[摘要]"胃腸運動異常與黏膜屏障異常是胃腸道疾病的發病機制。研究表明促腎上腺皮質激素釋放因子在胃腸道中發揮重要作用,可通過4種相關肽發揮作用。一方面是通過迷走神經、神經元和5-羥色胺等參與調控胃腸運動;另一方面是通過調控肥大細胞的活化和腸上皮細胞的分化調節黏膜屏障。本文綜述促腎上腺皮質激素釋放因子及其相關肽在胃腸運動、黏膜屏障和免疫反應中的作用,并探討其在胃腸道疾病中的作用,為胃腸道疾病治療提供新的思路。
[關鍵詞]"促腎上腺皮質激素釋放因子;胃腸道疾病;胃腸運動;黏膜屏障
[中圖分類號]"R57""""""[文獻標識碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2025.11.027
腸易激綜合征、功能性消化不良等胃腸道疾病的發生機制較為復雜,通常認為其與胃腸運動障礙和黏膜障礙密切相關[1-2]。促腎上腺皮質激素釋放因子(corticotropin"releasing"factor,CRF)最早于1981年從腦中分離出來[3]。當時主要認為CRF只通過中樞效應發揮作用,中樞性CRF主要在下丘腦的腦室旁核中表達,并參與改變大腦自主神經系統活動。CRF拮抗劑可阻斷CRF相關和應激相關的胃、結腸運動功能改變[4]。CRF在胃腸運動和胃腸黏膜功能中也發揮關鍵作用;在結腸中檢測到CRF存在外周效應[5-6]。CRF家族肽可與2種類型的G蛋白偶聯受體相互作用,即CRF受體(CRF-receptor,CRF-R)1和CRF-R2。在胃腸運動中,CRF與CRF-R1結合可刺激結腸轉運和蠕動;而CRF與CRF-R2發生相互作用時,胃排空和蠕動被抑制;給予CRF-R拮抗劑,胃排空延遲、結腸運動功能刺激和黏膜通透性可被抑制[7]。CRF的釋放被認為可對中樞炎癥細胞因子的合成產生影響,這些細胞因子被視作神經炎癥的關鍵分子[8]。本文綜述CRF及其相關肽在胃腸運動、黏膜屏障和免疫反應中的作用,并探討其在胃腸道疾病中的作用,為胃腸道疾病治療提供新的思路。
1""CRF相關受體及其相關肽概述
CRF神經肽家族包括促腎上腺皮質釋放激素(corticotropin-releasing"hormone,CRH)、尿皮質素肽(urocortin,Ucn)Ⅰ、UcnⅡ和UcnⅢ"4個成員[9-12]。在哺乳動物中,CRF主要在下丘腦的室旁核和杏仁核的中央核中合成,不僅表達于大腦皮層、嗅球等,也表達于包括胃腸道在內的外周器官中。研究表明黏膜下層和肌肉層的神經元、腸嗜鉻細胞和免疫細胞等均可釋放CRF[13-14]。CRF在下丘腦–垂體–腎上腺(hypothalamic-pituitary-adrenal,HPA)軸中的作用主要是激活HPA軸,并協調機體對壓力的自主神經反應、免疫反應、行為反應、神經內分泌反應等維持機體穩態[15]。CRF-R1的免疫反應廣泛分布于胃、小腸和大腸的腸肌叢及小腸和大腸黏膜下叢。CRF-R1介導CRF對腸道神經系統神經元的調控作用。CRF優先通過CRF-R1起作用,CRF與CRF-R1的結合親和力是CRF-R2的15倍[16-17]。CRF-R2在胃中隱窩管腔表面及黏膜下層血管中被發現[18]。CRF-R1與CRF-R2在不同組織中的表達水平不同,且在不同組織中的收縮程度也不同[19]。
2""CRF在胃腸道疾病中的作用
2.1""胃腸運動
腦內注射CRF或相關肽可引起胃腸排空障礙和胃腸運動障礙[20]。在大鼠腦內注射CRF可抑制大鼠液體實驗的胃排空;在狗側腦室注射CRF可抑制其對固體食物的排空,同時可對消化期間的運動產生持續性破壞[21-23]。CRF-R抑制劑可阻斷或減輕應激對胃排空的抑制作用。CRF在胃排空中的作用可被迷走神經切除術所阻斷,證明CRF對胃排空的抑制作用與迷走神經有關[24]。促甲狀腺激素釋放激素腦內注射可引起迷走神經興奮,胃收縮性增強,而在腦室中注射CRF則可抑制這種效應[25]。
中樞CRF可在外周作用下通過調節5-羥色胺(5-hydroxytryptamin,5-HT)的釋放參與胃腸運動。人體內90%的5-HT存在于消化道黏膜中,與胃腸運動關系密切,參與神經遞質的釋放和平滑肌的運動[26]。研究表明5-HT與外周和中樞CRF介導的胃腸道功能改變有關[27]。在動物實驗中發現,提高中樞神經系統釋放的CRF在外周作用下促進5-HT的釋放,束縛應激和體內注射CRF可顯著提高近端結腸腔內5-HT的水平;使用5-HT拮抗劑可消除由中樞CRF引起的排便增加[28-29]。這可歸因于約束壓力刺激迷走神經,通過中央CRF支配近端結腸,導致5-HT增多在近端結腸的釋放。
研究認為中樞CRF通過調節神經元影響胃腸運動。膽堿能神經元與硝能神經元是腸神經系統(enteric"nervous"system,ENS)中的一種肌腸興奮性神經元。神經元傳遞的興奮性遞質乙酰膽堿可作用于腸神經元上的煙堿受體,從而在胃腸運動中發揮重要作用。一項注射CRF-R1拮抗劑、河豚毒素和阿托品的研究發現,UncⅠ和CRF在ENS中可作為興奮性神經遞質,增強膽堿能神經傳遞,增強結腸收縮力[30]。外周注射CRF可直接作用于結腸CRF-R1的膽堿能神經元和硝能神經元,從而參與結腸功能的調節[31]。
2.2""黏膜屏障
胃腸道屏障功能可受到急性或慢性心理壓力的影響,導致胃腸道通透性增加,這是胃腸道疾病臨床癥狀發生的重要病機[32-33]。腸道屏障紊亂可促進細菌從管腔進入固有層運動,同時嚴重損害其他重要功能,包括營養物質的吸收、離子的運輸、分泌和運動[34]。肥大細胞維持腸道屏障功能的關鍵在于其不僅可調節上皮功能的完整性和先天性或適應性黏膜免疫,還可維持神經–免疫相互作用。當腔內抗原進入黏膜時,腸道屏障遭到破壞,進一步促進黏膜中肥大細胞的活化,從肥大細胞中釋放的胰蛋白酶可繼續影響腸道通透性和緊密連接蛋白的表達[35]。在動物實驗中,靶向肥大細胞功能的治療可逆轉腸上皮黏膜異常,而在使用肥大細胞穩定劑后可逆轉腸黏膜通透性,肥大細胞在腸道屏障功能中發揮關鍵作用[36-37]。研究表明肥大細胞通過局部神經免疫相互作用在大腦和腸道之間形成連接,主要是通過CRF發揮作用。CRF已被證明在多種動物和人體組織模型中誘導腸道屏障紊亂。一項使用CRF激動劑的實驗發現結腸黏膜的通透性有所增加[38]。研究表明CRF對黏膜屏障的影響是通過肥大細胞實現的,肥大細胞活化介導CRF發揮作用[39]。肥大細胞被激活后可釋放多種促炎介質,影響腸上皮屏障功能[40]。
除調節肥大細胞參與黏膜屏障功能外,CRF對腸上皮細胞(intestinal"epithelial"cell,IEC)的分化也有影響。黏膜完整性的喪失是與功能性消化不良相關的低度十二指腸炎癥的核心特征[41]。在炎癥性腸病中也發現腸道屏障炎癥破壞的現象。IEC在屏障形成及營養物質的攝取和載運等方面發揮重要作用。Estienne等[42]研究表明CRF-R1和CRF-R2激活可顯著誘導IEC分化改變,導致腸內分泌細胞增生及Paneth和Goblet細胞耗竭,從而導致上皮屏障缺陷進展。使用CRF-R2拮抗劑Astressin"2B預處理,CRF-R2可改變緊密連接蛋白和黏附連接蛋白的膜分布[43]。CRF-R主要與Gα偶聯,觸發環磷酸腺苷的形成[44]。該信號通路可參與IEC細胞間黏附復合物的解離[45]。此外,CRF-R還可通過促進Src激酶自磷酸化激活Src激酶[46]。Src激酶可通過調節細胞間連接蛋白的磷酸化狀態促進腸道屏障打開而激活[47]。
2.3""免疫反應
HPA軸在功能上是一種激素刺激級聯反應,是應激反應和免疫/炎癥過程的關鍵因素[48]。以激活HPA軸和交感神經系統為特征的慢性應激是炎癥發生發展的重要原因[49]。CRH作為中樞活性分子通過HPA軸間接參與炎癥發生。此外,HPA軸在多個層面與免疫系統通信,參與糖皮質激素的產生等[50]。HPA軸和免疫之間的雙向相互作用有助于其在炎癥中發揮作用。HPA軸的激活可導致CRH、促腎上腺皮質激素和皮質醇的分泌調節免疫反應,而免疫相關物質可反向刺激HPA軸[51]。慢性應激使小鼠對結腸炎敏感,并增強結腸固有層中促炎細胞的浸潤[52]。結腸白細胞介素-6(interleukin-6,IL-6)的水平顯著增加,而IL-6是一種應激誘導細胞因子,會以正反饋方式進一步激活HPA軸[53]。在潰瘍性結腸炎患者大腸中,CRH的表達在黏膜炎癥細胞中顯著提高,在結腸黏膜上皮細胞中略有增加,表明CRH在潰瘍性結腸炎中通過調節腸道免疫/炎癥系統發揮作用。
3"nbsp;小結與展望
CRF及其相關肽是通過調節神經活性、免疫反應等對胃腸運動和黏膜屏障發揮重要作用。CRF及其相關肽調控肥大細胞活化導致胃腸黏膜屏障損傷和免疫反應,這可能是導致胃腸道疾病發生的原因。抑制CRF及其相關肽對肥大細胞的活化可能是恢復胃腸道功能的策略。CRF及其相關肽有可能成為一系列疾病的重要機制。未來研究應著重揭示CRF及其相關肽與肥大細胞的活化、與神經元之間的直接影響及與免疫反應之間的關系,更好地將中樞性與外周性CRF及其相關肽明確劃分,深入揭示CRF及其相關肽在胃腸道疾病中的機制,為治療胃腸道疾病提供新的思路。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] HUANG"K"Y,"WANG"F"Y,"LV"M,"et"al."Irritable"bowel"syndrome:"Epidemiology,"overlap"disorders,"pathophysiology"and"treatment[J]."World"J"Gastroenterol,"2023,"29(26):"4120–4135.
[2] OSHIMA"T."Functional"dyspepsia:"Current"understanding"and"future"perspective[J]."Digestion,"2024,"105(1):"26–33.
[3] VALE"W,"SPIESS"J,"RIVIER"C,"et"al."Characterization"of"a"41-residue"ovine"hypothalamic"peptide"that"stimulates"secretion"of"corticotropin"and"beta-endorphin[J]."Science,"1981,"213(4514):"1394–1397.
[4] MARTíNEZ"V,"RIVIER"J,"WANG"L,"et"al."Central"injection"of"a"new"corticotropin-releasing"factor"(CRF)"antagonist,"astressin,"blocks"CRF-"and"stress-related"alterations"of"gastric"and"colonic"motor"function[J].""""J"Pharmacol"Exp"Ther,"1997,"280(2):"754–760.
[5] DAUTZENBERG"F"M,"HAUGER"R"L."The"CRF"peptide"family"and"their"receptors:"Yet"more"partners"discovered[J]."Trends"Pharmacol"Sci,"2002,"23(2):"71–77.
[6] LIU"S,"GAO"X,"GAO"N,"et"al."Expression"of"type"1"corticotropin-releasing"factor"receptor"in"the"guinea"pig"enteric"nervous"system[J]."J"Comp"Neurol,"2005,"481(3):"284-298.
[7] TACHé"Y,"PERDUE"M"H."Role"of"peripheral"CRF"signalling"pathways"in"stress-related"alterations"of"gut"motility"and"mucosal"function[J]."Neurogastroenterol"Motil,"2004,"16"(Suppl"1):"137–142.
[8] HAGAN"P,"POOLE"S,"BRISTOW"A"F."Endotoxin-"stimulated"production"of"rat"hypothalamic"interleukin-1"beta"in"vivo"and"in"vitro,"measured"by"specific"immunoradiometric"assay[J]."J"Mol"Endocrinol,"1993,"11(1):"31–36.
[9] FRIEDMAN"E"M,"IRWIN"M"R."A"role"for"CRH"and"the"sympathetic"nervous"system"in"stress-induced"immuno-"suppression[J]."Ann"N"Y"Acad"Sci,"1995,"771:"396–418.
[10] VAUGHAN"J,"DONALDSON"C,"BITTENCOURT"J,""et"al."Urocortin,"a"mammalian"neuropeptide"related"to"fish"urotensin"Ⅰ"and"to"corticotropin-releasing"factor[J]."Nature,"1995,"378(6554):"287–292.
[11] REYES"T"M,"LEWIS"K,"PERRIN"M"H,"et"al."Urocortin"Ⅱ:"A"member"of"the"corticotropin-releasing"factor"(CRF)"neuropeptide"family"that"is"selectively"bound"by"type"2"CRF"receptors[J]."Proc"Natl"Acad"Sci"U"S"A,"2001,"98(5):"2843–2848.
[12] LEWIS"K,"LI"C,"PERRIN"M"H,"et"al."Identification"of"urocortin"Ⅲ,"an"additional"member"of"the"corticotropin-"releasing"factor"(CRF)"family"with"high"affinity"for"the"CRF2"receptor[J]."Proc"Natl"Acad"Sci"U"S"A,"2001,"98(13):"7570–7575.
[13] NOZU"T,"OKUMURA"T."Pathophysiological"commonality"between"irritable"bowel"syndrome"and"metabolic"syndrome:"Role"of"corticotropin-releasing"factor-toll-like"receptor"4-proinflammatory"cytokine"signaling[J]."""""J"Neurogastroenterol"Motil,"2022,"28(2):"173–184.
[14] YUAN"P"Q,"WU"S"V,"WANG"L,"et"al."Corticotropin"releasing"factor"in"the"rat"colon:"Expression,"localization"and"upregulation"by"endotoxin[J]."Peptides,"2010,"31(2):"322–331.
[15] CHROUSOS"G"P."The"hypothalamic-pituitary-adrenal"axis"and"immune-mediated"inflammation[J]."N"Engl"J"Med,"1995,"332(20):"1351–1362.
[16] REUL"J"M,"HOLSBOER"F."Corticotropin-releasing"factor"receptors"1"and"2"in"anxiety"and"depression[J]."Curr"Opin"Pharmacol,"2002,"2(1):"23–33.
[17] LIU"S,"GAO"N,"HU"H"Z,"et"al."Distribution"and"chemical"coding"of"corticotropin-releasing"factor-immunoreactive"neurons"in"the"guinea"pig"enteric"nervous"system[J]."J"Comp"Neurol,"2006,"494(1):"63–74.
[18] CHATZAKI"E,"CROWE"P"D,"WANG"L,"et"al."CRF"receptor"type"1"and"2"expression"and"anatomical"distribution"in"the"rat"colon[J]."J"Neurochem,"2004,"90(2):"309–316.
[19] PORCHER"C,"JUHEM"A,"PEINNEQUIN"A,"et"al."Expression"and"effects"of"metabotropic"CRF1"and"CRF2"receptors"in"rat"small"intestine[J]."Am"J"Physiol"Gastrointest"Liver"Physiol,"2005,"288(5):"G1091–G1103.
[20] TACHE"Y,"LARAUCHE"M,"YUAN"P"Q,"et"al."Brain"and"gut"CRF"signaling:"Biological"actions"and"role"in"the"gastrointestinal"tract[J]."Curr"Mol"Pharmacol,"2018,"11(1):"51–71.
[21] TACHé"Y,"MAEDA-HAGIWARA"M,"TURKELSON""""C"M."Central"nervous"system"action"of"corticotropin-"releasing"factor"to"inhibit"gastric"emptying"in"rats[J]."Am"J"Physiol,"1987,"253(2"Pt"1):"G241–G245.
[22] LEE"C,"SARNA"S"K."Central"regulation"of"gastric"emptying"ofnbsp;solid"nutrient"meals"by"corticotropin"releasing"factor[J]."Neurogastroenterol"Motil,"1997,"9(4):"221–229.
[23] BUENO"L,"FIORAMONTI"J."Effects"of"corticotropin-"releasing"factor,"corticotropin"and"cortisol"on"gastrointestinal"motility"in"dogs[J]."Peptides,"1986,"7(1):"73–77.
[24] BROCCARDO"M,"IMPROTA"G."Pituitary-adrenal"and"vagus"modulation"of"sauvagine-"and"CRF-induced"inhibition"of"gastric"emptying"in"rats[J]."Eur"J"Pharmacol,"1990,"182(2):"357–362.
[25] 李兆東."促腎上腺皮質激素釋放激素與胃腸道運動[J]."國外醫學(內科學分冊),"1998(3):"102-104.
[26] 王施君,"陳朝元,"何順勇."5-羥色胺與功能性消化不良研究進展[J]."中國現代醫藥雜志,"2008,"10(10):"135–136.
[27] M?NNIKES"H,"TEBBE"J"J,"HILDEBRANDT"M,"et"al."Role"of"stress"in"functional"gastrointestinal"disorders."Evidence"for"stress-induced"alterations"in"gastrointestinal"motility"and"sensitivity[J]."Dig"Dis,"2001,"19(3):"201–211.
[28] MIYATA"K,"ITO"H,"FUKUDO"S."Involvement"of"the"5-HT3"receptor"in"CRH-induce"defecation"in"rats[J]."Am"J"Physiol,"1998,"274(5):"G827–G831.
[29] MIYATA"K,"KAMATO"T,"NISHIDA"A,"et"al."Role"of"the"serotonin3"receptor"in"stress-induced"defecation[J].""""J"Pharmacol"Exp"Ther,"1992,"261(1):"297–303.
[30] KIMURA"T,"AMANO"T,"UEHARA"H,"et"al."Urocortin"Ⅰ"is"present"in"the"enteric"nervous"system"and"exerts"an"excitatory"effect"via"cholinergic"and"serotonergic"pathways"in"the"rat"colon[J]."Am"J"Physiol"Gastrointest"Liver"Physiol,"2007,"293(4):"G903–G910.
[31] YUAN"P"Q,"MILLION"M,"WU"S"V,"et"al."Peripheral"corticotropin"releasing"factor"(CRF)"and"a"novel"CRF1"receptor"agonist,"stressin1-A"activate"CRF1"receptor"expressing"cholinergic"and"nitrergic"myenteric"neurons"selectively"in"the"colon"of"conscious"rats[J]."Neuroga-"stroenterol"Motil,"2007,"19(11):"923–936.
[32] HART"A,"KAMM"M"A."Review"article:"Mechanisms"of"initiation"and"perpetuation"of"gut"inflammation"by"stress[J]."Aliment"Pharmacol"Ther,"2002,"16(12):"2017–2028.
[33] ZHAO"J,"WANG"J,"DONG"L,"et"al."A"protease"inhibitor"against"acute"stress-induced"visceral"hypersensitivity"and"paracellular"permeability"in"rats[J]."Eur"J"Pharmacol,"2011,"654(3):"289–294.
[34] TEITELBAUM"A"A,"GAREAU"M"G,"JURY"J,"et"al."Chronic"peripheral"administration"of"corticotropin-"releasing"factor"causes"colonic"barrier"dysfunction"similar"to"psychological"stress[J]."Am"J"Physiol"Gastrointest"Liver"Physiol,"2008,"295(3):"G452–G459.
[35] BUENO"L,"FIORAMONTI"J."Protease-activated"receptor"2"and"gut"permeability:"A"review[J]."Neurogastroenterol"Motil,"2008,"20(6):"580–587.
[36] DEMAUDE"J,"SALVADOR-CARTIER"C,"FIORAMONTI"J,"et"al."Phenotypic"changes"in"colonocytes"following"acute"stress"or"activation"of"mast"cells"in"mice:"Implications"for"delayed"epithelial"barrier"dysfunction[J]."Gut,"2006,"55(5):"655–661.
[37] YANG"X,"SHENG"L,"GUAN"Y,"et"al."Synaptic"plasticity:"The"new"explanation"of"visceral"hypersensitivity"in"rats"with"Trichinella"spiralis"infection?[J]."Dig"Dis"Sci,"2009,"54(5):"937–946.
[38] SANTOS"J,"YATES"D,"GUILARTE"M,"et"al."Stress"neuropeptides"evoke"epithelial"responses"via"mast"cell"activation"in"the"rat"colon[J]."Psychoneuroendocrinology,"2008,"33(9):"1248–1256.
[39] WALLON"C,"YANG"P"C,"KEITA"A"V,"et"al."Corticotropin-"releasing"hormone"(CRH)"regulates"macromolecular"permeability"via"mast"cells"in"normal"human"colonic"biopsies"in"vitro[J]."Gut,"2008,"57(1):"50–58.
[40] ABRAHAM"S"N,"ST"JOHN"A"L."Mast"cell-orchestrated"immunity"to"pathogens[J]."Nat"Rev"Immunol,"2010,"10(6):"440–452.
[41] JUNG"H"K,"TALLEY"N"J."Role"of"the"duodenum"in"the"pathogenesis"of"functional"dyspepsia:"A"paradigm"shift[J]."J"Neurogastroenterol"Motil,"2018,"24(3):"345–354.
[42] ESTIENNE"M,"CLAUSTRE"J,"CLAIN-GARDECHAUX"G,"et"al."Maternal"deprivation"alters"epithelial"secretory"cell"lineages"in"rat"duodenum:"Role"of"CRF-related"peptides[J]."Gut,"2010,"59(6):"744–751.
[43] DUCAROUGE"B,"PELISSIER-ROTA"M,"POWELL"R,"et"al."Involvement"of"CRF2"signaling"in"enterocyte"differentiation[J]."World"J"Gastroenterol,"2017,"23(28):"5127–5145.
[44] CHANG"J,"ADAMS"M"R,"CLIFTON"M"S,"et"al."Urocortin"1"modulates"immunosignaling"in"a"rat"model"of"colitis"via"corticotropin-releasing"factor"receptor"2[J]."Am"J"Physiol"Gastrointest"Liver"Physiol,"2011,"300(5):"G884–G894.
[45] BOUCHER"M"J,"LAPRISE"P,"RIVARD"N."Cyclic"AMP-dependent"protein"kinase"A"negatively"modulates"adherens"junction"integrity"and"differentiation"of"intestinal"epithelial"cells[J]."J"Cell"Physiol,"2005,"202(1):"178–190.
[46] YUAN"Z,nbsp;MCCAULEY"R,"CHEN-SCARABELLI"C,""et"al."Activation"of"Src"protein"tyrosine"kinase"plays"an"essential"role"in"urocortin-mediated"cardioprotection[J]."Mol"Cell"Endocrinol,"2010,"325(1-2):"1–7.
[47] GUMBINER"B"M."Regulation"of"cadherin"adhesive"activity[J]."J"Cell"Biol,"2000,"148(3):"399–404.
[48] YODER"J"M,"BRANDELAND"M,"ENGELAND"W"C."Phase-dependent"resetting"of"the"adrenal"clock"by"ACTH"in"vitro[J]."Am"J"Physiol"Regul"Integr"Comp"Physiol,"2014,"306(6):"R387–R393.
[49] BITTMAN"E"L,"DOHERTY"L,"HUANG"L,"et"al."Period"gene"expression"in"mouse"endocrine"tissues[J]."Am"J"Physiol"Regul"Integr"Comp"Physiol,"2003,"285(3):"R561–R569.
[50] OSTER"H,"DAMEROW"S,"KIESSLING"S,"et"al."The"circadian"rhythm"of"glucocorticoids"is"regulated"by"a"gating"mechanism"residing"in"the"adrenal"cortical"clock[J]."Cell"Metab,"2006,"4(2):"163–173.
[51] FAHRENKRUG"J,"HANNIBAL"J,"GEORG"B."Diurnal"rhythmicity"of"the"canonical"clock"genes"Per1,"Per2"and"Bmal1"in"the"rat"adrenal"gland"is"unaltered"after"hypophysectomy[J]."J"Neuroendocrinol,"2008,"20(3):"323–329.
[52] BUSILLO"J"M,"AZZAM"K"M,"CIDLOWSKI"J"A."Glucocorticoids"sensitize"the"innate"immune"system"through"regulation"of"the"NLRP3"inflammasome[J]."J"Biol"Chem,"2011,"286(44):"38703–38713.
[53] GALON"J,"FRANCHIMONT"D,"HIROI"N,"et"al."Gene"profiling"reveals"unknown"enhancing"and"suppressive"actions"of"glucocorticoids"on"immune"cells[J]."FASEB"J,nbsp;2002,"16(1):"61–71.
(收稿日期:2024–12–17)
(修回日期:2025–01–07)

(上接第100頁)
[22] MEI"X,"ZHANG"R,"LI"D,"et"al."Association"betweennbsp;the"infections"of"trichomonas"vaginalis"and"uterine"cervical"human"papillomavirus:"A"Meta-analysis[J]."J"Obstet"Gynaecol,"2023,"43(1):"2194986.
[23] 門佳囡,"王震,"王丹凝,"等."高危型人乳頭瘤病毒與陰道微生態環境相關性的研究進展[J]."疑難病雜志,"2023,"22(12):"1332–1335.
[24] 陳囡."血清雌二醇、孕酮及其它影響因素與宮頸HR-HPV持續感染的相關性分析[D]."承德:"承德醫學院,"2023.
[25] R"S"J."The"immune"microenvironment"in"human"papilloma"virus-induced"cervical"lesions—evidence"for"estrogen"as"an"immunomodulator[J]."Front"Cell"Infect"Microbiol,"2021,"11:"649815.
[26] ABDULHUSSAIN"G,"AZIZIEH"F,"MAKHSEED"M,""et"al."Effects"of"progesterone,"dydrogesterone"and"estrogen"on"the"production"of"Th1/Th2/Th17"cytokines"by"lymphocytes"from"women"with"recurrent"spontaneous"miscarriage[J]."J"Reprod"Immunol,"2020,"140:"103132.
[27] 韓冰,"趙涵,"王麗琴,"等."尖銳濕疣與雌激素、孕激素相關性的研究進展[J]."皮膚性病診療學雜志,"2024,"31(3):"214–218.
[28] FISCHER"S,"KUEBLER"U,"ABBRUZZESE"E,"et"al."Endogenous"oestradiol"and"progesterone"as"predictors"of"oncogenic"human"papillomavirus"(HPV)"persistence[J]."BMC"Cancer,"2022,"22(1):"145.
[29] QI"S"Y,"YANG"M"M,"LI"C"Y,"et"al."The"HPV"viral"regulatory"mechanism"of"TLRs"and"the"related"treatments"for"HPV-associated"cancers[J]."Front"Immunol,"2024,"15:"1407649.
[30] WANG"Q,"QIN"W,"GAO"W,"et"al."Correlation"between"vaginal"flora"and"cervical"immune"function"of"human"papilloma"virus-infected"patients"with"cervical"cancer[J]."Afr"Health"Sci,"2023,"23(2):"179–185.
[31] ZHENG"J,"ZHAO"R,"DENG"C."Correlation"analysis"of"vaginal"flora"and"immune"function"Th1/Th2"imbalance"in"women"with"high-risk"HPV"infections"in"the"female"reproductive"tract[J]."Cell"Mol"Biol"(Noisy-le-grand),"2024,"70(1):"128–133.
(收稿日期:2024–11–28)
(修回日期:2025–01–04)