圖2B和圖3)。需要注意的是, TPJ區(qū)域包含pSTS和IPL, 為此本研究將靶向pSTS和IPL文獻(xiàn)共同分析。(1) 1篇文章以pSTS作為rTMS靶點(diǎn), Ni等人(2021)采用iTBS干預(yù)ASD雙側(cè)pSTS, 并對(duì)比了4周、8周和12周的干預(yù)療效。其結(jié)果發(fā)現(xiàn)從第8周(即rTMS刺激16次)開(kāi)始, ASD的重復(fù)刻板行為(RBS-R)和社交反應(yīng)行為(SRS)均獲得顯著改善, 而4周干預(yù)(即rTMS刺激8次)并無(wú)效果, 表明較長(zhǎng)療程對(duì)于干預(yù)效果的顯現(xiàn)至關(guān)重要(Ni et al., 2021)。同樣針對(duì)pSTS, Liu等人(2020)采用iTBS干預(yù)成年人ASD的右側(cè)pSTS, 連續(xù)干預(yù)5天時(shí)間。其結(jié)果發(fā)現(xiàn)iTBS顯著提高了ASD對(duì)他人面孔情緒的識(shí)別準(zhǔn)確率, 這表明對(duì)面部表情的理解能力有所提高, 而理解他人面部表情對(duì)于社交場(chǎng)景尤為重要(Liu et al., 2020)。(2) 3篇文章以IPL作為rTMS靶點(diǎn), 都以P3電極作為頭皮定位點(diǎn)。Yang等人(2023)采用15 Hz高頻rTMS干預(yù)ASD左側(cè)IPL, 發(fā)現(xiàn)3周干預(yù)的療程顯著改善了ASD的重復(fù)刻板行為(RBS-R), 社交反應(yīng)行為(SRS, ATEC-社交)和語(yǔ)言水平(ATEC-語(yǔ)言)。干預(yù)前后的靜息態(tài)腦電網(wǎng)絡(luò)分析進(jìn)一步發(fā)現(xiàn), rTMS干預(yù)前ASD腦網(wǎng)絡(luò)表現(xiàn)出顯著的過(guò)度波動(dòng)(基于動(dòng)態(tài)網(wǎng)絡(luò)模糊熵), 這與ASD的重復(fù)刻板行為和社交反應(yīng)行為顯著相關(guān); 而3周的rTMS干預(yù)后, ASD腦網(wǎng)絡(luò)中額頂和額枕連接中的過(guò)度波動(dòng)得到了顯著緩解, 這可能是其重復(fù)刻板行為和社交反應(yīng)行為獲得改善原因(Jiang et al., 2022)。此外, Yang等人(2019)采用20"Hz高頻rTMS干預(yù)ASD左側(cè)IPL, 其結(jié)果也表明ASD的社交反應(yīng)行為(ATEC-社交)和語(yǔ)言水平(ATEC-語(yǔ)言)均獲得顯著改善, 并且該效果在6周后的隨訪期間仍然顯著。
4 "總結(jié)和展望
本文系統(tǒng)回顧了2014~2024年間rTMS在ASD兒童治療中的應(yīng)用研究, 首先梳理了ASD異常的腦發(fā)育特征及其潛在的神經(jīng)機(jī)制, 包括大腦皮層GABA濃度降低所導(dǎo)致的神經(jīng)興奮與抑制失衡、額葉內(nèi)部區(qū)域的過(guò)度連接, 以及社交認(rèn)知網(wǎng)絡(luò)的功能性連接不足。因此, rTMS憑借其神經(jīng)調(diào)控的作用可以改善ASD大腦功能的異常, 包括低頻rTMS調(diào)節(jié)GABA能神經(jīng)遞質(zhì)傳遞來(lái)提高皮層內(nèi)抑制功能, 從而改善ASD額葉皮層的神經(jīng)興奮與抑制平衡, 而高頻rTMS則通過(guò)增強(qiáng)靶點(diǎn)腦區(qū)的突觸長(zhǎng)時(shí)程增強(qiáng), 從而提升腦區(qū)及其相關(guān)神經(jīng)網(wǎng)絡(luò)興奮性。最后, 本研究進(jìn)一步指出, 靶向DLPFC的低頻rTMS干預(yù)可以幫助改善ASD的重復(fù)與刻板行為、社交障礙和執(zhí)行功能, 而靶向TPJ (pSTS/IPL)的高頻rTMS干預(yù)可以幫助緩解ASD的社交與互動(dòng)障礙。
盡管rTMS干預(yù)ASD取得了初步進(jìn)展, 現(xiàn)有研究仍然存在諸多不足, 未來(lái)的研究可以分別從ASD人口學(xué)選擇、rTMS干預(yù)方法以及rTMS干預(yù)療效評(píng)估等方面進(jìn)行優(yōu)化:
首先, 探索rTMS干預(yù)ASD是否存在年齡關(guān)鍵期。通常, ASD癥狀在18~24個(gè)月開(kāi)始顯現(xiàn), 并在3~6歲之間確診。因此, 本研究納入的文獻(xiàn)聚焦于ASD兒童(小于或約等于12歲)群體的rTMS干預(yù)。然而, ASD的核心癥狀——包括重復(fù)與限制行為及社交與互動(dòng)障礙——是貫穿整個(gè)發(fā)育過(guò)程的持續(xù)性問(wèn)題, 且這些癥狀在成年期仍然明顯存在。因此, 也有不少研究表明, rTMS對(duì)ASD青少年及成人的相關(guān)癥狀改善也具有一定的有效性(Liu et al., 2020; Yuan et al., 2024)。這表明, ASD的早期干預(yù)及后期干預(yù)均具有重要的臨床價(jià)值, 尤其是在經(jīng)濟(jì)欠發(fā)達(dá)地區(qū), 因早期識(shí)別和干預(yù)資源匱乏而錯(cuò)過(guò)早期干預(yù)機(jī)會(huì)的情況較為普遍。與此同時(shí), 已有研究指出, 兒童期(尤其是0~6歲)是大腦可塑性最強(qiáng)的階段, 此時(shí)神經(jīng)回路仍處于動(dòng)態(tài)重塑之中(Klin et al., 2015; Vivanti et al., 2014)。因此, 在ASD兒童期進(jìn)行早期干預(yù)是否能夠更有效地糾正異常神經(jīng)活動(dòng)模式, 是一個(gè)值得深入探索的研究方向。未來(lái)研究可以對(duì)比rTMS對(duì)于不同年齡階段ASD兒童大腦可塑性的干預(yù)效果, 包括利用fMRI評(píng)估大腦功能網(wǎng)絡(luò)的變化, 利用磁共振波譜成像評(píng)估GABA神經(jīng)遞質(zhì)的變化, 利用EEG評(píng)估大腦皮層的興奮性等, 進(jìn)一步明確其關(guān)鍵期效應(yīng)。
其次, 優(yōu)化rTMS的干預(yù)方案是提升其臨床療效的關(guān)鍵。從本研究納入的文獻(xiàn)分析來(lái)看, 存在以下幾點(diǎn)可改進(jìn)之處:(1)針對(duì)ASD兒童的rTMS干預(yù)研究中, 普遍未采用嚴(yán)格的雙盲(double-blind)設(shè)計(jì), 僅有1篇采用了單盲設(shè)計(jì)(Ni et al., 2021), 這可能導(dǎo)致研究結(jié)果存在偏倚。然而, 若將文獻(xiàn)檢索擴(kuò)展至ASD成年人群體, 可以發(fā)現(xiàn)一些采用了雙盲設(shè)計(jì)的rTMS干預(yù)研究(Ameis et"al., 2020; Ni et al., 2023)。這種差異可能源于兒童群體在實(shí)施雙盲實(shí)驗(yàn)設(shè)計(jì)時(shí)受到倫理或治療目標(biāo)的制約, 或ASD成年人通常能夠更好地理解和配合實(shí)驗(yàn)要求, 使得雙盲設(shè)計(jì)更易實(shí)施。為了提高研究結(jié)果的可靠性, 未來(lái)的研究應(yīng)著重于設(shè)計(jì)嚴(yán)格的隨機(jī)雙盲實(shí)驗(yàn)。(2)關(guān)于控制組的選擇, 本研究納入的文獻(xiàn)中, 僅1篇采用了偽rTMS刺激作為控制組(Ni et al., 2021), 4篇采用非rTMS干預(yù)作為控制組, 剩余7篇?jiǎng)t采用rTMS干預(yù)前后的對(duì)照設(shè)計(jì)。為了更好地確保rTMS干預(yù)結(jié)果的可靠性, 避免安慰劑效應(yīng)的干擾, 未來(lái)的研究應(yīng)優(yōu)先考慮設(shè)置偽rTMS刺激作為控制組。此外, 交叉實(shí)驗(yàn)設(shè)計(jì)(crossover)也應(yīng)作為一種推薦方案, 即每位參與者接受實(shí)際刺激和假刺激干預(yù), 這種設(shè)計(jì)能夠有效減少個(gè)體間差異對(duì)結(jié)果的影響, 提升統(tǒng)計(jì)效能和實(shí)驗(yàn)內(nèi)部一致性。(3)針對(duì)rTMS干預(yù)靶點(diǎn)的定位, 文獻(xiàn)中的大多數(shù)研究都基于標(biāo)準(zhǔn)電極帽位置或5cm法則進(jìn)行靶點(diǎn)定位, 只有1篇基于ASD個(gè)體的結(jié)構(gòu)像進(jìn)行定位, 選定右側(cè)DLPFC (Abujadi et al., 2018)。盡管后者對(duì)于靶點(diǎn)定位更加精確, 但基于結(jié)構(gòu)像的定位需要額外的磁共振掃描, 這不僅增加了臨床治療的費(fèi)用, 還需考慮ASD兒童是否能適應(yīng)磁共振環(huán)境的問(wèn)題。為此, 針對(duì)ASD兒童采用標(biāo)準(zhǔn)電極帽定位rTMS靶點(diǎn)更加簡(jiǎn)便且也取得了良好的干預(yù)效果。(4)關(guān)于刺激強(qiáng)度的選擇, 本研究納入的文獻(xiàn)幾乎都基于ASD個(gè)體的運(yùn)動(dòng)閾值進(jìn)行刺激強(qiáng)度設(shè)置, 范圍為80%~100%的運(yùn)動(dòng)閾值, 這表明rTMS的刺激強(qiáng)度應(yīng)根據(jù)個(gè)體差異進(jìn)行調(diào)整, 既能保障療效, 又能確保安全性。(5)關(guān)于rTMS干預(yù)頻率的選擇, 本研究建議對(duì)DLPFC進(jìn)行低頻rTMS干預(yù), 以改善ASD的重復(fù)與刻板行為及執(zhí)行功能; 而高頻rTMS則靶向TPJ, 旨在改善社交與互動(dòng)障礙。(6)關(guān)于rTMS干預(yù)周期, 本研究發(fā)現(xiàn), 低頻rTMS常采用1次/周(共18周)或2次/周(共9周)的設(shè)置, 而高頻rTMS常見(jiàn)的干預(yù)周期為5次/周(共3周), 這樣的設(shè)置使得干預(yù)總次數(shù)在15~18次之間。這些干預(yù)周期的選擇在臨床實(shí)踐中已被證明有效, 并為rTMS干預(yù)方案提供了重要的參考依據(jù)。
此外, rTMS干預(yù)研究應(yīng)注重多層次的效果評(píng)估, 結(jié)合量表、行為測(cè)量與靶點(diǎn)腦區(qū)的神經(jīng)生物學(xué)指標(biāo), 全面分析rTMS對(duì)ASD核心癥狀的干預(yù)療效及其作用機(jī)制。從本研究納入的文獻(xiàn)分析來(lái)看, 目前針對(duì)rTMS干預(yù)效果的評(píng)估主要依賴量表的人工評(píng)估, 這需要評(píng)估人員通過(guò)行為觀察和主觀經(jīng)驗(yàn)進(jìn)行判斷。盡管雙盲和交叉實(shí)驗(yàn)設(shè)計(jì)可以在一定程度上減少人工評(píng)估所帶來(lái)的主觀因素干擾, 但這種方法仍然存在一定局限性, 可能導(dǎo)致干預(yù)效果的評(píng)估不夠精確。未來(lái)研究可進(jìn)一步引入更加客觀的行為指標(biāo), 例如設(shè)計(jì)自然場(chǎng)景下的觀察實(shí)驗(yàn), 以貼近實(shí)際生活環(huán)境評(píng)估干預(yù)效果。這些方法可以包括:基于運(yùn)動(dòng)追蹤的重復(fù)行為頻率測(cè)量, 利用高精度設(shè)備記錄并量化ASD個(gè)體的重復(fù)和刻板行為模式; 構(gòu)建社交與互動(dòng)場(chǎng)景, 如基于虛擬現(xiàn)實(shí)技術(shù)或真人參與的社交互動(dòng)任務(wù), 利用高精度設(shè)備記錄面部表情變化及目光接觸頻率等特征, 利用語(yǔ)音識(shí)別技術(shù)分析對(duì)話中的語(yǔ)言交流特征, 以更全面地刻畫(huà)ASD的重復(fù)與限制行為以及社交與互動(dòng)行為。再者, 結(jié)合靶點(diǎn)腦區(qū)的神經(jīng)生物學(xué)指標(biāo), 如GABA神經(jīng)遞質(zhì)水平、腦區(qū)功能活動(dòng)變化以及皮層興奮性, 為rTMS干預(yù)提供更精確的生物學(xué)證據(jù)。最后, 可以構(gòu)建結(jié)構(gòu)方程模型揭示rTMS干預(yù)ASD核心癥狀的神經(jīng)機(jī)制(Iwabuchi et al., 2017)。
最后, rTMS干預(yù)效果的持續(xù)性是一個(gè)需要進(jìn)一步關(guān)注的重要問(wèn)題。本研究所納入的文獻(xiàn)中, 僅有4篇研究在干預(yù)結(jié)束后1~3周, 或5~6個(gè)月內(nèi)對(duì)干預(yù)效果進(jìn)行了隨訪評(píng)估。然而, 這些隨訪研究的時(shí)間跨度較為有限, 難以全面揭示rTMS干預(yù)的長(zhǎng)期療效和可持續(xù)性。未來(lái)的研究應(yīng)加大對(duì)rTMS干預(yù)效果隨時(shí)間變化的系統(tǒng)探索, 以確定是否需要進(jìn)行多次干預(yù)或階段性強(qiáng)化治療, 從而維持或增強(qiáng)干預(yù)效果。
參考文獻(xiàn)
李夢(mèng)青, 姜志梅, 李雪梅, 郭嵐敏. (2018). rTMS結(jié)合腦電生物反饋對(duì)孤獨(dú)癥譜系障礙兒童刻板行為的療效. 中國(guó)康復(fù), 33(2), 114?117.
吳野, 李新劍, 金鑫, 楊忠秀, 李之林, 吳潔, 武改, 李杰. (2016). 高頻經(jīng)顱磁刺激背外側(cè)前額葉聯(lián)合康復(fù)訓(xùn)練對(duì)孤獨(dú)癥譜系障礙兒童的治療作用. 中國(guó)醫(yī)藥導(dǎo)報(bào), 13(27),"119?122.
Abbott, A. E., Linke, A. C., Nair, A., Jahedi, A., Alba, L. A., Keown, C. L., Fishman, I., amp; Müller, R. A. (2018). Repetitive behaviors in autism are linked to imbalance of corticostriatal connectivity: A functional connectivity MRI study. Social Cognitive and Affective Neuroscience, 13(1), 32?42. https://doi.org/10.1093/scan/nsx129
Abujadi, C., Croarkin, P. E., Bellini, B., Brentani, H., amp; Marcolin, M. (2018). Intermittent theta-burst transcranial magnetic stimulation for autism spectrum disorder: An open-label pilot study. Revista Brasileira de Psiquiatria, 40(3), 309?311. https://doi.org/10.1590/1516-4446-2017- 2279
Ahmad, N., Zorns, S., Chavarria, K., Brenya, J., Janowska, A., amp; Keenan, J. P. (2021). Are we right about the right tpj? A review of brain stimulation and social cognition in the right temporal parietal junction. Symmetry, 13(11), 2219. https://doi.org/10.3390/sym13112219
Ameis, S. H., Blumberger, D. M., Croarkin, P. E., Mabbott, D. J., Lai, M. C., Desarkar, P., Szatmari, P., amp; Daskalakis, Z. J. (2020). Treatment of executive function deficits in autism spectrum disorder with repetitive transcranial magnetic stimulation: A double-blind, sham-controlled, pilot trial. Brain Stimulation, 13(3), 539?547. https:// doi.org/10.1016/j.brs.2020.01.007
Barahona-Corrêa, J. B., Velosa, A., Chainho, A., Lopes, R., amp; Oliveira-Maia, A. J. (2018). Repetitive transcranial magnetic stimulation for treatment of autism spectrum disorder: A systematic review and meta-analysis. Frontiers in Integrative Neuroscience, 12, 27. https://doi.org/10. 3389/fnint.2018.00027
Baruth, J. M., Casanova, M. F., El-Baz, A., Horrell, T., Mathai, G., Sears, L., amp; Sokhadze, E. (2010). Low- frequency repetitive transcranial magnetic stimulation (rTMS) modulates evoked-gamma frequency oscillations in autism spectrum disorder. Journal of Neurotherapy, 14(3), 179?194. https://doi.org/10.1080/10874208.2010. 501500
Casanova, M. F., Shaban, M., Ghazal, M., El-Baz, A. S., Casanova, E. L., Opris, I., amp; Sokhadze, E. M. (2020). Effects of transcranial magnetic stimulation therapy on evoked and induced gamma oscillations in children with autism spectrum disorder. Brain Sciences, 10(7), 423. https://doi.org/10.3390/brainsci10070423
Casanova, M. F., Sokhadze, E. M., Casanova, E. L., amp; Li, X. (2020). Transcranial magnetic stimulation in autism spectrum disorders: Neuropathological underpinnings and clinical correlations. Seminars in Pediatric Neurology, 35, 100832. https://doi.org/10.1016/j.spen.2020.100832
Cerliani, L., Mennes, M., Thomas, R. M., Di Martino, A., Thioux, M., amp; Keysers, C. (2015). Increased functional connectivity between subcortical and cortical resting-state networks in autism spectrum disorder. JAMA Psychiatry, 72(8), 767?777. https://doi.org/10.1001/jamapsychiatry. 2015.0101
Chervyakov, A. V., Chernyavsky, A. Y., Sinitsyn, D. O., amp; Piradov, M. A. (2015). Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Frontiers in Human Neuroscience, 9, 303. https:// doi.org/10.3389/fnhum.2015.00303
Cole, E. J., Enticott, P. G., Oberman, L. M., Gwynette, M. F., Casanova, M. F., Jackson, S. L. J., ... Puts, N. A. J. (2019). The potential of repetitive transcranial magnetic stimulation for autism spectrum disorder: A consensus statement. Biological Psychiatry, 85(4), e21?e22. https:// doi.org/10.1016/j.biopsych.2018.06.003
Di Martino, A., Kelly, C., Grzadzinski, R., Zuo, X.-N., Mennes, M., Mairena, M. A., Lord, C., Castellanos, F. X., amp; Milham, M. P. (2011). Aberrant striatal functional connectivity in children with autism. Biological Psychiatry, 69(9), 847?856. https://doi.org/10.1016/j.biopsych.2010.10.029
Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., ... Milham, M. P. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659?667. https://doi.org/10.1038/mp. 2013.78
Dickinson, A., Jones, M., amp; Milne, E. (2016). Measuring neural excitation and inhibition in autism: Different approaches, different findings and different interpretations. Brain Research, 1648, 277?289. https://doi.org/10.1016/j. brainres.2016.07.011
Enticott, P. G., Fitzgibbon, B. M., Kennedy, H. A., Arnold, S. L., Elliot, D., Peachey, A., Zangen, A., amp; Fitzgerald, P. B. (2014). A double-blind, randomized trial of deep repetitive transcranial magnetic stimulation (rTMS) for autism spectrum disorder. Brain Stimulation, 7(2), 206?211. https://doi.org/10.1016/j.brs.2013.10.004
Estes, A., Munson, J., Rogers, S. J., Greenson, J., Winter, J., amp; Dawson, G. (2015). Long-term outcomes of early intervention in 6-year-old children with autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 54(7), 580?587. https://doi.org/ 10.1016/j.jaac.2015.04.005
Estes, A., Shaw, D. W. W., Sparks, B. F., Friedman, S., Giedd, J. N., Dawson, G., Bryan, M., amp; Dager, S. R. (2011). Basal ganglia morphometry and repetitive behavior in young children with autism spectrum disorder. Autism Research, 4(3), 212?220. https://doi.org/10.1002/aur.193
First, M. B. (2013). Diagnostic and statistical manual of mental disorders, 5th edition, and clinical utility. The Journal of Nervous and Mental Disease, 201(9), 727?729. https://doi.org/10.1097/NMD.0b013e3182a2168a
Fox, M. D., Halko, M. A., Eldaief, M. C., amp; Pascual-Leone, A. (2012). Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). NeuroImage, 62(4), 2232?2243. https://doi.org/10.1016/j.neuroimage.2012.03.035
Frye, R. E., Casanova, M. F., Fatemi, S. H., Folsom, T. D., Reutiman, T. J., Brown, G. L., ... Adams, J. B. (2016). Neuropathological mechanisms of seizures in autism spectrum disorder. Frontiers in Neuroscience, 10, 192. https://doi.org/10.3389/fnins.2016.00192
Gao, L., Wang, C., Song, X. R., Tian, L., Qu, Z. Y., Han, Y., amp; Zhang, X. (2022). The sensory abnormality mediated partially the efficacy of repetitive transcranial magnetic stimulation on treating comorbid sleep disorder in autism spectrum disorder children. Frontiers in Psychiatry, 12, 820598. https://doi.org/10.3389/fpsyt.2021.820598
Gliga, T., Jones, E. J. H., Bedford, R., Charman, T., amp; Johnson, M. H. (2014). From early markers to neuro- developmental mechanisms of autism. Developmental Review, 34(3), 189?207. https://doi.org/10.1016/j.dr.2014. 05.003
Gómez, L., Vidal, B., Maragoto, C., Morales, L. M., Berrillo, S., Cuesta, H. V., … Robinson, M. (2017). Non-invasive brain stimulation for children with autism spectrum disorders: A short-term outcome study. Behavioral Sciences, 7(3), 1–12. https://doi.org/10.3390/bs7030063
Grothe, B., amp; Klump, G. M. (2000). Temporal processing in sensory systems. Current Opinion in Neurobiology, 10(4), 467?473. https://doi.org/10.1016/s0959-4388(00)00115-x
Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., ... Piven, J. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348?351. https://doi.org/"10.1038/nature21369
Hill, E. L. (2004). Executive dysfunction in autism. Trends in Cognitive Sciences, 8(1), 26?32. https://doi.org/10. 1016/j.tics.2003.11.003
Hull, J. V., Dokovna, L. B., Jacokes, Z. J., Torgerson, C. M., Irimia, A., amp; Van Horn, J. D. (2017). Resting-state functional connectivity in autism spectrum disorders: A review. Frontiers in Psychiatry, 7, 205. https://doi.org/ 10.3389/fpsyt.2016.00205
Hyman, S. L., Levy, S. E., amp; Myers, S. M. (2020). Identification, evaluation, and management of children with autism spectrum disorder. Pediatrics, 145(1), e20193447. https://doi.org/10.1542/peds.2019-3447
Iwabuchi, S. J., Raschke, F., Auer, D. P., Liddle, P. F., Lankappa, S. T., amp; Palaniyappan, L. (2017). Targeted transcranial theta-burst stimulation alters fronto-insular network and prefrontal GABA. NeuroImage, 146, 395? 403. https://doi.org/10.1016/j.neuroimage.2016.09.043
Jiang, L., He, R., Li, Y., Yi, C., Peng, Y., Yao, D., Wang, Y., Li, F., Xu, P., amp; Yang, Y. (2022). Predicting the long-term after-effects of rTMS in autism spectrum disorder using temporal variability analysis of scalp EEG. Journal of Neural Engineering, 19(5). https://doi.org/10.1088/1741- 2552/ac999d
Kana, R. K., Libero, L. E., amp; Moore, M. S. (2011). Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Physics of Life Reviews, 8(4), 410?437. https://doi.org/10.1016/j.plrev.2011.10.001
Kang, J. N., Song, J. J., Casanova, M. F., Sokhadze, E. M., amp; Li, X. L. (2019). Effects of repetitive transcranial magnetic stimulation on children with low-function autism. CNS Neuroscience and Therapeutics, 25(11), 1254?1261. https://doi.org/10.1111/cns.13150
Keil, A., Gruber, T., amp; Müller, M. M. (2001). Functional correlates of macroscopic high-frequency brain activity in the human visual system. Neuroscience and Biobehavioral Reviews, 25(6), 527?534. https://doi.org/10.1016/s0149- 7634(01)00031-8
Kennedy, D. P., amp; Courchesne, E. (2008). The intrinsic functional organization of the brain is altered in autism. NeuroImage, 39(4), 1877?1885. https://doi.org/10.1016/j. neuroimage.2007.10.052
Keown, C. L., Shih, P., Nair, A., Peterson, N., Mulvey, M. E., amp; Müller, R.-A. (2013). Local functional overconnectivity in posterior brain regions is associated with symptom severity in autism spectrum disorders. Cell Reports, 5(3), 567?572. https://doi.org/10.1016/j.celrep.2013.10.003
Kirkovski, M., Enticott, P. G., Hughes, M. E., Rossell, S. L., amp; Fitzgerald, P. B. (2016). Atypical neural activity in males but not females with autism spectrum disorder. Journal of Autism and Developmental Disorders, 46(3), 954?963. https://doi.org/10.1007/s10803-015-2639-7
Klausberger, T., amp; Somogyi, P. (2008). Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science, 321(5885), 53?57. https://doi.org/10. 1126/science.1149381
Klin, A., Shultz, S., amp; Jones, W. (2015). Social visual engagement in infants and toddlers with autism: Early developmental transitions and a model of pathogenesis. Neuroscience and Biobehavioral Reviews, 50, 189?203. https://doi.org/10.1016/j.neubiorev.2014.10.006
Liu, P., Xiao, G., He, K., Zhang, L., Wu, X., Li, D., ... Wang, K. (2020). Increased accuracy of emotion recognition in individuals with autism-like traits after five days of magnetic stimulations. Neural Plasticity, 2020, 9857987. https://doi.org/10.1155/2020/9857987
Lombardo, M. V., Chakrabarti, B., Bullmore, E. T., amp; Baron- Cohen, S. (2011). Specialization of right temporo-parietal junction for mentalizing and its relation to social impairments in autism. NeuroImage, 56(3), 1832?1838. https://doi.org/10.1016/j.neuroimage.2011.02.067
Long, D., Yang, T., Chen, J., Dai, Y., Chen, L., Jia, F., ... Li, T. (2022). Age of diagnosis and demographic factors associated with autism spectrum disorders in chinese children: A multi-center survey. Neuropsychiatric Disease and Treatment, 18, 3055?3065. https://doi.org/10.2147/ NDT.S374840
Maenner, M. J., Shaw, K. A., Baio, J., Washington, A., Patrick, M., DiRienzo, M., ... Dietz, P. M. (2020). Prevalence of autism spectrum disorder among children aged 8 years -- Autism and developmental disabilities monitoring network, 11 sites, United States, 2016. Morbidity and Mortality Weekly Report. Surveillance Summaries, 69(4), 1?12. https://doi.org/10.15585/mmwr. ss6904a1
McPartland, J. C., Bernier, R. A., Jeste, S. S., Dawson, G., Nelson, C. A., Chawarska, K., ... Webb, S. J. (2020). The autism biomarkers consortium for clinical trials (ABC-CT): Scientific context, study design, and progress toward biomarker qualification. Frontiers in Integrative Neuroscience, 14, 16. https://doi.org/10.3389/fnint.2020. 00016
Monk, C. S., Peltier, S. J., Wiggins, J. L., Weng, S.-J., Carrasco, M., Risi, S., amp; Lord, C. (2009). Abnormalities of intrinsic functional connectivity in autism spectrum disorders. NeuroImage, 47(2), 764?772. https://doi.org/10. 1016/j.neuroimage.2009.04.069
Ni, H. C., Chen, Y. L., Chao, Y. P., Wu, C. T., Chen, R. S., Chou, T. L., Gau, S. S. F., amp; Lin, H. Y. (2023). A lack of efficacy of continuous theta burst stimulation over the left dorsolateral prefrontal cortex in autism: A double blind randomized sham-controlled trial. Autism Research, 16(6), 1247?1262. https://doi.org/10.1002/aur.2954
Ni, H. C., Chen, Y. L., Chao, Y. P., Wu, C. T., Wu, Y. Y., Liang, S. H. Y., ... Lin, H. Y. (2021). Intermittent theta burst stimulation over the posterior superior temporal sulcus for children with autism spectrum disorder: A 4-week randomized blinded controlled trial followed by another 4-week open-label intervention. Autism, 25(5), 1279?1294. https://doi.org/10.1177/1362361321990534
Oblak, A. L., Gibbs, T. T., amp; Blatt, G. J. (2010). Decreased GABA (B) receptors in the cingulate cortex and fusiform gyrus in autism. Journal of Neurochemistry, 114(5), 1414? 1423. https://doi.org/10.1111/j.1471-4159.2010.06858.x
Patriquin, M. A., DeRamus, T., Libero, L. E., Laird, A., amp; Kana, R. K. (2016). Neuroanatomical and neurofunctional markers of social cognition in autism spectrum disorder. Human Brain Mapping, 37(11), 3957?3978. https://doi. org/10.1002/hbm.23288
Philip, R. C. M., Dauvermann, M. R., Whalley, H. C., Baynham, K., Lawrie, S. M., amp; Stanfield, A. C. (2012). A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders. Neuroscience and Biobehavioral Reviews, 36(2), 901?942. https://doi. org/10.1016/j.neubiorev.2011.10.008
Saxe, R., amp; Kanwisher, N. (2003). People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. NeuroImage, 19(4), 1835?1842. https://doi.org/10.1016/s1053-8119(03)00230-1
Sheldrick, R. C., Maye, M. P., amp; Carter, A. S. (2017). Age at first identification of autism spectrum disorder: An analysis of two US surveys. Journal of the American Academy of Child and Adolescent Psychiatry, 56(4), 313?320. https://doi.org/10.1016/j.jaac.2017.01.012
Sokhadze, E., Baruth, J., Tasman, A., Mansoor, M., Ramaswamy, R., Sears, L., Mathai, G., El-Baz, A., amp; Casanova, M. F. (2010). Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects event- related potential measures of novelty processing in autism. Applied Psychophysiology Biofeedback, 35(2), 147?161. https://doi.org/10.1007/s10484-009-9121-2
Sokhadze, E. M., El-Baz, A., Baruth, J., Mathai, G., Sears, L., amp; Casanova, M. F. (2009). Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. Journal of Autism and Developmental Disorders, 39(4), 619?634. https://doi.org/10.1007/s10803-008-0662-7
Sokhadze, E. M., Lamina, E. V., Casanova, E. L., Kelly, D. P., Opris, I., Tasman, A., amp; Casanova, M. F. (2018). Exploratory study of rTMS neuromodulation effects on electrocortical functional measures of performance in an oddball test and behavioral symptoms in autism. Frontiers in Systems Neuroscience, 12, 20. https://doi.org/10.3389/ fnsys.2018.00020
Sokhadze, G. E., Casanova, M. F., Kelly, D. P., Casanova, E. L., Russell, B., amp; Sokhadze, E. M. (2017). Neuromodulation based on rTMS affects behavioral measures and autonomic nervous system activity in children with autism. NeuroRegulation, 4(2), 65?78. https://doi.org/10.15540/nr.4.2.65
Solomon, M., Ozonoff, S. J., Cummings, N., amp; Carter, C. S. (2008). Cognitive control in autism spectrum disorders. International Journal of Developmental Neuroscience, 26(2), 239?247. https://doi.org/10.1016/j.ijdevneu.2007. 11.001
Sperduti, M., Guionnet, S., Fossati, P., amp; Nadel, J. (2014). Mirror neuron system and mentalizing system connect during online social interaction. Cognitive Processing, 15(3), 307?316. https://doi.org/10.1007/s10339-014-0600-x
Sun, X., Allison, C., Wei, L., Matthews, F. E., Auyeung, B., Wu, Y. Y., ... Brayne, C. (2019). Autism prevalence in China is comparable to western prevalence. Molecular Autism, 10, 7. https://doi.org/10.1186/s13229-018-0246-0
Tan, T., Wang, W., Xu, H., Huang, Z., Wang, Y. T., amp; Dong, Z. (2018). Low-frequency rTMS ameliorates autistic-like behaviors in rats induced by neonatal isolation through regulating the synaptic GABA transmission. Frontiers in Cellular Neuroscience, 12, 46. https://doi.org/10.3389/ fncel.2018.00046
Towle, P. O., Patrick, P. A., Ridgard, T., Pham, S., amp; Marrus, J. (2020). Is earlier better? The relationship between age when starting early intervention and outcomes for children with autism spectrum disorder: A selective review. Autism Research and Treatment, 2020, 7605876. https://doi.org/ 10.1155/2020/7605876
Uddin, L. Q., Supekar, K., Lynch, C. J., Khouzam, A., Phillips, J., Feinstein, C., Ryali, S., amp; Menon, V. (2013). Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry, 70(8), 869?879. https://doi.org/10.1001/ jamapsychiatry.2013.104
Uddin, L. Q., Supekar, K., amp; Menon, V. (2010). Typical and atypical development of functional human brain networks: Insights from resting-state FMRI. Frontiers in Systems Neuroscience, 4, 21. https://doi.org/10.3389/fnsys.2010. 00021
Vivanti, G., Prior, M., Williams, K., amp; Dissanayake, C. (2014). Predictors of outcomes in autism early intervention: Why don’t we know more? Frontiers in Pediatrics, 2, 58. https://doi.org/10.3389/fped.2014.00058
Wang, W., Liu, J., Shi, S., Liu, T., Ma, L., Ma, X., Tian, J., Gong, Q., amp; Wang, M. (2018). Altered resting-state functional activity in patients with autism spectrum disorder: A quantitative meta-analysis. Frontiers in Neurology, 9, 556. https://doi.org/10.3389/fneur.2018.00556
Wang, Y., Hensley, M. K., Tasman, A., Sears, L., Casanova, M. F., amp; Sokhadze, E. M. (2016). Heart rate variability and skin conductance during repetitive TMS course in children with autism. Applied Psychophysiology Biofeedback, 41(1), 47?60. https://doi.org/10.1007/s10484- 015-9311-z
Yang, Y., Jiang, L., He, R., Song, P., Xu, P., Wang, Y., amp; Li, F. (2023). Repetitive transcranial magnetic stimulation modulates long-range functional connectivity in autism spectrum disorder. Journal of Psychiatric Research, 160, 187?194. https://doi.org/10.1016/j.jpsychires.2023.02.021
Yang, Y., Wang, H., Xue, Q., Huang, Z., amp; Wang, Y. (2019). High-frequency repetitive transcranial magnetic stimulation applied to the parietal cortex for low- functioning children with autism spectrum disorder: A case series. Frontiers in Psychiatry, 10, 293. https://doi. org/10.3389/fpsyt.2019.00293
Yuan, L. X., Wang, X. K., Yang, C., Zhang, Q. R., Ma, S. Z., Zang, Y. F., amp; Dong, W. Q. (2024). A systematic review of transcranial magnetic stimulation treatment for autism spectrum disorder. Heliyon, 10(11), e32251. https://doi. org/10.1016/j.heliyon.2024.e32251
Zapparrata, N. M., Brooks, P. J., amp; Ober, T. M. (2023). Slower processing speed in autism spectrum disorder: A meta-analytic investigation of time-based tasks. Journal of Autism and Developmental Disorders, 53(12), 4618?4640. https://doi.org/10.1007/s10803-022-05736-3
Zewdie, E., Ciechanski, P., Kuo, H. C., Giuffre, A., Kahl, C., King, R., ... Kirton, A. (2020). Safety and tolerability of transcranial magnetic and direct current stimulation in children: Prospective single center evidence from 3.5 million stimulations. Brain Stimulation, 13(3), 565?575. https://doi.org/10.1016/j.brs.2019.12.025
Treatment of autism spectrum disorder: The potential role of repetitive transcranial magnetic stimulation
TIAN Renxia1, YANG Ping1, GUO Yuanyuan1, WU Xia2
(1"School of Psychology, Guizhou Normal University, Guiyang"550025, China)(2"Institute of Brain Research and Rehabilitation, South China Normal University, Guangzhou 510898, China)
Abstract: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized by heterogeneous etiology and manifestations, with no definitive effective clinical treatment currently available. Repetitive Transcranial Magnetic Stimulation (rTMS), as a neuromodulation technique, has shown promising therapeutic potential in ASD treatment. Research indicates that low-frequency rTMS can modulate the excitation-inhibition balance of the cerebral cortex, while high-frequency rTMS can enhance the excitability of target brain regions. This study demonstrates that low-frequency rTMS targeting the dorsolateral prefrontal cortex in ASD can ameliorate repetitive and stereotyped behaviors, while high-frequency rTMS directed at the temporoparietal junction can improve social interaction deficits. Future research should focus on exploring the optimal age window for rTMS intervention, implementing rigorous double-blind, sham-controlled, and randomized crossover experimental designs, and integrating clinical scale assessments, behavioral measurements, and neurobiological indicators of target brain regions for efficacy evaluation, thereby providing more reliable evidence-based support for clinical practice.
Keywords:"autism spectrum disorder, repetitive transcranial magnetic stimulation, dorsolateral prefrontal cortex,"temporoparietal junction