中圖分類號:S666 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2025)05-0957-12
Abstract: 【Objective】 Citrus is the largest fruit crop in the world and one of the most important economic crops in Southern China. Crossbreeding is one of the most effective methods for developing new citrus varieties.The use of molecular marker-assisted breeding has become one of the most effective ways to identify the genetic relationships of citrus.Polyembryony is a unique biological phenomenon in citrus plants and has been proven to be a dominant trait controlled by a single gene.The aim of this study was to utilize molecular marker detection technology for rapid and simple hybrid verification and polyembryony detection in the hybrid offspring of Kiyomi × Egan No. 1, in order to provide germplasm resources for the breeding of new citrus varieties.【Methods】 In this study,130 Kiyomi (Citrus unshiu Marc. ×C sinesis Osbeck) |×| Egan No.1(C.reticulata Blanc.‘Ponkan') hybrid offspring were utilized as materials.The SSR molecular markers were employed to identify the relationship between the 130 hybrid offspring and two parents, Kiyomi and Egan No.1. Two pairs of primers, mite_pl and mite_p2, which can identify citrus polyembryony traits,were used to differentiate the monoembryonic and polyembryonic traits of the hybrid ofspring.Among these 130 hybrid offspring,44 offspring were fruitbearing.The seeds of these 44 fruit-bearing hybrid offspring were colected for validation of the polyembryony molecular marker detection results.【Results】The primer CHR2-2 identified 103 hybrid offspring with amplification of distinct parental bands,achieving a hybrid identification rate of 79.23% The primer CHR8-3 identified 69 hybrid offspring with distinct parental bands,with a hybrid identification rate of 53.08% . The primer CHR8-4 identified 68 hybrid offspring with distinct parental bands, resulting in a hybrid identification rate of 52.31% .The comprehensive hybrid identification rate reached 99.23% . Using the NTSYSpc-2.10e software and the unweighted pair group method with arithmetic average (UPGMA),the similarity coefficients of all the hybrid offspring were obtained,ranging from 0.805 to 0.99,indicating relatively high genetic similarity among the ofspring.The hybrid offsprings in the largest cluster had a closer genetic relationship with the maternal parent Kiyomi, consisting of 45 offsprings, accounting for 34.62% . The hybrid offsprings in another cluster had a closer genetic relationship with the paternal parent Egan No. 1, consisting of 32 offsprings,accounting for 24.62% . The similarity coefficient between Egan No.1and some of the offsprings was 0.905,while the similarity coefficient with the maternal parent Kiyomi was O.81, indicating that these 32 offspring inherit more from the paternal lineage.The cluster analysis revealed that most hybrid ofsprings had a closer genetic relationship with the maternal parent Kiyomi than with the paternal parent Egan No.1. The polyembryony analysis of the 130 hybrid offsprings showed that 38 plants (29.23% ) exhibited only one band (no amplification of the MITE fragment), indicating they were monoembryonic offsprings. In contrast, 92 plants (2 (70.77%) ) exhibited three bands with the amplification of the MITE fragment,indicating they were polyembryonic offspring.The statistical analysis revealed a gene segregation ratio of1:2.42, with polyembryonic offspring outnumbering monoembryonic ones in the hybrid population.Based on the chi-square test, the chi-square value of polyembryony trait was 22.430 8 with a p value of 2.178 56E-06 (lt;0.05) , indicating that this trait may be regulated by multiple loci. Then,a statistical analysis of 44 fruit-bearing hybridoffspring ofKiyomi × Egan No.1 showed that13plants exhibited monoembryony,and 31 plants exhibited polyembryony, with a ratio of 1:2.38. Among them, 84.09% of the monoembryonic and polyembryonic traits results were consistent between the molecular marker detection results and the morphological observation results.【Conclusion】 The specific primers CHR2-2/CHR8-3/CHR8-4 were identifiedand could be used for genetic relationship identification in the offsprings of other hybrid combinations with Kiyomi as the maternal parent. According to the molecular markers detection,the segregation ratio of monoembryonic and polyembryonic offsprings was 1: 2.42, which was further validated with morphological observation, the polyembryony molecular markers demonstrated an 84.09% detectionsuccessratein thehybrid populationofKiyomi × Egan No. 1.
Key words: Citrus; Hybrid breeding; Molecular markers; Phylogenetic relationship; SSR; Polyembryony trait
柑橘是世界第一大類水果,也是中國南方地區(qū)最重要的經(jīng)濟(jì)作物之一,近年來中國柑橘產(chǎn)業(yè)一直保持穩(wěn)定增長態(tài)勢,柑橘栽培面積和產(chǎn)量不斷增加[。雜交育種是最有效的選育新品種方式之一,通過選擇具有優(yōu)良性狀的親本,利用基因重組技術(shù)實(shí)現(xiàn)親本優(yōu)良性狀的重新組合,但雜交后代群體性狀分離嚴(yán)重。利用分子標(biāo)記輔助育種方法已成為當(dāng)今鑒定柑橘親緣關(guān)系的有效途徑之一。
分子標(biāo)記技術(shù)可通過分析DNA片段差異對柑橘屬植物的遺傳多樣性進(jìn)行評估,從而揭示品種或物種間的遺傳差異及親緣關(guān)系。該技術(shù)在雜交后代親本鑒定中具有廣泛應(yīng)用,例如利用限制性片段長度多態(tài)性(RFLP)分析可確定雜交后代的遺傳特征和來源。簡單重復(fù)序列標(biāo)記(SSR)是由重復(fù)的2\~6 bpDNA片段特定序列為核心的分子標(biāo)記,也稱為微衛(wèi)星DNA(MicrosatelliteDNA)[2]。SSR標(biāo)記具有多態(tài)性高、易檢測的優(yōu)點(diǎn),被廣泛地應(yīng)用于親本來源鑒定和遺傳研究。王旭等用17對SSR引物對68份柚類種質(zhì)資源進(jìn)行遺傳背景研究,在遺傳距離0.36處將材料分成5個類群,達(dá)到與結(jié)構(gòu)分析結(jié)果基本一致的效果。周銳等通過SSR分子標(biāo)記對無酸甜橙、紅江橙、貢柑、年橘、新會柑、滑皮金柑的四倍體實(shí)生苗進(jìn)行鑒定,發(fā)現(xiàn)所鑒定的四倍體均來自其二倍體品種珠心細(xì)胞自然加倍形成的雙二倍體。Xu等利用SSR和SNP標(biāo)記構(gòu)建了柑橘高密度連鎖圖譜,將便于QTL定位和基因組研究。黃其椿等采用3個SSR分子標(biāo)記從廣西、重慶、四川種植的16個主栽柑橘品種中篩選出沃柑和無核沃柑。
種子多胚性是一種柑橘類植物特有的生物學(xué)現(xiàn)象,并已被證明為單基因控制的顯性性狀。利用分子標(biāo)記技術(shù)可在柑橘童期快速鑒定單多胚性,篩選單胚材料,避免多胚性對雜交育種的干擾,從而縮短育種周期[8]。因此,筆者在本研究中將利用SSR分子標(biāo)記技術(shù)對130份清見 × 鄂柑一號雜交后代進(jìn)行鑒定,結(jié)合毛細(xì)管熒光電泳技術(shù)高效收集數(shù)據(jù),分析其親緣關(guān)系及遺傳多樣性,為柑橘種質(zhì)資源利用及遺傳育種提供理論支持。
1 材料和方法
1.1試驗(yàn)材料
試驗(yàn)材料來源于湖北省農(nóng)業(yè)科學(xué)院果樹茶葉研究所國家柑橘原種保存圃(北緯 30°17′41′′ ,東經(jīng)114°8′29′′, 。以清見橘橙(CitrusunshiuMarc .×C. si-nesisOsbeck)為母本,以鄂柑一號碰柑(Citrusreticu-lataBlanc.‘Ponkan')為父本,經(jīng)常規(guī)雜交選育雜交F代。2021年3月共采集130份子代樣品。
1.2樣品DNA的提取及質(zhì)量檢測
以清見 × 鄂柑一號雜交后代的新葉為試材。利用改良CTAB法提取葉片DNA,DNA質(zhì)量利用1.0% 瓊脂糖凝膠電泳進(jìn)行檢測,并將各樣品質(zhì)量濃度稀釋至 200ng?μL-1 備用。
1.3SSR標(biāo)記引物的篩選及毛細(xì)管電泳
選取38對SSR引物(引物由武漢天一華煜基因科技有限公司合成),對兩個親本及130個雜交子代基因組DNA進(jìn)行PCR擴(kuò)增。PCR反應(yīng)體系為 20μL 10μL× EsTaqMasterMix(Dye),濃度為 10μmol?L-1 的正反向引物各 0.5μL,200μg μLDNA模板 0.5μL ddH2O8.5μL 。擴(kuò)增反應(yīng)程序?yàn)椋?94°C 預(yù)變性 2min94°C 變性 30s,55~65°C 退火 30s,72°C 延伸 30s 共30個循環(huán);最后 72°C 延伸 2min 。PCR產(chǎn)物置于4°C 冰箱保存。PCR產(chǎn)物由全自動毛細(xì)管電泳系統(tǒng)(QIAxcelAdvanced,QIAGEN)電泳分離。引物序列為:CHR2-2F:AAAACTCACTTACATTCATACA-CAC,CHR2-2R:GCACTTACCAAACCCCATCTC,CHR8-3F:TTTTAAGCTAACAAGCCCCC,CHR8-3R:ATGAATGGCCATGATTTTGC,CHR8-4F:ACAAG-TACGGCAAGGTCGT,CHR8-4R:TTCAACGCCCA-AAATTTGTT。
1.4雜交后代單多胚鑒定的PCR反應(yīng)體系和反應(yīng)程序
PCR反應(yīng)體系和程序參照Wang等[],并略作修改。PCR反應(yīng)體系總
的 2×Es TaqMasterMix, ddH2O8.2μL ,正反引物各 0.4μL (武漢天一華煜基因科技有限公司合成),DNA模板 1.0μL 。引物序列來源于王霞等[開發(fā)的引物mite_p1和mite_p2。PCR在PCR儀(C1000)上進(jìn)行。預(yù)變性
;變性 95°C30s ,退火 52°C30s ,延伸72°C60s,30 個循環(huán);終延伸
保存。引物序 列:mite_p1-F:GTACCGAATTACC-MCCCATAA,mite_p1-R:GTAGGATTTGGGTTATT-GATG,mite_p2-F:TCTGGTTCATTGAGAATCC-GCG,mite_p2-R:ATCATGTGGGTCATGGTAC。
1.5數(shù)據(jù)統(tǒng)計
數(shù)據(jù)均利用NTSYSpc21、MicrosoftExcel2010軟件進(jìn)行處理。
2 結(jié)果與分析
2.1 多態(tài)性引物的篩選
利用聚丙烯酰胺凝膠電泳技術(shù)對清見 .× 鄂柑一號雜交后代具有雙親特異性的引物進(jìn)行初步篩選。如圖1所示,在38對SSR引物中共獲得3對引物能夠在清見與鄂柑一號雙親中分別擴(kuò)增出特異性條帶,且F代中能同時擴(kuò)增出雙親特異性條帶。該結(jié)果在毛細(xì)管電泳中得到了相同的結(jié)果,證明這3對引物是可以用于鑒定清見 × 鄂柑一號雜交后代的SSR分子標(biāo)記。CHR8-3、CHR8-4和CHR2-2能夠擴(kuò)增出雙親各自的特異性條帶,并且在子代中具有較為明顯的差異,結(jié)果比較穩(wěn)定,所以利用這3對SSR特異性引物對清見 × 鄂柑一號的雜交F代進(jìn)行雜種鑒定。

2.2 SSR分子標(biāo)記雜種鑒定
利用毛細(xì)管電泳系統(tǒng)對130個清見 × 鄂柑一號雜交F鑒定。通過圖2所示,引物CHR2-2能在130個雜交F中擴(kuò)增出雙親條帶的子代有103個,雜種鑒定率為 79.23% 。如圖3所示,引物CHR8-3在130個清見×鄂柑一號雜交F中,有69個雜交后代能夠擴(kuò)增出雙親的特異性條帶,雜種鑒定率為 53.08% 。如圖4所示,引物CHR8-4對130個清見 .× 鄂柑一號雜交后代的鑒定結(jié)果中,有68個雜交后代能夠擴(kuò)增出雙親的特異性條帶,雜種鑒定率為 52.31% 。通過3對引物相互補(bǔ)充,綜合雜種鑒定率達(dá)到了 99.23%
2.3 聚類分析
通過篩選出的引物在子代中共擴(kuò)增出163條譜帶,利用NTSYSpc-2.10e軟件,使用不加權(quán)成對群算術(shù)平均法將子代SSR數(shù)據(jù)聚類分析,獲得UPGMA樹狀圖,如圖5所示。清見、鄂柑一號以及大部分雜交后代部分分離,相似系數(shù)約為0.81,樹狀圖簇基本符合當(dāng)前的分類。所有雜交后代的遺傳多樣性都很高,不同后代的相似系數(shù)范圍為 0.805~0.990 ,相似系數(shù)比較大。樹狀圖中最大的簇大約在0.881的相似度分成兩組。最大簇的較深部分被歸類為親緣關(guān)系傾向母本清見,共45株,占比 34.62% 。另外一簇歸類為親緣關(guān)系傾向父本鄂柑一號,共32個子代聚為一類,占比為 24.62% ,而鄂柑一號與部分子代聚集在一起,相似系數(shù)為0.905,與母本清見相似系數(shù)為0.810,說明這32個子代偏父系遺傳。在遺傳相似系數(shù)0.810處,將雜交后代和親本分為兩大類群,分別是母本清見與129個子代聚為一類,占比99.23% ,而QJ-082為一類,占比為 0.73% 。大多數(shù)子代與清見聚為一大類,相似系數(shù)小于0.900,雜交后代的遺傳多樣性較高。同時說明大多數(shù)雜交后代與母本清見的親緣關(guān)系比父本鄂柑一號親緣關(guān)系更近。



2.4單多胚性狀分子鑒定
利用能夠鑒定柑橘單、多胚性狀的MITE分子標(biāo)記對清見 x 鄂柑一號雜交后代進(jìn)行單多胚區(qū)分。如表1所示,通過mite_p1分子標(biāo)記對130株清見 .× 鄂柑一號雜交后代進(jìn)行單多胚鑒定分析,檢測到僅有一條帶(未擴(kuò)增出MITE片段)的植株38株(沒有擴(kuò)增出MITE條帶的是單胚后代),占比 29.23% ;具有3條帶擴(kuò)增出MITE片段的植株92株(擴(kuò)增出MITE條帶的是多胚后代),占比 70.77% ,經(jīng)過統(tǒng)計分析得出清見 .× 鄂柑一號雜交后代中多胚性植株多于單胚性植株,基因分離比例為1:2.42。同時,使用mite_p2分子標(biāo)記隨機(jī)對12份樣品進(jìn)行驗(yàn)證,發(fā)現(xiàn)mite_p2分子標(biāo)記擴(kuò)增譜帶與mite_p2完全相同,兩個分子標(biāo)記均能有效鑒定雜交群體的單多胚性狀


2.5單多胚性狀的驗(yàn)證
對已掛果的44株清見 × 鄂柑一號雜交后代進(jìn)行單多胚性狀的統(tǒng)計,結(jié)果見表3。統(tǒng)計發(fā)現(xiàn)符合單多胚性狀鑒定結(jié)果的子代有38個,占比 84.09% ,其中表現(xiàn)出單胚性狀的有13個,表現(xiàn)出多胚性狀的有31個,分析得知清見 × 鄂柑一號雜交后代中多胚性植株多于單胚性植株,單胚性植株與多胚性植株的比例為1:2.38,這與單胚和多胚基因分離比例1:2.42相近,也與兩對引物“mite_p1\"和“mite_p2\"單多胚鑒定結(jié)果一致,說明此兩對引物能有效鑒別出該雜交后代中具有單胚性狀和多胚性狀的植株。


3討論
筆者在本研究中采用SSR技術(shù)對清見 .× 鄂柑一號雜交后代進(jìn)行雜種鑒定,篩選出3對穩(wěn)定性高、重復(fù)性好的特異性引物CHR8-3、CHR8-4和CHR2-2。使用這3對引物對群體進(jìn)行鑒定,綜合雜種鑒定率為 99.23% 。其中僅QJ-002未通過鑒定,可能由于基因座缺失或多態(tài)性,導(dǎo)致特異性引物無法成功擴(kuò)增,這可能與基因組重組或變異有關(guān)\"。聚類分析可直觀反映種質(zhì)間的遺傳背景和相似性,常宏兵等2利用32個SSR標(biāo)記從69個玉米品種中擴(kuò)增出97個等位基因,發(fā)現(xiàn)玉米群體的遺傳距離介于0.103\~0.803之間,并通過聚類分析將69個品種劃為5個類群。蘇國釗等[13使用20對SSR引物構(gòu)建了208個苦瓜品種的DNA指紋圖譜庫,并通過聚類分析將208個苦瓜品種分為兩類。在柑橘中,劉勇等[4利用31對SSR標(biāo)記研究了122份柚(C.grandisOsbesk)類資源及近緣種遺傳多樣性,檢測到335個等位基因變異,并用UPGMA法將材料分成7個組群,110個柚類品種在相似系數(shù)0.712處,可細(xì)分成18個亞組。在本研究中,通過聚類分析可將130個雜交后代分為兩個類群,且多數(shù)雜交后代與母本清見的親緣關(guān)系更近。雜交后代的遺傳多樣性較高,不同后代的相似系數(shù)范圍為 0.805~0.990 ,雜交后代間的遺傳相似系數(shù)比較相近。該結(jié)果與前人以沙田柚為母本創(chuàng)制的兩個雜交后代群體相符,其種內(nèi)雜交后代群體(沙田柚 x 強(qiáng)德勒柚)遺傳差異小,呈現(xiàn)父系遺傳,而種外雜交后代群體(沙田柚 × 紅江橙)則遺傳變異大,呈現(xiàn)母系遺傳[15]。
大多數(shù)柑橘品種具有多胚現(xiàn)象,導(dǎo)致常規(guī)育種難以得到真正的雜種后代,嚴(yán)重影響了柑橘雜交育種的進(jìn)程。相反,由于多胚屬于配子體無融合生殖,子代完全遺傳母本的特性,對雜種性狀的固定和砧木資源利用又具有重要價值。前人研究認(rèn)為柑橘
多胚性狀是顯性基因控制的質(zhì)量性狀,基因型為A_;單胚性狀是隱性基因控制,基因型 aa[17] 。Wang等[]利用單胚HB柚和多胚Fairchild橘的雜交分離群體定位到單多胚決定基因CitRWP,并在該基因啟動子區(qū)域鑒定到一段約 300bp 的微型可逆重復(fù)轉(zhuǎn)座元件(MITE),開發(fā)出單多胚鑒定的分子標(biāo)記“mite_p1\"和“mite_p2”。因此,使用分子標(biāo)記手段在早期對雜交后代群體的單多胚性進(jìn)行鑒定,對優(yōu)異育種和砧木資源的挖掘與利用具有重要意義。然而該標(biāo)記在柑橘雜交育種群體中的應(yīng)用研究還較少,尤其是育種中最常見的以清見等單胚材料為母本所創(chuàng)制的雜交群體。
筆者在本研究中以單胚的清見為母本,以湖北省特色主栽抗寒多胚碰柑品種鄂柑一號為父本創(chuàng)制了雜交群體130份,為湖北省優(yōu)質(zhì)晚熟抗寒柑橘新品種培育奠定了基礎(chǔ)。理論上清見(aa)與金水柑(Aa)雜交后代單、多胚分離比應(yīng)接近1:1,然而實(shí)際檢測后代群體中分離比為1:2.42。夏強(qiáng)明等8對以華柚2號為母本、沙田柚和雞尾葡萄柚為父本雜交組合獲得的實(shí)生苗1018和687株進(jìn)行的早期胚性鑒定表明,沙田柚為父本的有性后代均為單胚性,而雞尾葡萄柚為父本的后代,單胚性與多胚性比例為2.86:1,并推測可能有部分多胚子代未能有效擴(kuò)增出MTE條帶,導(dǎo)致出現(xiàn)單胚性子代較多。本研究結(jié)果顯示多胚性子代多于單胚性子代,同時單、多胚驗(yàn)證結(jié)果也發(fā)現(xiàn),單胚植株與多胚植物的比例為1:2.38,與分子標(biāo)記鑒定結(jié)果非常接近,可以排除PCR擴(kuò)增對結(jié)果的不利影響。首先,Smith等[對多個單胚性狀柑橘品種與多胚性狀積屬的雜交后代研究認(rèn)為單、多胚性狀由多個基因位點(diǎn)控制。張斯淇通過多胚性紅橘與枳的雜交試驗(yàn),發(fā)現(xiàn)子代的多胚性狀實(shí)際比例與理論預(yù)期存在顯著差異。通過對親本的MTE片段插入檢測,發(fā)現(xiàn)枳中未檢測到相關(guān)片段,而紅橘中檢測到該片段。據(jù)此推測,子代的多胚基因可能部分源自枳,且積屬中控制多胚性狀的基因位點(diǎn)與柑橘屬中已知的多胚基因位點(diǎn)相互獨(dú)立。其次,前人從土豆中鑒定到344831個可能的有害突變,這些有害等位基因具有品種特異性,并且會在 F2 群體中產(chǎn)生嚴(yán)重的分離失衡[20]。因此,推測可能是有害變異或其他控制位點(diǎn)導(dǎo)致了清見和鄂柑一號雜交群體單多胚性狀出現(xiàn)偏分離。本研究的結(jié)果將為柑橘種質(zhì)資源高效利用及遺傳育種提供理論支持和實(shí)踐經(jīng)驗(yàn)。
4結(jié)論
利用SSR分子標(biāo)記對清見 × 鄂柑一號雜交后代130個雜交后代篩選出的特異性引物CHR2-2/CHR8-3/CHR8-4可用于以清見為母本的其他雜交組合后代的親緣關(guān)系鑒定,為柑橘優(yōu)異農(nóng)藝性狀的遺傳解析奠定了理論基礎(chǔ)。利用“mite_p1”和“mite_p2\"分子標(biāo)記對雜交后代進(jìn)行單多胚性鑒定,發(fā)現(xiàn)單胚和多胚分離比不是1:1,而是1:2.42,并通過形態(tài)學(xué)觀察對分子標(biāo)記結(jié)果進(jìn)行了驗(yàn)證,推測可能是有害變異或其他控制位點(diǎn)導(dǎo)致了清見和鄂柑一號雜交群體單多胚性狀出現(xiàn)偏分離。
參考文獻(xiàn)References:
[1] 鄧秀新,王力榮,李紹華,張紹鈴,張志宏,叢佩華,易干軍,陳 學(xué)森,陳厚彬,鐘彩虹.果樹育種40年回顧與展望[J].果樹學(xué) 報,2019,36(4):514-520. DENG Xiuxin,WANG Lirong,LI Shaohua, ZHANG Shaoling, ZHANG Zhihong,CONGPeihua,YI Ganjun,CHEN Xuesen, CHEN Houbin, ZHONG Caihong. Retrospection and prospect offruit breeding for last four decades in China[J]. Journal of Fruit Science,2019,36(4):514-520.
[2] 李映志.寬皮柑橘(CitrusreticulateBlanco)的遺傳多樣性及 系統(tǒng)發(fā)育研究[D].武漢:華中農(nóng)業(yè)大學(xué),2006. LI Yingzhi. Research on the genetic diversityand phylogenetic relationship of loose skin mandarins (Citrus reticulate Blanco)[D]. Wuhan:Huazhong Agricultural University,2006.
[3] ZHEBENTYAYEVATN,REIGHARDGL,GORINAVM, ABBOTT A G. Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm[J]. Theoretical and Applied Genetics,2003,106(3):435-444.
[4] 王旭,彭潔,朱延松,楊勝男,張曉楠,余洪,江東,梁大成.基于 SSR分子標(biāo)記的68份柚類種質(zhì)資源親緣關(guān)系分析[J].安徽農(nóng) 業(yè)科學(xué),2021,49(4):100-103. WANG Xu,PENG Jie,ZHU Yansong,YANG Shengnan, ZHANG Xiaonan,YU Hong, JIANG Dong,LIANG Dacheng. Analysis of genetic relationship of 68 pummelo germplasm resources based on SSR molecular marker[J]. Journal of Anhui Agricultural Sciences,2021,49(4):100-103.
[5] 周銳,解凱東,王偉,彭珺,謝善鵬,胡益波,伍小萌,郭文武.依 據(jù)多倍體形態(tài)特征快速高效發(fā)掘柑橘四倍體[J].園藝學(xué)報, 2020,47(12):2451-2458. ZHOURui,XIEKaidong,WANGWei,PENGJun,XIE Shanpeng,HU Yibo,WU Xiaomeng,GUO Wenwu. Efficient identification of tetraploid plants from seedling populations of apomictic citrus genotypes based on morphological characteristics[J]. ActaHorticulturae Sinica,2020,47(12):2451-2458.
[6]XUYY,LIU SR,GANZM,ZENGRF,ZHANGJZ,HUC G.High-density genetic map construction and identification of QTLs controlling leaf abscission trait in Poncirus trifoliata[J]. International Journal ofMolecular Sciences,2021,22(11):5723.
[7]黃其椿,盧東長城,陳東奎,江東,劉吉敏,謝健,施平麗,張?zhí)m, 劉福平.沃柑 SSR分子標(biāo)記篩選及其在品種鑒定上的應(yīng)用[J]. 江蘇農(nóng)業(yè)科學(xué),2020,48(1):75-79. HUANG Qichun,LU Dongchangcheng,CHEN Dongkui,JIANG Dong,LIU Jimin,XIE Jian,SHI Pingli,ZHANG Lan,LIU Fuping.Screening of Orah SSR markers and its application in cultivar identification[J]. Jiangsu Agricultural Sciences,2020,48(1): 75-79.
[8] 夏強(qiáng)明,彭珺,解凱東,伍小萌,徐強(qiáng),郭文武.以雄性不育胞 質(zhì)雜種‘華柚2號'為母本創(chuàng)制柚有性群體[J].果樹學(xué)報, 2019,36(8):961-967. XIAQiangming,PENG Jun,XIEKaidong,WU Xiaomeng,XU Qiang,GUO Wenwu.Production of sexual hybridswith male sterile somatic cybrid pummelo‘Huayou No.2’as female parent[J]. Journal of Fruit Science,2019,36(8):961-967.
[9]石開明,鄧志軍,方響亮.貢水白柚基因組DNA 提取方法研 究[J].北方園藝,2014(21):97-100. SHI Kaiming,DENG Zhijun,F(xiàn)ANG Xiangliang.Study on extraction of genome DNA in Gongshui pomelo[J].Northern Horticulture,2014(21):97-100.
[10]WANG X,XUYT,ZHANG SQ,CAO L,HUANG Y,CHENG JF,WUGZ,TIANSL,CHENCL,LIUY,YUHW,YANG XM,LANH,WANGN,WANGL,XUJD,JIANGXL,XIE Z Z,TANML,LARKINRM,CHENLL,MABG,RUANY J,DENGXX,XUQ.Genomic analyses of primitive,wild and cultivated citrus provide insights into asexual reproduction[J]. Nature Genetics,2017,49(5):765-772.
[11]韓健,夏文文,楊貴兵,羅旭釗,蔣松良,李先信,鄧子牛,馬先 鋒.沙田柚×枳雜交群體創(chuàng)建與InDel標(biāo)記鑒定[J].果樹學(xué) 報,2023,40(2):223-229. HANJian,XIA Wenwen,YANG Guibing,LUO Xuzhao,JIANG Songliang,LI Xianxin,DENG Ziniu,MA Xianfeng.Establishment of Shatian pomelo ×P. trifoliata hybrid population and InDel marker identification[J]. Journal of Fruit Science,2023,40 (2):223-229.
[12]常宏兵,王晨,何美敬,曹熙敏,俞鳳芳,曹曉良,宋煒,呂愛枝.基 于 SSR 標(biāo)記對69 份玉米種質(zhì)資源的遺傳多樣性分析[J/OL]. 作物雜志,2025:1-8.(2025-01-10).htps://ink.cnki.net/urlid/ 11.1808.s.20250110.1111.012. CHANG Hongbing,WANG Chen,HE Meijing,CAO Ximin, YU Fengfang,CAO Xiaoliang,SONG Wei,LU Aizhi. Genetic diversity analysis of 69 maize germplasm resources based on SSR markers[J/OL]. Crops,2025:1-8.(2025-01-10). https:/link. cnki.net/urlid/11.1808.s.20250110.1111.012.
[13]蘇國釗,李媛媛,劉中華,陳宇華,張秀杰,馬瑩雪,楊旭紅,鄧 超,徐振江.苦瓜品種SSR分子標(biāo)記鑒定技術(shù)體系構(gòu)建與應(yīng) 用[J].中國農(nóng)業(yè)科學(xué),2024,57(11):2227-2242. SU Guozhao,LI Aiai,LIU Zhonghua,CHEN Yuhua,ZHANG Xiujie,MA Yingxue,YANG Xuhong,DENG Chao,XU Zhenjiang. Construction and application of SSR marker identification system for biter gourd varieties[J]. Scientia Agricultura Sinica, 2024,57(11):2227-2242.
[14]劉勇,劉德春,吳波,孫中海.利用 SSR 標(biāo)記對中國柚類資源 及近緣種遺傳多樣性研究[J].農(nóng)業(yè)生物技術(shù)學(xué)報,2006,14 (1):90-95. LIU Yong,LIU Dechun,WU Bo,SUN Zhonghai. Genetic diversity of pummelo and their relatives based on SSR markers[J]. Journal of Agricultural Biotechnology,20o6,14(1):90-95.
[15]韓國輝,向素瓊,汪衛(wèi)星,魏旭,何波,李曉林,梁國魯.沙田柚 雜交后代群體的SSR 鑒定與遺傳多樣性分析[J].中國農(nóng)業(yè)科 學(xué),2010,43(22):4678-4686. HAN Guohui,XIANG Suqiong,WANG Weixing,WEI Xu, HE Bo,LI Xiaolin,LIANG Guolu.Identification and genetic diversity of hybrid progenies from Shatian pummelo by SSR[J]. Scientia Agricultura Sinica,2010,43(22):4678-4686.
[16]CONNER JA,MOOKKAN M, HUO HQ,CHAE K, OZIASAKINS P. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(36):11205-11210.
[17]NAKANO M,SHIMIZUT,F(xiàn)UJIIH,SHIMADAT,ENDO T, NESUMI H,KUNIGA T,OMURA M.Marker enrichment and construction of haplotype-specific BAC contigs for the polyembryony genomic region in Citrus[J].Breeding Science,2008,58 (4):375-383.
[18]SMITH M W,WEBB M,GULTZOW D L,NEWMAN T K, INNESD,DILLONN,OWEN-TURNERJ,XUQ.Application of a MITE citrus apomixis marker in the Australian rootstock breeding program[J].Acta Horticulturae,2019(1230): 1-6.
[19]張斯淇.柑橘無融合生殖的遺傳分析和相關(guān)基因挖掘[D].武 漢:華中農(nóng)業(yè)大學(xué),2017. ZHANG Siqi. Genetic analysis of citrus apomixis and its related genes discovery[D]. Wuhan: Huazhong Agricultural University, 2017.
[20]ZHANGC Z,WANG P,TANG D,YANG Z M,LUF,QI J J, TAWARINR,SHANGY,LICH,HUANG SW. The genetic basis of inbreeding depression in potato[J]. Nature Genetics, 2019,51(3):374-378.