中圖分類號:S66 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2025)05-1097-15
Abstract: 【Objective】Four fruit species including citrus, peach, waxberry and loquat are the main fruit trees cultivated in Liandu District.Previous surveys showed that most orchards were subjected to inadequate nutrient management practices.High application of chemical fertilizers,low application of organicfertilizers,and low application of mediumand traceelements fertilizers led to soil nutrient imbalance, soil acidification and soil sloughing in orchards, which aected the growth of fruit trees,resulting in reduced yields and lower quality.The study analyzed the soils collcted from the orchards of peach, citrus,waxberry,and loquat in order to comprehensively assess soil fertility and provide a scientific basis for soil management strategy. 【Methods】A total of 58 orchards were surveyed, including 26 peach orchards,17 citrus orchards,9 waxberry orchards and 6 loquat orchards located within Liandu District. In total,75 soil samples were collected from fruit-growing bases,among them,33 samples were collected from the peach orchards,18 from the citrus orchards,16 from the waxberry orchards,and 8 from the loquat orchards.The systematic sampling method was employed to collect 5 to 6 independent samples from the 0-30cm plough layer near the drip line of the canopy. The sample point coordinates were recorded using GPS,and the orchard's terrain conditions,fertilizer management,and yield were investigated.The soil samples were naturally dried,and stones, plant debris,animal residues were removed before mixing and sieving. The key parameters selected for diagnosing soil nutrient abundance and deficiency included the soil bulk density (BD),soil pH,cation exchange capacity (CEC),total water-soluble salts (TS), soil organic matter (SOM), total nitrogen ( Ω′TN) , alkaline hydrolyzed nitrogen (AN), available phosphorus (AP),available potassium (AK),exchangeable calcium (Ca), exchangeable magnesium (Mg) , available sulfur (S), available iron (Fe), available manganese (Mn),available copper (Cu) and available zinc ( Zn) .The differences in soil fertility among the orchards were conducted by principal component analysis and cluster analysis in this study.【Results】The soil bulk density of the orchards in our study ranged from 1.21 to 1.26g?cm-3 .The soil pH of the orchards was below 5.5, indicating a strongly acidic condition. In 66.67% of the citrus orchards and 68.75% of the prune orchards, the soil pH was below 4.5. In 84.85% of the peach orchards, the soil pH was below 5.5.Additionally, the soil pH of all loquat orchards was below 6.O.The cation exchange capacity of the orchards varied from 15.26 to 15.53cmol?kg-1 .The average concentration of total water-soluble salts across the orchards was below 1g?kg-1 .The soil salinization was observed in certain areas. The soil organic matter, total nitrogen,alkali-hydrolyzed nitrogen,available phosphorus and available potassum were generally categorized as between levels II and I .The soil organic matter levels were classified as level IV in 12.12% (204號 of the peach orchards, 11.11% of citrus orchards,and 6.25% of waxberry orchards.The total nitrogen levels in 3.03% of the peach orchards were classified as level ΔV . The alkali-hydrolyzed nitrogen was classified as level
in 5.56% of the citrus orchards,and level IV in 6.06% of the peach orchards and 5.56% of the citrus orchards. The available phosphorus level was categorized as level IV in 6.06% of the peach orchards, level IV in 12.06% of the peach orchards. In 12.5% of the waxberry orchards, the available potassiumwasclassified as level IV ,whereas 12.12% of peach orchards ranged between level IV and ΔV . The levels of the exchangeable calcium, magnesium, available sulfur, iron, manganese, copper and zinc were sufficient for fruit tree growth in al orchards.However, some of the loquat orchards exhibited deficiencies in manganese and copper. The overallsoil fertility ranking was as follows: loquat orchard gt; citrus orchard gt; peach orchard gt; waxberry orchard, based on the principal component composite scores.The results from the cluster analysis indicated the combined soil fertility scores in the following order: loquat orchard and peach orchard gt; waxberry orchard gt; citrus orchard. The soil fertility quality of both loquat and peach orchards was clasified as first class, whereas waxberry orchard was clasified as second class and citrus orchard as third class.【Conclusion】 Our study demonstrated that the levels of soil nutrients was typically high in the loquat orchards,and low in the citrus orchards . Overall, the orchards soil was characterized by high acidity,and salinization in some specific areas. The soil organic matter, total nitrogen,alkaline hydrolyzed nitrogen,available phosphorus and available potassium were abundant, however, the medium and trace elements were deficient in some orchards soil. It would be recommended to increase the application of organic fertilizers and medium and trace elements fertilizers,reduce the application of acidic chemical fertilizers,and apply quicklime or soil conditioners to neutralize soil acidity in the future.
Key Words: Orchard;Soil fertility;Principal component analysis; Clustering analysis; Scientific fertilization
土壤肥力是土地資源可持續(xù)發(fā)展的關(guān)鍵因素,直接影響著作物的產(chǎn)量和品質(zhì),其動態(tài)變化受土壤類型、耕作、灌溉、施肥和氣候等多種因素的影響[1-2]。近20年來,中國的水果種植面積迅猛發(fā)展,從2000年的 0.89×107hm2 增加到2022年的 1.3×107hm213 1°水果的產(chǎn)量和品質(zhì)與土壤環(huán)境因素息息相關(guān),如過量施肥、頻繁的機(jī)械除草和噴施高毒農(nóng)藥會引起果園土壤環(huán)境質(zhì)量不斷下降[45]。因此,提高果園土壤管理水平對構(gòu)建土壤健康體系和實現(xiàn)果園的可持續(xù)發(fā)展具有重要意義[]。
土壤肥力評價是培肥管理的基礎(chǔ),是土壤科學(xué)管理的重要體現(xiàn)[89。土壤肥力評價方法主要包括:綜合肥力指數(shù)法[]、主成分分析-聚類分析法[、模糊綜合評價法[2]、因子分析法[13]、關(guān)聯(lián)度法[14]、內(nèi)梅羅指數(shù)法[15、地統(tǒng)計學(xué)評價法等。由于土壤類型、栽培管理和土地利用方式等因素的不同,難以選擇統(tǒng)一的方法進(jìn)行土壤肥力評價;評價指標(biāo)選取和權(quán)重賦值不同,也造成評價結(jié)果差異較大。例如,王瀟璇等[18將地統(tǒng)計學(xué)與地理信息系統(tǒng)(GIS)相結(jié)合應(yīng)用于肥力評價,發(fā)現(xiàn)部分山核桃林土壤缺磷現(xiàn)象嚴(yán)重。張玲等[通過分析土壤養(yǎng)分綜合指數(shù)發(fā)現(xiàn),部分桃園土壤出現(xiàn)次生鹽漬化和中微量元素缺乏的現(xiàn)象。郝奇等[2基于層次分析法(AHP)-權(quán)法研究發(fā)現(xiàn),土壤pH、堿解氮和有機(jī)質(zhì)是影響蜜橘園土壤肥力的主要因素。王杰等2應(yīng)用模糊綜合評判法發(fā)現(xiàn),廣安區(qū)柑橘土壤有機(jī)質(zhì)、全氮和堿解氮缺乏,需補(bǔ)充相應(yīng)養(yǎng)分。土壤肥力的評價指標(biāo)眾多,且各指標(biāo)間關(guān)系復(fù)雜,使得指標(biāo)間存在信息重疊現(xiàn)象[2]。主成分分析是一種實現(xiàn)降維的統(tǒng)計方法,可將多個變量轉(zhuǎn)為少數(shù)幾個變量,簡化原始高維變量且最大限度地保留原始數(shù)據(jù)23;聚類分析是將集合組分為由類似對象組成的多個類的過程[24-25]。將主成分-聚類分析法相結(jié)合,降低了人為因素的干擾,提高了評價結(jié)果的準(zhǔn)確性,所以該方法在土壤肥力評價中被廣泛應(yīng)用[26-27]。
果樹種植是實現(xiàn)鄉(xiāng)村振興和促進(jìn)農(nóng)民增收的重要產(chǎn)業(yè)支柱。麗水市蓮都區(qū)是浙江省水果產(chǎn)業(yè)大區(qū),擁有“全國無公害水果示范縣”、“浙江省蔬菜、水果、食用菌產(chǎn)業(yè)強(qiáng)縣\"等稱號。根據(jù)麗水市2023年統(tǒng)計年鑒,蓮都區(qū)2022年水果種植面積為 5247hm2 年產(chǎn)量為 1.19×105 t,其中柑橘、桃、楊梅、枇杷是主要栽培品種,種植面積占全區(qū)水果總種植面積的
91.06% 。通過前期調(diào)查發(fā)現(xiàn),蓮都區(qū)多數(shù)果園普遍重化肥、輕有機(jī)肥,較少施用中微量元素肥料,使得果園土壤出現(xiàn)養(yǎng)分不均衡、土壤酸化與板結(jié)等問題,嚴(yán)重危害果樹的生長發(fā)育,造成產(chǎn)量減少和果實品質(zhì)下降。本研究以麗水市蓮都區(qū)典型果園土壤為調(diào)查對象,通過選取土壤評價指標(biāo),分析土壤養(yǎng)分之間的相關(guān)性,運用主成分-聚類分析法評價果園土壤肥力狀況,以期為浙南地區(qū)果園土壤養(yǎng)分管理和施肥提供科學(xué)依據(jù)。
1 材料和方法
1.1 研究區(qū)概況
蓮都區(qū)位于浙江省西南部,甌江中游,經(jīng)緯度為中 119°32′~120°08′E , 28°06′~28°44′N) ,海拔為 40~ 1389m ,地形以丘陵山地為主、面積占比 87.2% ,間有小塊河谷平原,呈現(xiàn)“九山半水半分田”的特征。氣候?qū)僦衼啛釒Ъ撅L(fēng)氣候類型,溫暖濕潤,雨量充沛,四季分明,具有明顯的山地立體氣候特征,年平均氣溫為 19.4°C ,年平均降雨量為 1969.5mm ,年日照時數(shù) 1604.2h ,無霜期285d。根據(jù)土壤二普調(diào)查結(jié)果,蓮都區(qū)共有紅壤、水稻土、黃壤、潮土、粗骨土、山地草甸土、基性巖土、紫色土8個土類,其中果園的土壤類型以水稻土、紅壤、粗骨土、紫色土為主。
1.2土壤采集及分析
在蓮都區(qū)58個規(guī)?;麍@進(jìn)行調(diào)查取樣,其中桃園26個、柑橘園17個,楊梅園9個,枇杷園6個。共采集果園土壤樣品75份(圖1),其中桃園土壤33份,柑橘園土壤18份,楊梅園土壤16份,枇杷園土壤8份。在水果收獲期,采用S形取樣法于每個果園隨機(jī)選取長勢相同的5株果樹,在每株樹樹冠的滴水線附近選取5\~6個取土點,采集 0~30cm 土層的土壤樣品,采樣時避開施肥區(qū)域。將自5株果樹附近采集的土壤等量混合,去除雜草、樹根和礫石等雜物,充分混勻后采用“四分法\"選取 1.5kg 作為一個土壤樣品。土壤樣品自然風(fēng)干后挑揀出石子、動植物殘體等,混勻磨碎過篩備用。用GPS(由北京宇杰北斗科技有限公司生產(chǎn),型號:K20B)記錄樣點坐標(biāo),并調(diào)查果園的立地條件、施肥管理和產(chǎn)量等情況(表1)。土壤容重(BD)、土壤質(zhì)地、土壤pH、有機(jī)質(zhì)(SOM)、全氮(TN)、堿解氮(AN)、有效磷(AP)、速效鉀(AK)、陽離子交換量(CEC)、水溶性鹽總量(TS)、土壤交換性鈣(Ca)、交換性鎂(Mg)、有效硫(S)、有效鐵(Fe)、有基于自然資源部標(biāo)準(zhǔn)地圖服務(wù)網(wǎng)站GS(2024)0650號的標(biāo)準(zhǔn)地圖制作,底圖邊界無修改。


1.3土壤養(yǎng)分指標(biāo)分級標(biāo)準(zhǔn)
參考全國土壤養(yǎng)分分級標(biāo)準(zhǔn)確定本研究的土壤養(yǎng)分分級標(biāo)準(zhǔn)。其中, pH 分級標(biāo)準(zhǔn)為: pHlt;4.5 為極強(qiáng)酸性, 4.5~5.5 為強(qiáng)酸性, gt;5.5~6 為酸性, gt;6~6.5 為弱酸性, gt;6.5~7.5 為中性。土壤容重分級標(biāo)準(zhǔn): lt;1g?cm-3 為過松, 1~1.25g?cm-3 為適宜, gt;1.25~ 1.35g cm為偏緊實, gt;1.35~1.45g?cm-3 為緊實, gt;
為過緊實。其他土壤養(yǎng)分分級標(biāo)準(zhǔn)見表2。
1.4 數(shù)據(jù)處理及分析
采用Excel19.0進(jìn)行描述性統(tǒng)計分析。運用ArcGIS10.5繪制土壤采樣點位分布圖。利用SPSS27進(jìn)行Pearson相關(guān)性分析、主成分分析和聚類分析,采用單因素方差分析(OnewayANOVA)檢驗差異顯著性,比較不同果園土壤肥力指標(biāo)的差異(Duncan法, plt;0.05) ;利用OriginPro2024繪制土壤質(zhì)地圖、百分比堆積柱狀圖、箱體圖和相關(guān)性分析圖。

2 結(jié)果與分析
2.1土壤物理特征評價
不同類型果園之間的土壤容重?zé)o顯著差異 (pgt; 0.05,表3)。楊梅園、柑橘園和桃園的土壤松緊適宜,其樣點占比分別為 75.00%.72.22% 和 57.58% ,枇杷園的土壤偏緊實,處于偏緊實以上的樣點占比為62.50% (圖2)。如表3和圖2所示,柑橘園的土攘黏粒和粉粒最高,楊梅園的土壤砂粒最高。根據(jù)美國制定的土壤質(zhì)地分類標(biāo)準(zhǔn),柑橘園的土壤質(zhì)地類型為黏壤土、壤土、砂質(zhì)黏壤土和砂質(zhì)壤土,桃園、楊梅園和枇杷園的土壤質(zhì)地類型為壤土、砂質(zhì)黏壤土和砂質(zhì)壤土。土壤粉黏比反映土壤風(fēng)化發(fā)育程度,其數(shù)值大小與土壤風(fēng)化程度成反比。枇杷園的粉黏比最低,土壤風(fēng)化程度最高;楊梅園的粉黏比最高,土壤風(fēng)化程度最低。從變異系數(shù)來看,四種果園的土壤黏粒、粉粒、砂粒和粉黏比的變異均屬中等變異。
2.2土壤主要元素特征評價
如圖3和圖4所示,四種果園的土壤pH平均值均低于5.5,呈強(qiáng)酸性,楊梅園的土壤pH顯著低于枇杷園 (plt;0.05) 。所有點位的楊梅園土壤pH均低于5.5,土攘酸化程度最高,其次為桃園和柑橘園,屬極強(qiáng)酸性的點位占比分別為 84.85% 和 66.67% ,所有點位的枇杷園土壤pH均小于6.0。四種果園的土壤有機(jī)質(zhì)、全氮、堿解氮、速效鉀、陽離子交換量和水溶性鹽總量均無顯著差異 pgt;0.05) 。四種果園的土壤有機(jī)質(zhì)等級大部分處于IⅢ\~ⅡI等,僅 12.12% 的桃園、11.11% 的柑橘園和 6.25% 的楊梅園處于 IV 等。桃園、柑橘園、楊梅園、枇杷園的土壤全氮等級大部分高于Ⅲ等,其樣點占比分別為: 87.88%.83.33% 、93.75% 和 100.00% ,僅 3.03% 的桃園處于 V 等,

2.3土壤中微量元素特征評價




如圖5和圖6所示,枇杷園、桃園和柑橘園的土壤交換性鈣含量的均值均顯著高于楊梅園 (plt; 0.05),其中 96.97% 的桃園、 94.44% 的柑橘園和87.50% 的枇杷園處于Ⅲ~Ⅱ等, 50% 的楊梅園處于IV等。不同類型果園之間的土壤交換性鎂、有效硫、有效鐵、有效鋅含量的差異性均不顯著 (pgt;0.05) 。楊梅園的土壤交換性鎂均值和高等級占比均低于其他果園, 37.50% 的點位處于IV等;其他三種果園超過83% 的點位處于IⅢI~ⅡI等。桃園的土壤有效硫均值和高等級占比均低于其他果園, 45.45% 的點位處于IV等,其他三種果園超過 80% 的點位處于IⅢI~I(xiàn)等。四種果園的土壤有效鐵含量豐富,均處于I等。桃園、柑橘園、楊梅園、枇杷園的土壤有效鋅等級大部分高于Ⅱ等,其樣點占比分別為 93.94%.100.00% !87.50% 和 87.50% ,僅 12.5% 的枇杷園處于IⅣV等。枇杷園的土壤有效錳和有效銅含量顯著高于楊梅園(plt;0.05) 。大部分果園的土壤有效錳處于ⅢⅢ~I(xiàn)等,僅 12.5% 的枇杷園點位處于V等, 25% 的楊梅園處于IV等。四種果園的土攘有效銅超過 85% 的點位位于Ⅲ~I(xiàn)等,只有 12.5% 的枇杷園處于V等, 6.25%的楊梅園處于IⅣ等。
2.4 主成分和聚類分析評價
如圖7所示,土壤容重與交換性鎂具有顯著的正相關(guān)性。pH與交換性鈣、交換性鎂、有效鋅具有極顯著正相關(guān)性,與有效磷、有效鐵具有顯著負(fù)相關(guān)性。有機(jī)質(zhì)與全氮、堿解氮、速效鉀具有極顯著正相關(guān)性,與陽離子交換量具有顯著正相關(guān)性,與有效硫具有顯著負(fù)相關(guān)性。全氮與堿解氮、速效鉀具有極顯著正相關(guān)性。有效磷與速效鉀具有極顯著正相關(guān)性,與交換性鈣具有顯著負(fù)相關(guān)性。水溶性鹽總量與有效硫、有效鋅具有極顯著正相關(guān)性,與交換性鈣、交換性鎂具有顯著正相關(guān)性。交換性鈣與交換性鎂、有效鋅具有極顯著正相關(guān)性,與有效錳具有顯著正相關(guān)性。交換性鎂與有效鋅具有顯著正相關(guān)性。有效鐵與有效銅具有顯著正相關(guān)性。以上結(jié)果表明所測16個指標(biāo)之間存在不同程度的相關(guān)性,可滿足主成分分析的要求。
本研究選取了土壤容重、有機(jī)質(zhì)等16項指標(biāo),以評價四種果園的土壤肥力質(zhì)量。鑒于涉及指標(biāo)多,各指標(biāo)關(guān)系復(fù)雜,首先運用SPSS軟件對原始數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,經(jīng)KMO和Bartlett球形檢驗結(jié)果分別為0.603和 446.80(df=120,plt;0.01) ,土壤養(yǎng)分之間存在相關(guān)性,表明利用主成分分析評價本研究中果園土壤肥力可行。
如表4所示,根據(jù)特征值 ?1 的原則,本研究共提取出5個主成分,累計方差貢獻(xiàn)率為 65.388% ,可以反映原始數(shù)據(jù)的大部分信息。第一主成分累計貢獻(xiàn)率為 19.123% ,pH及交換性鈣、交換性鎂、有效錳和有效鋅主成分載荷相對較高,其中pH反映了土壤化學(xué)環(huán)境,鈣、鎂、錳和鋅反映了中微量元素對土壤肥力的影響。第二主成分的貢獻(xiàn)率為 14.912% ,有機(jī)質(zhì)、全氮、堿解氮和陽離子交換量具有較大正值,其中有機(jī)質(zhì)是土壤肥力重要指標(biāo),全氮和堿解氮反映土壤氮素的供給能力,陽離子交換量反映土壤保持養(yǎng)分的能力。第三主成分的貢獻(xiàn)率為 10.931% ,水溶性鹽總量和有效硫載荷較大,說明第三主成分是對水溶性鹽總量和有效硫含量的描述。第四主成分的貢獻(xiàn)率為 10.812% ,土壤容重、有效磷和速效鉀具有較大的正向量值,其中土壤容重反映土壤物理環(huán)境,有效磷和速效鉀反映了土壤向作物提供速效養(yǎng)分的能力。第五主成分的貢獻(xiàn)率為 9.608% ,有效鐵和有效銅載荷較大。
用每個指標(biāo)的載荷值除以主成分相對應(yīng)開根號后的特征值,得到每個指標(biāo)對應(yīng)的特征向量,將標(biāo)準(zhǔn)化后的因子數(shù)據(jù)與特征向量相乘,可得各個主成分綜合得分方程為:

將標(biāo)準(zhǔn)化的數(shù)據(jù)代入方程,即 F=0.292×F1+ 0.228×F2+0.167×F3+0.165×F4+0.147×F5 ,得到四種果園綜合得分(表5), F 值越高表示肥力越高,土壤肥力綜合得分依次為枇杷園 gt; 柑橘園 gt; 桃園 gt; 楊梅園。以歐氏距離作為衡量不同果園土壤肥力差異的指標(biāo),采用最短距離法對各果園土壤肥力進(jìn)行系統(tǒng)聚類(圖8)。土壤肥力綜合得分依次為枇杷園 gt; 桃元 gt; 楊梅園 gt; 柑橘園,四種果園可聚為3類:枇杷園和桃園為一類,土壤肥力質(zhì)量為第一等;楊梅園為一類,土壤肥力質(zhì)量為第二等;柑橘為第三類,土壤肥力質(zhì)量為第三等。


3討論
氮、磷和鉀是作物生長必需的三大元素,與土壤肥力密切相關(guān)2。有機(jī)質(zhì)是土壤肥力的物質(zhì)基礎(chǔ),含有作物生長所需要的多種元素[29]。本研究中,四種果園的土壤有機(jī)質(zhì)和全氮含量較豐富,大部分等級處于IⅢI~ⅡI等,只有 12.12% 的桃園、 .11.11% 的柑橘園和 6.25% 的楊梅園的土壤有機(jī)質(zhì)處于Ⅳ等,3.03% 的桃園土壤全氮處于V等, 5.56% 的柑橘園土壤全氮處于VI等。四種果園的土壤堿解氮、有效磷和速效鉀含量極為豐富,大部分等級處于 II~I(xiàn) 等,只有6.06% 的桃園和 5.56% 的柑橘園土壤堿解氮處于IV等, 6.06% 的桃園土壤有效磷處于IⅣ等, 12.5% 的楊梅園土壤速效鉀處于Ⅳ等, 12.12% 的桃園土壤速效鉀處于 IV~V 等。在農(nóng)業(yè)生產(chǎn)中,針對部分桃園、楊梅園和柑橘園土壤有機(jī)質(zhì)、氮、磷、鉀元素不足的問題,建議應(yīng)增加有機(jī)肥投入,按照測土配方施肥,施加單質(zhì)肥;針對土壤氮磷鉀元素過量,應(yīng)減少高濃度肥料施用,避免過量氮和磷隨地表徑流進(jìn)入水體,污染生態(tài)環(huán)境[30]。
土壤中微量元素是提高果樹產(chǎn)量和改善果實品質(zhì)的關(guān)鍵因素[31-32]。本研究結(jié)果表明,所有果園的土壤交換性鈣鎂、有效硫、鐵、錳、銅和鋅均能滿足果樹生長的需求,其中部分枇杷園出現(xiàn)錳和銅缺乏的現(xiàn)象。建議在日常管理中重視中微量元素肥料的施用,如桃園加強(qiáng)對鈣鎂肥和錳肥的施用;柑橘園加強(qiáng)對鎂肥和錳肥的施用;楊梅園加強(qiáng)對鈣鎂肥、錳肥和銅肥的施用;枇杷園加強(qiáng)對錳肥、銅肥和鋅肥的施用;對所有果園應(yīng)加強(qiáng)硫肥的施用。
由土壤pH下降引起的土壤酸化成為影響土壤肥力和果樹產(chǎn)量的重要障礙因子[33-34]。有研究發(fā)現(xiàn),柑橘、楊梅、桃和枇杷最適宜的土壤pH范圍分別為5.5~6.5,4.5~5.5,5.5~6.5 和 5.5~7.5[16,21,31,35] 。本研究中,四種果園的土壤pH均值 lt;5.5 ,除楊梅園外,其他三種果園的土壤pH均不在適宜范圍內(nèi)。土壤酸化與氣候、成土母質(zhì)和土壤類型等因素密切相關(guān),研究區(qū)屬中亞熱帶季風(fēng)氣候類型,溫暖濕潤,土壤鹽基離子淋溶比較徹底;土壤類型主要為水稻土和紅壤,強(qiáng)酸性黏壤土占比高,土壤吸附 H+ 和 Al3+ 量較多[36-37]。經(jīng)前期施肥調(diào)查(表1),蓮都區(qū)果園肥料用量較高,且施用酸性肥料過多造成土壤中 H+ 大量累積,進(jìn)一步加劇了土壤酸化[33]。針對酸化問題,應(yīng)減少酸性肥料的施用,增施有機(jī)肥,施用生石灰或土壤調(diào)理劑中和土壤酸性,改善土壤結(jié)構(gòu),提高土壤保肥能力。
容重反映土壤物理性狀的整體狀況[38]。本研究中,四種果園的土壤容重介于 1.21~1.26g?cm-3 ,均適于果樹生長,僅 25.00% 的枇杷園土壤處于緊實和堅實狀態(tài)。陽離子交換量代表了王壤保持養(yǎng)分的能力[39,本研究中四種果園的陽離子交換量較高,介于15.26~15.53cmol?kg-1 ,表明土壤具有較強(qiáng)的保肥和持水能力。水溶性鹽總量是作物種植和土壤改良的重要依據(jù),是土壤鹽漬化的重要指標(biāo)[19]。研究區(qū)四種果園的水溶性鹽總量均值
,未出現(xiàn)土壤鹽漬化現(xiàn)象,但部分果園土壤具有鹽漬化傾向,其中楊梅園的點位占比最高,為 16.67% 。建議加強(qiáng)肥水管理,選擇合適肥料品種,提高化肥利用率,減少鹽分離子的累積。
四種果園土壤肥力存在較大差異,這與果園土壤養(yǎng)分情況、肥料投入、地貌等因素差異有關(guān)[1]。研究表明,肥料投入顯著改變土壤養(yǎng)分含量,從而影響土壤肥力等級[25-26]。本研究中,枇杷園和桃園有機(jī)肥投入高于楊梅園和柑橘園,其中枇杷園有機(jī)肥投入分別是楊梅園和柑橘園的1.11和1.43倍,桃園有機(jī)肥投入分別是楊梅園和柑橘園的1.27和1.62倍。桃園的化肥投入和肥料總投入最高,柑橘園化肥投入和肥料總投入最低。根據(jù)《土壤養(yǎng)分指標(biāo)分級標(biāo)準(zhǔn)》,枇杷園和桃園的土壤有機(jī)質(zhì)、全氮、堿解氮、有效磷、速效鉀、有效鐵、有效錳和有效銅均值高于柑橘果園,枇杷園的土壤有機(jī)質(zhì)、全氮、堿解氮、有效磷、速效鉀和交換性鎂處于IⅢI\~I(xiàn)等級的占比最高。枇杷園和桃園的土壤pH值處于酸性和微酸性點位占比最高,酸化程度低于其他兩種果園。柑橘園土壤養(yǎng)分含量和高等級占比低于其他果園,其中11.11% 點位的土壤有機(jī)質(zhì)處于ⅣV等, 5.56% 點位的土壤全氮處于VI等, 5.56% 點位的土壤堿解氮處于IV等, 83.33% 點位的土壤pH處于強(qiáng)酸性,從而造成楊梅園土壤肥力等級較低。有研究表明,海拔、坡度等地形條件通過改變地表水熱條件,對土壤成土過程、養(yǎng)分礦化遷移產(chǎn)生影響,隨著海拔和坡度的增加,水土流失加劇,不利于土壤養(yǎng)分的積累,從而影響土壤肥力[20,40]。本研究中,枇杷園和桃園多種植于低丘緩坡,有利于農(nóng)戶進(jìn)行施肥等管理活動,且低坡減緩了土壤養(yǎng)分的流失,而柑橘園和楊梅大部分種植于丘陵山地上,坡度較大限制土壤養(yǎng)分的累積。
4結(jié)論
蓮都區(qū)四種果園土壤肥力差異較大,枇杷園和桃園土壤肥力質(zhì)量較高,柑橘園肥力質(zhì)量較低。所有果園的有機(jī)質(zhì)、全氮含量需進(jìn)一步提升,堿解氮、有效磷和速效鉀含量極為豐富,部分果園出現(xiàn)中微量元素缺乏現(xiàn)象,土壤酸化嚴(yán)重,具有鹽漬化傾向。以主成分綜合得分為評價標(biāo)準(zhǔn),土壤肥力綜合得分依次為枇杷園 gt; 柑橘園 gt; 桃園 gt; 楊梅園。按照系統(tǒng)聚類分析,四種果園分類為:枇杷園和桃園土壤肥力質(zhì)量為第一等;楊梅園土壤肥力質(zhì)量為第二等;柑橘園土壤肥力質(zhì)量為第三等。
參考文獻(xiàn)References:
[1]于路加,王翠平,馬海軍,楊懷秋.銀川市黃河灘地土壤性狀 空間分布特征與肥力質(zhì)量評價[J].土壤,2024,56(1):202-213. YULujia,WANGCuiping,MAHaijun,YANGHuaiqiu.Spatial distribution of soil properties and evaluation of fertility quality ofYellowRiver floodplains in Yinchuan city[J]. Soils,2024,56 (1):202-213.
[2] TUDIM,LIHY,LIHR,WANGL,YANGL S,TONG S M, YU QJ,RUAN H D.Evaluation of soil nutrient characteristics in Tianshan Mountains,north-western China[J]. Ecological Indicators,2022,143:109431.
[3]國家統(tǒng)計局.中國統(tǒng)計年鑒[M].北京:中國統(tǒng)計出版社,2023. National Bureau of Statistics of China.China Statistical Yearbook[M].Beijing:China Statistics Press,2023.
[4] MORUGAN-CORONADO A,LINARES C,GOMEZ-LOPEZ M D,F(xiàn)AZ A,ZORNOZA R. The impact of intercropping,tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions:A meta-analysis of field studies[J] Agricultural Systems,2020,178:102736.
[5] FANY N,ZHANG Y X,KALKHAJEHYK,HU WY,TIAN K,YU D S,HUANG B.Effective indicators and drivers of soil organic matter in intensive orchard production systems[J].Soil and Tillage Research,2024,238:105999.
[6] 劉明慶,韓笑,楊育文,高麗,李妍,席運官,張紀(jì)兵,黃思杰. 不同土地利用方式土壤肥力調(diào)查與評價:以浙江省建德市葛 塘村為例[J].生態(tài)與農(nóng)村環(huán)境學(xué)報,2023,39(3):394-401. LIU Mingqing,HAN Xiao,YANG Yuwen, GAO Li,LI Yan, XI Yunguan,ZHANG Jibing,HUANG Sijie. Investigation and evaluation of soil fertility under different land-use patterns:A case studyof getangvillage,Jiande city,Zhejiang province[J].Journal of Ecologyand Rural Environment,2023,39(3):394-401.
[7]王佳媛.柑橘園土壤健康指標(biāo)體系構(gòu)建與評價[D].武漢:華中 農(nóng)業(yè)大學(xué),2023. WANG Jiayuan. Construction and evaluation of soil health index system in citrus orchard[D].Wuhan:Huazhong Agricultural University,2023.
[8]段碧輝,孫奧,王芳,趙敏,楊軍,項劍橋.荊門市耕地不同利 用方式土壤質(zhì)量綜合評價[J].土壤,2023,55(6):1371-1379. DUAN Bihui,SUN Ao,WANG Fang,ZHAO Min,YANG Jun, XIANG Jianqiao.Soil quality comprehensive evaluation of farmlandsunder different use patternsin Jingmen city,Hubei Province[J]. Soils,2023,55(6):1371-1379.
[9]SUJATHA M,JAIDHAR C D. Machine learning- based approaches to enhance the soil fertility:A review[J].Expert Systems with Applications,2024,240:122557.
[10] 王遠(yuǎn)鵬,黃晶,柳開樓,韓天富,都江雪,馬星竹,郝小雨,周寶 庫,劉彩文,蔣先軍,張會民.東北典型縣域稻田土壤肥力評 價及其空間變異[J].植物營養(yǎng)與肥料學(xué)報,2020,26(2):256- 266. WANG Yuanpeng,HUANG Jing,LIU Kailou, HAN Tianfu,DU Jiangxue,MA Xingzhu,HAO Xiaoyu, ZHOU Baoku,LIU Caiwen, JIANG Xianjun,ZHANG Huimin. Evaluation and spatial variabilityofpaddysoilfertilityintypicalcountyofNortheast China[J].Journal of Plant Nutrition and Fertilizers,2O20,26(2): 256-266.
[11]周旭東,韓天華,申云鑫,施竹鳳,賀彪,楊明英,裴衛(wèi)華,何永宏, 楊佩文.基于主成分-聚類分析的植煙土壤障礙因子診斷[J] 中國土壤與肥料,2023(9):1-11. ZHOU Xudong,HAN Tianhua,SHEN Yunxin,SHI Zhufeng, HEBiao,YANG Mingying,PEI Weihua,HE Yonghong,YANG Peiwen.Diagnosis of soil obstacle factors in flue-cured tobacco rotation system based on principal component analysis and clusteranalysis[J]. Soil and Fertilizer Sciencesin China,2O23(9): 1- 11.
[12]趙敬坤,陳松柏,李忠意,王洋,張濤,王帥.模糊綜合評價法判 斷重慶花椒種植區(qū)土壤肥力水平[J].中國農(nóng)機(jī)化學(xué)報,2021, 42(10):206-212. ZHAO Jingkun,CHEN Songbai,LI Zhongyi,WANG Yang, ZHANG Tao,WANG Shuai. Soil fertility characteristics in Zanthoxylum bungeanum planting area of Chongqing with the analysis of fuzzy synthetic evaluation[J]. Journal of Chinese Agricultural Mechanization,2021,42(10):206-212.
[13]胡爽.基于因子分析的土壤養(yǎng)分評價研究[D].長春:吉林農(nóng)業(yè) 大學(xué),2021. HU Shuang. Evaluation of soil nutrients based on factor analysis[D]. Changchun:Jilin Agricultural University,2021.
[14]李慧,魏天軍.寧夏壓砂地棗園土壤肥力的層次-關(guān)聯(lián)度分析[J]. 中國果樹,2020(5):87-92. LI Hui,WEI Tianjun.Analysis on soil fertility of jujube orchard in gravel-sand mulched in Ningxia by usinganalytic hierarchy process and gray interrelated analytical method[J]. China Fruits, 2020(5):87-92.
[15]鄧星亮,楊安富,楊麗,孟龍威,袁漫遙,陳俊男,吳曉晨.海南 島典型農(nóng)用地土壤綜合肥力評價[J].熱帶作物學(xué)報,2023,44 (7):1497-1505. DENG Xingliang,YANG Anfu,YANG Li,MENG Longwei, YUANManyao,CHEN Junnan,WU Xiaochen. Soil nutrient analysis and comprehensive fertility evaluation of four types of agricultural land in Hainan island[J]. Chinese Journal of Tropical Crops,2023,44(7):1497-1505.
[16]彭健健,徐堅,王曉曉,傅偉軍,張申,彭欣怡,徐懿,姜霓雯,方 嘉,吳家森.楊梅主產(chǎn)區(qū)土壤肥力空間異質(zhì)性及其影響因素: 以浙江仙居和臨海為例[J].果樹學(xué)報,2023,40(7):1421-1433. PENG Jianjian,XU Jian,WANG Xiaoxiao,F(xiàn)U Weijun, ZHANG Shen,PENG Xinyi,XU Yi, JIANG Niwen,F(xiàn)ANG Jia, WU Jiasen.Spatial variationofsoil fertilityandits influencing factors in Myrica rubra region:Acase study in Xianju county and Linhai city[J].Journal of Fruit Science,2023,40(7):1421- 1433.
[17]王斌強(qiáng),何紹浪,林小兵,黃尚書,王馨悅,劉艷琴,黃欠如,成 艷紅.井岡蜜柚園土壤肥力和微生物特征調(diào)查研究[J].中國 果樹,2023(6):59-66. WANGBinqiang,HE Shaolang,LIN Xiaobing,HUANG Shangshu,WANG Xinyue,LIU Yanqin,HUANG Qianru, CHENG Yanhong.Investigation on soil fertility and microbial characteristicsinJinggang pomelo orchards[J]. China Fruits, 2023(6):59-66.
[18]王瀟璇,何詩楊,葉子豪,胡穎檳,傅偉軍,吳家森.村域尺度 山核桃林地土壤肥力空間變異特征及影響因素[J].浙江農(nóng)林 大學(xué)學(xué)報,2023,40(4):811-819. WANGXiaoxuan,HEShiyang,YE Zihao,HUYingbin,F(xiàn)UWeijun,WU Jiasen. Spatial variability and affecting factors of soil fertity in Chinesehickory stands at village scale[J]. Journalof Zhejiang Aamp;F University,2023,40(4):811-819.
[19]張玲,褚杰,孫昊,張文江,周萌,路超,程明遠(yuǎn),白楊,劉善江. 北京市大興區(qū)不同類型果園土壤肥力和環(huán)境質(zhì)量研究[J].中 國土壤與肥料,2023(8):14-22. ZHANG Ling,CHU Jie,SUN Hao, ZHANG Wenjiang,ZHOU Meng,LU Chao,CHENG Mingyuan,BAI Yang,LIU Shanjiang. Soil fertilityandenvironmental qualityof diffrent typesof orchards in Daxing district,Beijing[J].Soil and Fertilizer Sciences in China,2023(8):14-22.
[20]郝奇,周京華,吳小龍,曹燈,黃長干,朱美英,辜青青,顏安 琦,龔霞.江西新余蜜桔園土壤養(yǎng)分分布特征及綜合肥力評 價[J].江西農(nóng)業(yè)大學(xué)學(xué)報,2023,45(1):88-100. HAO Qi, ZHOU Jinghua, WU Xiaolong, CAO Deng,HUANG Changgan,ZHU Meiying,GU Qingqing,YAN Anqi,GONG Xia.Soil nutrient distribution characteristics and comprehensivefertility evaluationin Xinyu tangerine orchard,Jiangxi province[J].Acta Agriculturae Universitatis Jiangxiensis,2023, 45(1):88-100.
[21]王杰,張春燕,盧加文,陳書,王棋.廣安區(qū)柑橘土壤養(yǎng)分狀況 及綜合肥力評價[J].土壤通報,2021,52(6):1360-1367. WANG Jie,ZHANG Chunyan,LU Jiawen,CHEN Shu,WANG Qi.Nutrient status and comprehensive fertility evaluation of the citrus soil in Guang'an district[J].Chinese Journal of Soil Science,2021,52(6):1360-1367.
[22] 黃安,楊聯(lián)安,杜挺,王安樂,張彬,袁剛.基于主成分分析的 土壤養(yǎng)分綜合評價[J].干旱區(qū)研究,2014,31(5):819-825. HUANGAn,YANGLian'an,DUTing,WANGAnle,ZHANG Bin,YUAN Gang. Comprehensive assessment of soil nutrients based on PCA[J].Arid Zone Research,2014,31(5):819-825.
[23] 陳歡,曹承富,張存嶺,李瑋,喬玉強(qiáng),杜世州,趙竹.基于主成 分-聚類分析評價長期施肥對砂姜黑土肥力的影響[J].土壤學(xué) 報,2014,51(3):609-617. CHEN Huan,CAO Chengfu, ZHANG Cunling,LI Wei,QIAO Yuqiang,DU Shizhou,ZHAO Zhu.Principal component-cluster analysis of effectsof long-term fertilization on fertility of lime concretion black soil[J].Acta Pedologica Sinica,2014,51(3): 609-617.
[24]劉大海,李寧,晁陽.SPSS15.0 統(tǒng)計分析從入門到精通[M].北 京:清華大學(xué)出版社,2008. LIU Dahai,LI Ning,CHAO Yang.SPSS15.0 statistical analysis from entry to mastery[M]. Beijing:Tsinghua University Press, 2008.
[25]劉志平,張鵬飛,周懷平,解文艷,楊振興,馬曉楠,胡雪純.基 于主成分-聚類分析的褐土肥力質(zhì)量評價[J].中國土壤與肥 料,2022(11):167-173. LIU Zhiping,ZHANG Pengfei,ZHOU Huaiping,XIE Wenyan, YANG Zhenxing,MA Xiaonan,HU Xuechun.Fertility quality evaluation of cinnamon soil based on principal component-cluster analysis[J].Soil and Fertilizer Sciences in China,2022(11): 167-173.
[26]吳海燕,金榮德,范作偉,彭暢,高洪軍,張秀芝,李強(qiáng),朱平.基 于主成分和聚類分析的黑土肥力質(zhì)量評價[J].植物營養(yǎng)與肥 料學(xué)報,2018,24(2):325-334. WU Haiyan,JIN Rongde,F(xiàn)AN Zuowei,PENG Chang,GAO Hongjun, ZHANG Xiuzhi,LI Qiang,ZHU Ping. Assessment of fertility quality of black soil based on principal component and cluster analysis[J]. Journal of Plant Nutrition and Fertilizers, 2018,24(2):325-334.
[27]顧美英,徐萬里,馬凱,歐提庫爾·瑪合木提,張志東,朱靜,唐 琦勇,楚敏,張麗娟.基于主成分-聚類分析評價不同定植年限 核桃土壤微生物生態(tài)[J].新疆農(nóng)業(yè)科學(xué),2022,59(2):474-484. GUMeiying,XUWanli,MAKai,Otkur·Mahmut,ZHANG Zhidong,ZHU Jing,TANG Qiyong,CHU Min,ZHANG Lijuan. Soil microbial ecological evaluation of walnut with different planting years based on principal component-cluster analysis[J]. Xinjiang Agricultural Sciences,2022,59(2):474-484.
[28]鮑士旦.土壤農(nóng)化分析[M].3版.北京:中國農(nóng)業(yè)出版社, 2000. BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing:China Agriculture Press,2000.
[29]趙瑞芬,程濱,滑小贊,王森,王釗.基于主成分分析的山西省 核桃主產(chǎn)區(qū)土壤肥力評價[J].山西農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué) 版),2020,40(6):61-68. ZHAO Ruifen,CHENG Bin,HUA Xiaozan,WANG Sen, WANG Zhao. Evaluation of soil fertility status in main walnut production areas in Shanxi based on principal component analysis[J].Journal of Shanxi Agricultural University (Natural Science Edition),2020,40(6):61-68.
[30]蔡美芳,劉曉偉,吳孝情,吳仁人,陳中穎,盧文洲.基于土壤養(yǎng) 分平衡的畜禽養(yǎng)殖承載力研究[J].土壤學(xué)報,2018,55(6): 1431-1440. CAI Meifang,LIU Xiaowei, WU Xiaoqing, WU Renren, CHEN Zhongying,LU Wenzhou. Livestock and poultry carrying capacity of land based on soil nutrient balance[J].Acta Pedologica Sinica,2018,55(6):1431-1440.
[31]陸泰良,陸安祥,陽愛民,梁瑞鄭,李海炎,萬保雄.廣西桂林 市主要桃園土壤養(yǎng)分狀況及重金屬、抗生素污染評價[J].江蘇 農(nóng)業(yè)科學(xué),2021,49(19):232-241. LU Tailiang,LU Anxiang,YANG Aimin,LIANG Ruizheng,LI Haiyan,WAN Baoxiong.Soil environment and potential ecological risk assessment of main peach orchards in Guilin City, Guangxi Zhuang Autonomous Region[J]. Jiangsu Agricultural Sciences,2021,49(19):232-241.
[32]王玉,周衛(wèi)軍,商貴鐸,譚潔,唐豆,曹勝.不同母質(zhì)柑橘園土 壤養(yǎng)分特征及肥力綜合評價[J].生態(tài)學(xué)雜志,2022,41(5):933- 940. WANGJue,ZHOUWeijun,SHANGGuiduo,TANJie,TANG Dou,CAO Sheng. Comprehensive evaluation of soil nutrient characteristicsand fertilityofcitrusorchardwithdifferent parent materials[J].Chinese Journal ofEcology,2022,41(5):933-940.
[33]毛偉,郁潔,李文西,左文剛,仇美華,張麗,范新會,陳明,王緒 奎,柏彥超.近40年江蘇農(nóng)田土壤pH時空變化特征及驅(qū)動 因素[J].植物營養(yǎng)與肥料學(xué)報,2023,29(2):264-272. MAOWei,YU Jie,LI Wenxi,ZUO Wengang,QIU Meihua, ZHANG Li,F(xiàn)AN Xinhui,CHEN Ming,WANG Xukui, BAI Yanchao. Spatial and temporal variation of cropland pH and the driving factors in Jiangsu over the past 4O years[J]. Journal of Plant Nutritionand Fertilizers,2023,29(2):264-272.
[34]LIANG F,LIB Z,VOGT RD,MULDER J,SONG H,CHEN J S,GUO JH. Straw return exacerbates soil acidification in major Chinese croplands[J].Resources,Conservation and Recycling, 2023,198:107176.
[35]張啟,胡佳卉,楊佳佳,周慶權(quán),郎躍平,李曉穎.蘭溪枇杷園 土壤養(yǎng)分評價分析與改良建議[J].浙江農(nóng)業(yè)科學(xué),2024,65 (2):354-361. ZHANG Qi,HU Jiahui, YANG Jiajia,ZHOU Qingquan,LANG Yueping,LI Xiaoying.Evaluation analysisand improvement suggestions on soil nutrients in Lanxi loquat orchard[J]. Journal of Zhejiang Agricultural Sciences,2024,65(2):354-361.
[36]鄭梅迎,林偉,徐茜,彭玉龍,劉明宏,龔鵬飛,劉躍東,孔凡玉, 張繼光.基于CNKI數(shù)據(jù)庫的土壤酸化文獻(xiàn)計量分析[J].土 壤,2020,52(4):811-818. ZHENG Meiying,LIN Wei,XU Qian,PENG Yulong,LIU Minghong,GONG Pengfei,LIU Yuedong,KONG Fanyu,ZHANG Jiguang.Bibliometric analysis of soil acidification research based on CNKI database[J]. Soils,2020,52(4):811-818.
[37] MENGC,TIANDS,ZENGH,LIZL,YICX,NIU SL.Global soil acidification impacts on belowground processes[J].EnvironmentalResearchLetters,2019,14(7):074003.
[38]柴華,何念鵬.中國土壤容重特征及其對區(qū)域碳貯量估算的意 義[J].生態(tài)學(xué)報,2016,36(13):3903-3910. CHAI Hua,HE Nianpeng.Evaluation of soil bulk density in Chinese terrestrial ecosystems for determination of soil carbon storage on a regional scale[J].Acta Ecologica Sinica,2016,36(13): 3903-3910.
[39]康婷,周春火,魏宗強(qiáng),繆玉琳,盧志紅.江西省土壤陽離子交 換量區(qū)域分布特征及其影響因素[J].中國農(nóng)學(xué)通報,2021,37 (14):66-71. KANGTing,ZHOUChunhuo,WEI Zongqiang,MIAO Yulin, LU Zhihong.Regional distribution characteristics and influencing factors of soil cation exchange capacity in Jiangxi[J]. Chinese Agricultural Science Bulletin,2021,37(14):66-71.
[40]張妍娥,楊鵬,馬延龍,康樂,張利瑞,王泉靈,張松林.蘭州市 耕地養(yǎng)分綜合評價及其影響因素研究[J].土壤通報,2023,54 (5):1023-1031. ZHANG Yan’e,YANG Peng,MA Yanlong,KANG Le, ZHANG Lirui,WANG Quanling,ZHANG Songlin. Soil nutrient comprehensive evaluation of cultivated land and influencing factors in Lanzhou[J].Chinese Journal of Soil Science,2023,54 (5):1023-1031.