999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

釀酒葡萄果皮花色苷遺傳調控位點的挖掘

2025-06-26 00:00:00王上林張慧敏孫琪潘秋紅董志剛段長青何非
果樹學報 2025年5期
關鍵詞:關聯

中圖分類號:S663.1 文獻標志碼:A 文章編號:1009-9980(2025)05-0933-14

Abstract: 【Objective】 Anthocyanins impart the bright colors of pink,red or even purple to grapes and wine, directly influencing their quality and economic value of wine grapes.There are differences in the color characteristics of different structural anthocyanins,and we can understand the genetic predisposition of different structural anthocyanins and mine significantly associated single nucleotide polymorphism (SNP) loci and candidate genes.This series of work willprovide solid theoretical support for molecular breeding of grapes with different colors.【Methods】 The F1 progeny of the cross between Cabernet Sauvignon 685 (CS 685) and Syrah 100 (X 100) was used as the material,and the phenotypic concentration of each anthocyanin was detected by high performance liquid chromatography-mass spectrometry (HPLC-MS),which provided phenotypic data for the subsequent genome-wide association analysis.In this study,we analyzed the correlation of different anthocyanins.We further analyzed the phenotypic data of anthocyanins and the large amount of SNPs data obtained from whole-genome resequencing,and screened the significant SNP loci and candidate genes associated with the anthocyanins. We explored the intersection of significant SNP loci associated with the diffrent phenotypes.Finally, we analyzed the changes of anthocyanin concentrations caused by the variation of SNP loci, and explored the effects of the diffrent genotypes of SNP loci on the anthocyanin concentration.【Results】A

Wtal Ol zu auuiocyaiius weie uetecteu I uie piugeny pupuiauon ol uie Co oov aiu ,auu ail ailthocyanins showed a broad and continuous distribution in the cross progeny population with very high broad-sense heritability. The significant positive correlations were found between almost allthe anthocyanins, but the concentrations of Cyanidin-3- O. -glucoside (Cy-Glu) and Cyanidin-3-O-caffeolyglucoside (Cy-ca) showed relatively low correlations with the other anthocyanins. The genome-wide association study (GWAS) showed that each phenotype was associated with SNP loci, with a total of 17 382 significant SNPs associated with all phenotypes, the majority of them were located on chromosome 2. By studying the intersection of significant SNP loci in each phenotype,it was found that there were a large amount of intersection in each set, suggesting that there would be a common genetic basis between different floral glycosides regulated by the same loci. The peak patterns of the Manhattan plots of each phenotype were very similar,and allof them had significant SNP clusters on chromosome 2, indicating that the loci related to the synthesis of grape anthocyanin were distributed centrally on the chromosome,but the Manhattan plots ofCy-Gluand Cy-ca showed different characteristics,echoing the results of the correlation analysis. The localization of the genes within ±100kb of significant SNP sites on the grape genome showed that allsignificant SNP sites corresponded to a total of 7,127 genes.Based on gene function annotation, three candidate genes related to the anthocyanin biosynthesis with SNP sites located in the coding regions of genes were screened,corresponding to nine SNP sites.They were: MYBA2 (VIT_202s0033g00390): Chr2.14291946; MYBA1 (VIT_202s0033g00410): Chr2.14351887, Chr2.14352034,Chr2.14352082,Chr2.14352093,Chr2.14352108,Chr2.14352751;PIA2(VIT_ 202s0087g00100): Chr2.17334610 and Chr2.17347491. The SNP sites screened above were associated with 23 phenotypes except for Cy-Glu and Cy-ca.The SNP sites for Cy-Glu and Cy-ca were not screened out probably due to the low density of them on chromosome 2.The most of the candidate SNP sites and genes associated with the phenotypes were duplicated with each other. The VvMYBA2 and VvMYBAl were transcription factors involved in the regulation of the biosynthesis of anthocyanins.The homologue of gene VIT_202s0087g00100 in Arabidopsis was annotated as photosensitive phytochromeinteracting ankyrin-repeat protein 2 (PIA2), which was a positive regulator of anthocyanin accumulation in Arabidopsis. The analysis examined the efect of SNP locus genotypes on the concentration of acylated anthocyanins,unacylated anthocyanins, F3H anthocyanins, F35H anthocyanins and total anthocyanins.The Chr2.14291946 had two genotypes,that was, GG and GC,corresponding to a significantly higher phenotypic concentration of GC than GG. The Chr2.14351887 had three genotypes, that was, AA,AG and GG,corresponding to a significantly higher phenotypic concentration of GG than AG, and AG than AA. The Chr2.14352034 had three genotypes, that was, TT, TG and GG,corresponding to the phenotypic concentrations.GG was significantly higher than TG,TG was significantly higher than TT, but for F3H anthocyanin, GG was not significantly different from TG. The Chr2.14352093 had three genotypes, that was,AA,AC and CC,corresponding to phenotypic concentrations. CC was significantly higher than AC,AC was significantly higher than AA,but for F3H anthocyanin, CC was not significantly diferent from AC. The Chr2.14352108 had three genotypes,that was, CC, CA and AA, which corresponded to a significantly higher phenotypic concentration of AA than CA, CA than CC,but for F3H anthocyanin, there was no significant difference between AA and CA. Chr2.14352751 had two genotypes CC and CT,and CT corresponded to a significantly higher phenotype concentration than CC. Chr2.17334610 had two genotypes GG and GT,and GT corresponded to significantly higher phenotype concentration than GG. Chr2.17347491 had three genotypes TT, TC and CC,corresponding to the phenotype concentration of CC was significantly higher than TC,TC was significantly higher than TT,but for F3H anthocyanin, CC was not significantly different from TC. Chr2.14352093, Chr2.17347491 were synonymously mutated,but could stillhave an effect on the phenotype because synonymous mutations could affect transcriptional level regulation, translation efficiency,and other dimensions.The Chr2.14291946, Chr2.14351887,Chr2.14352034,Chr2.14352082, Chr2.14352108, Chr2.14352751,and Chr2.17334610 had non-synonymous mutations encoding altered amino acids.【Conclusion】All of these SNP loci seems to be possble to develope as molecular markers. The results of the study would provide targets for the study of the regulatory mechanism of grape anthocyanin synthesis and theoretical support for molecular breeding of grapes with different fruit colors.

Key words: Wine grape; Anthocyanin; Genetic regulation; Genome-wide association analysis (GWAS); Single nucleotide polymorphic (SNP)

花色苷屬于類黃酮類物質,具有典型的C6-C3C6結構(兩個苯環通過3個碳原子相連),由花色素與葡萄糖分子通過糖苷鍵連接而成。花色苷是紅葡萄品種及紅葡萄酒中的呈色物質,直接影響了葡萄和葡萄酒的品質和經濟價值,是釀酒葡萄最重要的經濟性狀之一。此外,花色苷還具有抗氧化、抗炎、抗腫瘤、保護視力、降血脂等生理功能,進而影響消費者的偏好和葡萄酒的市場價值[2-3]。因此花色苷是釀酒葡萄育種中的重點關注的目標之一。

歐亞種葡萄(VitisviniferaL.)中主要存在5種花色素,包括花青素(Cyanidin)、花翠素(Delphinidin)、甲基花青素(Peonidin)、甲基花翠素(Petunidin)、二甲花翠素(Malvidin)]。這些花色素C3位上的羥基與葡萄糖C1位上的羥基失去一分子水,形成花色素-3-O-葡萄糖苷。花色苷的生物合成在關鍵酶類黃酮- .3 -羥基化酶(Flavonoid .3 -hydroxylase,F3'H)和類黃酮-3',5'-羥基化酶(Flavonoid-3’5'-hydrox-ylase,F3'5'H)的作用下,形成兩個分支,在 F3H 分支下合成的花青素和甲基花青素被稱為F3'H花色素,其在B環上有兩個取代基,而在F3'5'H分支下合成的花翠素、甲基花翠素和二甲花翠素被稱為F35H 花色素,其在B環上有3個取代基4。自然條件下花色素很少以游離狀態存在,在歐亞種葡萄中大多為C環上C3位羥基被糖苷化,并且糖基上的羥基還可以與脂肪酸(如乙酸)羥基肉桂酸(如咖啡酸、對香豆酸、阿魏酸)相連形成酰化花色苷,進一步增強了花色昔在水溶液中的穩定性。花色昔的組成與含量直接影響葡萄漿果的顏色。花色苷的呈色基團與B環上的羥基和甲基數量有關,甲基數量越多時,花色苷越趨向于紅色色調;而羥基數量越多,花色苷越表現出藍紫色色調。

由于葡萄是多年生果樹,樹體較大、世代周期長且高度雜合,而花色苷含量屬于復雜的數量性狀,使用傳統育種方式進行顏色改良或不同果色創制難度較大,利用分子生物學技術進行葡萄基因組輔助育種顯得尤為重要。隨著高通量測序技術和分析技術的發展,基于連鎖不平衡(Linkagedisequilibrium,LD)的關聯映射(Associationmapping,AM)可用于復雜性狀的解析。作為AM方法之一的全基因組關聯分析可以在全基因組范圍內,檢測群體的遺傳變異多態性,與表型進行關聯分析,最終篩選出與表型相關的位點和基因,是目前解析復雜數量性狀的重要手段[]。

近年來,研究者開始將全基因組關聯分析(Ge-nome-wideassociationanalysis,GWAS)應用于葡萄遺傳位點的鑒定,如抗性[10-12]、葉片形態[13-14]、香氣物質[15-16]、漿果顏色[1、漿果特性[18-20]等多個方面,但前人對葡萄果皮著色機制的研究主要集中在控制果皮顏色的有無或顏色分類的基因或位點上,未關注不同結構花色苷的遺傳趨勢及相關的SNP位點及基因。基于不同結構花色苷呈色的差異,開展相關的遺傳規律研究,對果實花色育種有重要的指導意義。

筆者在本研究中以歐亞種釀酒葡萄品種赤霞珠685和西拉100的雜交 F1 子代作為群體材料,利用高效液相色譜-串聯三重四級桿質譜聯用(Highperfor-mance liquidchromatographytriplequadrupolemassspectrometry,HPLC-QqQ-MS)技術檢測花色苷的組成及含量,為全基因組關聯分析提供表型數據。利用筆者課題組前期對該雜交F群體全基因組重測序獲得的大量SNP位點[2I-22],進行GWAS分析,以期獲得與葡萄果皮花色苷顯著關聯的SNP位點和候選基因,用于開發分子標記,并為葡萄色澤的分子設計

育種提供依據。

1材料和方法

1.1 植物材料

以山西省農業科學院果樹研究所培育的釀酒葡萄赤霞珠685(VitisviniferaL.‘CabernetSauvignon685’,CS685)和西拉100(V.viniferaL.‘Syrah100’,X100)以及兩者的正交和反交得到的F代為試材,雜交在2013年進行,在2018年開始大量結果。這些子代均已通過雜交真實性鑒定。親本及其子代均種植于山西農業科學院果樹研究所釀酒葡萄育種圃 (37°34N,112°49E) ,行向為南北行向,株行距為 0.5m×2.5m 。

試驗所用的葡萄果實樣品于2019年采集。采樣在葡萄果實總可溶性固形物(TSS,Brix)含量約為 21°Brix 時進行,此時果實已成熟[23]。采得真實雜交子代樣品共81份。

1.2 試劑與標準品

分析純:甲醇,購自天津化工廠;色譜級:甲醇、甲酸、乙腈,購自美國Sigma-Aldrich公司;標準品:二甲花翠素-3-O-葡萄糖苷購自美國Sigma-Aldrich公司。

1.3 主要儀器

高效液相色譜(Agilent1200系列)串聯三重四級桿質譜儀(HPLC-QqQ-MS)(美國Agilent有限公司);Poroshell 120EC-Cl8(150mm×2.1mm,2.7μm) 色譜柱(美國Agilent有限公司)。

1.4花色苷的提取與檢測

參照已有花色苷提取與檢測方法,并稍作修改[22]。

果皮中的花色苷提取:果實在液氮冷凍后剝皮,果皮在液氮環境下研磨成粉,真空凍干 36h 。于 2mL 離心管中精確稱量 0.100g 凍干粉末,加入1mL 50% 的甲醇水溶液,冰浴避光超聲處理 20min 后,在 4°C 下 12000r?min-1 離心 5min 。收集上清液,對殘渣重復提取1次,將2次上清液合并后在 -40°C 冰箱保存。

果皮中花色昔的檢測:提取液測定前使用0.22μm 聚四氟乙烯(PTFE)濾膜過濾,進樣量 5μL 。流動相A為 0.1% 甲酸的水溶液,B為含 0.1% 甲酸的50% 的甲醇乙腈溶液。HPLC-QqQ-MS的洗脫程序: 90%~100% A, 10%~100% B,持續 15min ,后運行程序 5min 。流動相流速為 0.4mL?min-1 。柱溫控制為 55°C 。質譜采用電噴霧離子源,正離子模式,離子源溫度為 150°C ,干燥氣溫度為 350°C ,流量為12L?min-1 ,噴霧電壓為 4kV ,霧化器壓力為35psi,檢測器為多反應監測模式。

花色苷的定性依據為已建立的葡萄與葡萄酒酚類物質HPLC-UV-MS指紋譜庫[24]。采用外標法定量,以二甲花翠素-3-O-葡萄糖苷為外標物,單位表示為mg?kg-1 (以鮮質量計)。標線如下: :y=0.00001307x+ 2.8(線性范圍: 12.13~125.49mg?L L-1 ?R2=0.991 )。

1.5全基因組關聯分析

筆者課題組前期對雜交子代群體進行了全基因組重測序,使用SAMTOOLS軟件在群體中檢測得到8417765個SNP位點,經過濾最終得到3314995個高質量SNPs,用于GWAS分析。

筆者在本研究中使用GEMMA軟件,采用單變量混合線性模型、以親緣關系矩陣(kinship)作為隨機效應,用GATA1.92.4進行主成分分析,將前3個主成分作為協變量加入到模型中,以校正群體分層,對群體不同結構花色苷性狀進行關聯分析,通過關聯的顯著度 (plt;1e-6) ,篩選潛在的候選SNP位點。

該式中y為表型值的向量: X 為固定效應的設計矩陣,用于表示固定效應的因子; β 為固定效應的參數向量; P 為包含了主成分作為協變量的設計矩陣;y為與主成分相關的固定效應參數向量;Z為與隨機效應相關的設計矩陣; u 為隨機效應的向量; ? 為殘差項。

1.6 候選基因分析

結合各性狀對應的SNP位點在葡萄參考基因組(http://genomes.cribi.unipd.it/grape/)上的物理位置,通過Cribi Genomics 網站(http://genomes.cribi.unipd.it/對顯著SNP位點 ±100kb 范圍內的基因進行功能注釋。基于基因功能注釋,篩選與花色苷生物合成調控有關的基因,并將其中SNP位點位于基因內部的基因確定為候選基因。

1.7 統計分析

使用MicrosoftExcel2021對樣本的花色苷含量進行統計分析,計算變異系數(Variationcoefficient,CV)、廣義遺傳力(Broadsenseheritability, H2 ,各指標的計算公式如下:

式中: SD 為子代標準差, 為子代均值。

式中: VP 為表現型方差, 為環境方差。

VE=(VP1-VP2)/2

式中: VP1 為母本的表型方差, VP2 為父本的表型方差。

2 結果與分析

2.1雜交 F1 群體內花色苷表型變異

81份赤霞珠685和西拉100雜交子代中,有53個子代的果皮呈現明顯紅色,28個子代肉眼觀察不到紅色。如表1所示,從有顏色的葡萄果皮中共檢出20種花色苷,包括5種基本花色苷和15種乙酰化、香豆酰化和咖啡酰化形式,而乙酰化花青苷和香豆酰化甲基花青苷在所有未觀察到紅色的果皮中都未檢出。F子代之間花色苷組分的濃度有較大差別。

為了解不同結構花色昔的遺傳傾向,將在親本和子代中檢測到的花色苷按不同結構進行歸類,將濃度進行累加,從而延伸出酰化花色苷和非酰化花色苷,以及 F3H 花色苷和 F35H 花色苷。將他們以及所有花色苷的總含量作為表型,共計25個表型,對各表型進行統計分析(表1)。

廣義遺傳力代表了一個群體由基因型所決定變異的大小,在本研究中,除咖啡酰化甲基花翠苷外,其他24個表型的廣義遺傳力都在 80% 以上,其中15種表型的廣義遺傳力達到 99% ,他們是甲基花青苷、乙酰化甲基花青苷、花翠苷、乙酰化花翠苷、甲基花翠苷、乙酰化甲基花翠苷、二甲花翠苷、乙酰化二甲花翠苷、香豆酰化二甲花翠苷、咖啡酰化二甲花翠苷、酰化和非酰化花色苷、 .F3H 和 F35H 花色昔、總花色苷,這些結果表明,各個花色昔表型均有較高的遺傳效應。

表1雜交 F1 群體各個花色苷性狀的遺傳指標Table1 Genetic indicatorsof anthocyaninsintheFipopulation

對比親中值與子代含量范圍,可以發現,子代呈現明顯的分離,各表型變異系數均超過 85% ,其中咖啡酰化花青苷的變異系數最高,達到 327.82% □圖1直觀展示了花色苷的含量分布,大部分表型在雜交子代群體中都呈現山廣泛且連續的分布特征。

2.2各個花色苷組分含量的相關性分析

基丁不同花色苷在含量上的分布規律極為相似,筆者進一步采用Pearson相關性分析評估不同表型之間的相關性。結果如圖2所示,除花青苷含量和咖啡酰化花青苷含量與其他花色苷含量之間有較低的相關性之外,其他花色苷含量之間均存在顯著的正相關。這些結果表明,不同花色苷性狀可能受類似機制的調控,其調控位點可能位丁花色苷生物合成途徑的主干路徑基因或是調控該途徑的轉錄因子。

2.3花色苷含量的全基因組關聯分析

將25個花色苷含量性狀數據分別與3314995 個高質量SNP位點進行全基因組關聯分析,圖3展 示了花翠苷、甲基花翠苷、二甲花翠苷、乙酰化二甲 花翠苷和香豆酰化二甲花翠苷花色苷含量全基因 組關聯分析得到的曼哈頓圖和Q-Q圖。以 為篩選閾值,超過閾值線的即為與性狀顯著關聯的SNP位點。Q-Q圖反映了有較好的GWAS質控。

GWAS結果顯示,各表型合計定位到17382個顯著SNP位點,每個表型均關聯到顯著SNP位點,這些位點絕大多數都分布丁2號染色體上。大部分表型曼哈頓圖峰型非常相似,在2號染色體處有顯著SNP簇,這表明與葡萄花色苷合成相關的位點在染色體上集中分布。圖4顯示了各表型顯著SNP位點的交集情況,其中香豆酰化花翠苷、咖啡酰化甲基花翠苷、乙酰化甲基花青苷、香豆酰化甲基花青苷、乙酰化花翠苷、甲基花翠苷、乙酰化甲基花翠苷、香豆酰化甲基花翠苷、 F3H 花色苷、乙酰化二甲花翠苷、咖啡酰化二甲花翠苷、二甲花翠苷、非酰化花色苷、 F35H 花色苷、酰化花色苷、總花色苷、香豆酰化二甲花翠苷交集數量最多,存在1275個共同的顯著SNP位點。此外,各集合也存在大量交集,表明圓圈顏色的深淺、大小表示相關性的大小,畫叉代表顯著性水平0.05以上無相關性。

Thcolortesidethflaosoeeprscelata不同花色苷之間受相同位點調控,存在共同的遺傳基礎。

圖2雜交F群體中各個花色苷性狀含量的相關性分析Fig.2Correlations among the concentrations of various anthocyanins in the F,population

2.4候選基因與SNP位點的挖掘

利用已公布的葡萄(Vitisvinifera‘PinotNoir' 全基因組,將與顯著關聯的SNP位點定位在葡萄基因組上,以挖掘SNP位點 ±100kb 范圍內的基因。結果顯示,所有顯著SNP位點共對應7127個基因。基于基因功能注釋進行篩選,重點關注位于基因編碼區內的SNP位點及其所對應的基因,得到3個候選基因及其9個位于基因編碼區內的SNP位點(表2,圖5)。以上篩選出SNP位點合計關聯到除花青苷與咖啡酰化花青苷外的23個表型,且大多數表型關聯到的SNP位點和基因都彼此重復,可能由于花青苷與咖啡酰化花青苷在2號染色體上SNP位點密度較低,未篩選出與之相關的SNP位點。

基因VIT_202s0033g00390和VIT_202s0033g0-0410分別被注釋為VvMYBA2和VvMYBA1,它們均是已報道的調控花色苷合成的轉錄因子[25-27],這些也證實了本研究結果的可靠性。基因VIT202s0087g00100 在擬南芥中的同源基因被注釋為光敏色素互作蛋白2(PIA2),PIA2是擬南芥中花色苷積累的正調節因子[2],但在葡萄中其功能未被證實。

2.5三個轉錄因子關聯的SNP位點基因型與花色苷含量的關系

由于密碼子的簡并性,位于基因編碼區內的SNP位點突變可能不會引起非同義突變。在本研究中,位于MYBA2基因編碼區內的Chr2.14291946和位于MYBA1基因編碼區內的Chr2.14351887、Chr2.14352034、 Chr2.14352082、 Chr2.14352108、Chr2.14352751以及PIA2基因內的Chr2.17334610均發生了非同義突變,其余2個SNP位點為同義突變(表3)。

在雜交F群體中大部分SNP位點存在3種基因型,且不同基因型對應的花色苷含量具有明顯差異,基因型與表型含量的變化關系見表3。由于突變引起的表型變異規律相似,筆者在本研究中重點關注了與酰化花色苷、非酰化花色苷、F3’H花色苷、F3’5H花色苷相關的SNP位點的基因分型結果(圖5),如與酰化花色苷、非酰化花色苷、 F3H 花色苷、F3'5H花色苷均顯著關聯的SNP位點Chr2.14291946,位于左側為曼哈頓圖,曼哈頓圖中水平的虛線表示顯著水平,當 plt;1e-6 時,認為該 SNP與該性狀顯著關聯;右側為Q-Q圖。

圖3花色苷全基因組關聯分析曼哈頓圖、Q-Q圖
圖4花色苷顯著SNP位點交集Fig.4SignificantSNPsiteintersectionforanthocyanins
表2基因編碼區內顯著SNP位點信息及其基因注釋Table2 Information of significant SNP loci within genes CDS and their gene annotation.
注:對應性狀的序號:1.Cy-Glu;2.Cy-ac;3Cy-co;4.Cy-ca;5.Pe-Glu;6.Pe-ac;7.e-co;8.Pe-ca9.Dp-Glu;10.Dp-ac;11.Dp-co;2.Dp-ca; 13.Pt-Glu;14.Pt-ac;15.Pt-co;16.Pt-ca;17.Mv-Glu;18.Mv-ac;19.Mv-co;20.Mv-ca;21.酰化花色苷;22.非酰化花色苷;23.F3H花色苷;24. F3'5'H花色苷;25.總花色苷。 Note:Correspodingtraitumbes:1.C-G;2.Cy-ac;3.Co4.Cyca;5.-G;ac;7e-co;8Pe-ca;9Dp-lu;10ac; co;12.Dp-ca;.G14ac;5oa;7c;;a;laedt;22Ud thocyanin;23.F3'Hanthocyanin;24.F3'5'Hanthocyanin;25.Total anthocyanin.
表3候選SNP位點的變化信息Table3CandidateSNPsmutationinformation
注:氨基酸縮寫:D.天冬氨酸;E.谷氨酸;V.氨酸;A.丙氨酸;Q.谷氨酰胺;P.脯氨酸;R.精氨酸;T.蘇氨酸;S.絲氨酸;I.異亮氨酸;L.亮氨 酸。 Note:Aminoacdbevti:Dsparticid;E.utaicid;VValie;le;uta;role;e; ine; I. Isoleucine;L.Leucine.

MYBA2基因的CDS區域,該位點處基因型為G/C的子代含量均值高于基因型為G/G的子代含量均值,且當該位點處核苷酸由G突變為C時,引起了非同義突變,導致該基因氨基酸序列中的纈氨酸(E)被谷氨酸(D)取代,相應的各表型的含量增加。

3討論

盡管葡萄果皮花色苷含量受多種因素影響,但其組成和相對含量主要由遺傳因素決定[29-31]。全基因組關聯分析是解析這一復雜數量性狀遺傳結構的有效方法。花色苷的生物合成過程中涉及多個基因的相互作用和調控網絡,目前,花色苷的生物合成途徑已經明確,途徑中合成關鍵酶的結構基因功能大多保守,一些轉錄因子是導致花色苷差異積累的主要因素[32]。

前人研究表明,位于Chr2上的相鄰基因VvMY-BA1和VvMYBA2是連鎖的,可將二者視為一個單倍型,兩基因可以獨立調控VvUFGT基因的表達,決定果皮是否呈色,也就是說紅葡萄品種至少含有一種類型的功能性等位基因,且等位基因組成不同的單倍型產生的葡萄果皮顏色也不同[33-35]。有研究表明,VvMYBA1啟動子區域的SNP位點突變導致了紅色果皮的Benitaka到黑色果皮的Brazil的芽變[。筆者在本研究中也關聯到了VvMYBA1和VvMYBA2基因編碼區的SNP位點,在前人的研究中未被報道,將為探究葡萄果皮顏色調控機制提供靶標。VIT202s0087g00100 在擬南芥中的同源基因為PIA2,以往有關PIA2的報道較少,在擬南芥幼苗中PIA2被發現可通過激活UFGT基因表達參與調控花色苷的生物合成,PIA2也可以抑制光敏色素A介導的PIF3快速磷酸化,防止磷酸化后的PIF3被泛素-蛋白酶體途徑降解[37-39]。轉錄因子PIF3屬于bHLH家族,是花色苷合成路徑中關鍵結構基因CHS的正調控因子[40]。綜合來看,PIA2在調控植物花色苷合成途徑中發揮著多重作用。筆者在本研究中首次發現PIA2可能參與了葡萄果皮花色苷合成的調控,其機制將有待深入探究。

在本研究中,大多數表型含量之間顯著正相關,且關聯到的SNP位點和基因都彼此重復。共篩選到9個顯著SNP位點,關聯到3個轉錄因子,包括已驗證參與葡萄花色苷合成的MYBA2、MYBA1以及尚未報道與葡萄花色苷路徑有關的基因PIA2。有7個顯著SNP位點發生非同義突變,突變后對應的花色苷含量顯著上升,具有開發為分子標記的潛力。對于2個發生同義突變的位點,突變后對應花色苷含量同樣顯著上升,可能由于同義突變在轉錄水平調控、翻譯效率等層面對表型仍能對表型產生影響。筆者在本研究中篩選與花色苷合成相關的關鍵基因和位點,可為深入研究葡萄花色苷合成的轉錄調控機制提供參考。并可通過挖掘花色苷遺傳調控位點開發分子標記,可用于葡萄育種的早期篩選,加快分子育種進程。

4結論

不同結構花色苷有相似的遺傳趨勢,控制不同結構花色苷合成的遺傳位點高度相似,且主要位于2號染色體上。首次在釀酒葡萄雜交F群體中,利用GWAS分析篩選到調控花色苷生物合成的9個遺傳位點和所對應的3個候選基因,并發現PIA2(20 (VIT 202s0087g00100) 與葡萄花色苷生物合成相關聯,這些發現對葡萄生產和育種工作具有重要意義。

參考文獻References:

[1] 張欣珂,趙旭,成池芳,齊夢瑤,石英.葡萄酒中的酚類物質 I:種類、結構及其檢測方法研究進展[J].食品科學,2019,40 (15):255-268. ZHANG Xinke,ZHAO Xu,CHENG Chifang,QI Mengyao, SHIYing.PhenolicsinwinesI:Areviewofcategories,structuresand detection methods[J].Food Science,2019,40(15): 255-268.

[2] 張淑淑,呂想,劉偉,張菊華.果蔬花色苷的理化特性、提取技 術及功能活性研究進展[J].食品與發酵工業,2024,50(2):360- 371. ZHANG Shushu,LU Xiang,LIU Wei,ZHANG Juhua. Research progressonphysical and chemical characteristics,extraction technology,and functional activityofanthocyanins from fruitsand vegetables[J].Food and Fermentation Industries, 2024,50(2):360-371.

[3] 崔云斌,李嘉鈺,劉鈺,李蘇輝,蒲旭欣,才讓卓瑪,王世光,鄒 登朗.植物花色苷及其生物合成與藥理的研究進展[J].青海 草業,2022,31(3):71-75. CUI Yunbin,LI Jiayu,LIU Yu,LI Suhui,PU Xuxin,CAI Rangzhuoma,WANG Shiguang,ZOU Denglang.Advances in the studyof plant anthocyaninsand their biosynthesis and pharmacology[J].QinghaiPrataculture,2022,31(3):71-75.

[4] 張龍,李衛華,姜淑梅,朱根發,王碧青,李洪清.花色素苷生 物合成與分子調控研究進展[J].園藝學報,2008,35(6):909- 916. ZHANG Long,LI Weihua,JIANG Shumei,ZHU Genfa, WANG Biqing,LI Hongqing.Progress of molecular basis of biosynthesis and transcriptional regulation of anthocyanins[J].Acta Horticulturae Sinica,2008,35(6):909-916.

[5]NAKAYAMA T,SUZUKI H, NISHINO T. Anthocyanin acyltransferases:Specificities,mechanism,phylogenetics,and applications[J].Journal of Molecular Catalysis B:Enzymatic,2003, 23(2/3/4/5/6): 117-132.

[6] HEF,MUL,YANGL,LIANGNN,PANQH,WANGJ, REEVES MJ,DUAN C Q.Biosynthesis of anthocyanins and their regulation in colored grapes[J].Molecules,2010,15(12): 9057-9091.

[7] 倪海枝,王引,顏幫國,陳方永.果樹基因組輔助育種技術研究 現狀與展望[J].分子植物育種,2023,21(5):1535-1550. NI Haizhi,WANG Yin,YAN Bangguo,CHEN Fangyong. Research status and prospects of genomics-assisted breeding technology in fruit tree[J].Molecular Plant Breeding,2023,21(5): 1535-1550.

[8] TELLO J,IBANEZ J. Review : Status and prospects of association mapping in grapevine[J].Plant Science,2023,327:111539.

[9] KORTE A,FARLOW A. The advantages and limitations of trait analysis with GWAS:A review[J].Plant Methods,2013,9: 29.

[10]WANG Y,XIN HP,FANPG,ZHANGJS,LIUYB,DONG Y,WANG Z M, YANG Y Z,ZHANG Q,MING R, ZHONG G Y,LI S H,LIANG Z C.The genome of Shanputao (Vitis amurensis)provides a new insight into cold tolerance of grapevine[J]. The Plant Journal,2021,105(6):1495-1506.

[11]TRENTI M,LORENZI S,BIANCHEDI PL,GROSSI D,FAILLAO,GRANDOMS,EMANUELLI F.Candidategenes and SNPs associated with stomatal conductance under drought stress in Vitis[J].BMC Plant Biology,2021,21(1):7.

[12]ZHANG Y,FAN X C,LI Y F,SUN H S,JIANG JF,LIU C H. Restriction site-associated DNA sequencing reveals the molecular genetic diversityof grapevine and genes related to white rot disease[J].Scientia Horticulturae,2020,261:108907.

[13]LAPLANTE ER,FLEMING MB,MIGICOVSKY Z,WEBER M G. Genome-wide association study reveals a genomic region associated with mite-recruitment phenotypes in the domesticated grapevine (Vitis vinifera)[J]. Genes,2021,12(7):1013.

[14]CHITWOOD D H,RANJAN A,MARTINEZ C C,HEADLANDLR,THIEMT,KUMARR,COVINGTONMF, HATCHER T,NAYLOR D T,ZIMMERMAN S,DOWNS N, RAYMUNDO N,BUCKLERE S,MALOOFJN,ARADHYA M,PRINS B,LI L,MYLES S,SINHA NR. A modern ampelography:A genetic basis for leaf shape and venation paterning in grape[J].PlantPhysiology,2014,164(1):259-272.

[15]YANG X X,GUO Y S,ZHU JC,NIU Z Z,SHI GL,LIU Z D, LI K,GUO X W. Genetic diversity and association study of aromatics in grapevine[J]. Journal of the American Society for Horticultural Science,2017,142(3):225-231.

[16]SUNQ,HEL,SUNL,XUHY,FUYQ,SUN ZY,ZHU BQ, DUANCQ,PANQH.Identificationof SNPlociand candidate genes genetically controlling norisoprenoids in grape berry based on genome-wide association study[J].Frontiers in Plant Science,2023,14:1142139.

[17]CARDOSO S,LAU W,EIRAS DIAS J,FEVEREIRO P,MANIATIS N.A candidate-gene association study for berry colour andanthocyanincontent in VitisviniferaL.[J].PLoSOne,2012, 7(9):e46021.

[18]ZHANG C,CUI LW,FANG JG. Genome-wide association study ofthe candidate genes for grape berry shape-related traits[J]. BMC Plant Biology,2022,22(1):42.

[19]LIANG ZC,DUAN SC,SHENGJ,ZHU S S,NIXM,SHAO JH,LIU CH,NICKP,DUF,FAN PG,MAORZ,ZHU Y F, DENGWP,YANGM,HUANGHC,LIUYX,DINGYQ, LIU X J, JIANG JF,ZHU YY,LI S H,HE X H,CHEN W, DONG Y.Whole-genome resequencing of 472 Vitis accessions for grapevine diversityand demographic history analyses[J].Nature Communications,2019,10(1):1190.

[20]MIGICOVSKY Z,SAWLER J,GARDNER K M,ARADHYA MK,PRINSBH,SCHWANINGERHR,BUSTAMANTEC D,BUCKLERES,ZHONGGY,BROWNPJ,MYLESS.Patterns of genomic and phenomic diversity inwine and table grapes[J]. Horticulture Research,2017,4:17035.

[21]劉敖一,孫琪,董志剛,劉鎮海,段長青,潘秋紅.‘赤霞珠'與 ‘西拉'雜交群體內種子單寧的遺傳趨勢分析[J].中外葡萄與 葡萄酒,2022(4):8-13. LIU Aoyi,SUN Qi,DONG Zhigang,LIU Zhenhai,DUAN Changqing,PAN Qiuhong. Inheritance trend of seed condensed tanninsinF,hybridsof‘CabernetSauvignon’and‘Syrah’of Vitisvinifera[J].Sino-OverseasGrapevineamp;Wine,2022(4):8- 13.

[22]盧浩成,魏巍,成池芳,陳武,李樹德,王曉軍,劉宗昭,王軍.5 個調色葡萄品種酚類物質輪廓分析[J].食品科學,2021,42 (16): 145-154. LU Haocheng,WEI Wei,CHENG Chifang,CHEN Wu,LI Shude,WANG Xiaojun,LIU Zongzhao,WANG Jun. Analysis of the phenolic profiles of five blending grape varieties[J].Food Science,2021,42(16):145-154.

[23]鐘海霞,丁祥,周曉明,潘明啟,張付春,韓守安,張雯,謝輝,王 敏,艾爾買克·才卡斯木,伍新宇.新疆10個釀酒葡萄品種 (系)可溶性糖組分及含量分析[J].新疆農業科學,2021,58(7): 1323-1331. ZHONG Haixia,DING Xiang,ZHOU Xiaoming,PAN Mingqi, ZHANG Fuchun,HAN Shouan,ZHANG Wen,XIE Hui, WANG Min,Ermaik·Caikasim,WU Xinyu. Analysis of soluble sugar components and contents in 1O mature grape varieties (lines)in Xinjiang[J].XinjiangAgricultural Sciences,2021,58 (7):1323-1331.

[24]LIANGNN,PANQH,HEF,WANGJ,REEVESMJ,DUAN C Q.Phenolic profiles of Vitis davidii and Vitis quinquangularis species native to China[J]. Journal of Agricultural and Food Chemistry,2013,61(25):6016-6027.

[25] MUNOZ C, FANZONE M, LIJAVETZKY D. Transcriptional regulation of the anthocyanin biosynthesis pathway in developing grapevine berries in cultivar‘Malbec’byputative R2R3 MYB negative regulators[J]. Scientia Horticulturae,2019,257: 108663.

[26]KOBAYASHI S,GOTO-YAMAMOTO N,HIROCHIKA H. Retrotransposon-induced mutations in grape skin color[J]. Science, 2004,304(5673):982.

[27]WALKER A R,LEE E,ROBINSON SP. Two neW grape cultivars,bud sports of Cabernet Sauvignon bearing pale-coloured berries,are the result of deletion of two regulatory genes of the berry colour locus[J]. Plant Molecular Biology,2006,62(4/5): 623-635.

[28]SHINJ,PARK E,CHOI G.PIF3 regulates anthocyanin biosynthesis inan HY5-dependent manner with both factors directly bindinganthocyanin biosynthetic gene promoters in Arabidopsis[J]. The Plant Journal,2007,49(6):981-994.

[29]付東艷,汪蕾,張龍生.遮陽對馬瑟蘭葡萄花色苷組分及合成 相關基因表達的影響[J].果樹學報,2025,42(1):30-47. FU Dongyan,WANG Lei,ZHANG Longsheng. Effects of Sun shading on anthocyanin components and the expression of genes related to anthocyanin synthesis inMarselan grape[J]. Journal of Fruit Science,2025,42(1):30-47.

[30]薛曉斌,李棟梅,張艷霞,王振平.水分脅迫對馬瑟蘭葡萄果實 品質及花色苷合成代謝的影響[J].果樹學報,2023,40(5):919- 931. XUE Xiaobin,LI Dongmei,ZHANG Yanxia, WANG Zhenping. Effects of water stress on berry quality and anthocyanin metabolism in Marselan grape[J].Journal ofFruit Science,2023,40(5): 919-931.

[31]邢婷婷,楊航宇,王雯染,楊曉慧,王軍.14個歐亞種紅色釀酒 葡萄品種(品系)的花色苷組成和含量分析[J].果樹學報, 2018,35(2):147-157. XING Tingting,YANG Hangyu,WANG Wenran,YANG Xiaohui,WANG Jun. The compositions and contents of anthocyanins of14 red wine grape varieties or clones (Vitis vinifera)[J]. Journal ofFruit Science,2018,35(2):147-157.

[32]ZHAO W,LIU Y H,LI L,MENG HJ,YANG Y,DONG Z B, WANGL,WUGL.Genome-wideidentificationandcharacterization of bHLH transcription factors related to anthocyanin biosynthesis inred walnut (Juglans regia L.)[J].Frontiers inGenetics,2021,12:632509.

[33]WALKERAR,LEEE,BOGSJ,MCDAVIDDAJ,THOMAS M R,ROBINSON S P. White grapes arose through the mutation of two similar and adjacent regulatory genes[J].The Plant Journal,2007,49(5):772-785.

[34]AZUMA A,KOBAYASHI S,MITANI N,SHIRAISHI M, YAMADAM,UENOT,KONOA,YAKUSHIJIH,KOSHITA Y.Genomic and genetic analysis of Myb -relatedgenesthat regulateanthocyaninbiosynthesisin grape berry skin[J].Theoretical andAppliedGenetics,2008,117(6):1009-1019.

[35]AZUMAA,UDOY,SATOA,MITANIN,KONOA,BANY, YAKUSHIJI H,KOSHITAY,KOBAYASHI S. Haplotype composition at the color locusis a major genetic determinant of skin colorvariationin Vitis x labruscanagrapes[J].Theoretical and AppliedGenetics,2011,122(7):1427-1438.

[36]XUYS,JIANGN,ZHANGYG,WANGM,RENJP,TAO J M.A SNP in the promoterregion of the VvmybA1 gene isresponsible for differencesin grape berrycolor between two related bud sports of grape[J].Plant Growth Regulation,2017,82(3): 457-465.

[37]YOOJ,SHINDH,CHOMH,KIMTL,BHOOSH,HAHNT R.Anankyrin repeat protein is involved inanthocyanin biosynthesisinArabidopsis[J].Physiologia Plantarum,2011,142(4): 314-325.

[38]YOO J,CHO MH,LEE SW,BHOO S H.Phytochrome-interactingankyrin repeat protein2 modulatesphytochrome A-mediatedPIF3 phosphorylation in light signal transduction[J].The Journal ofBiochemistry,2016,160(4):243-249.

[39]HENRIQUESR,JANG IC,CHUANH.Regulated proteolysis inlight-related signalingpathways[J].Current Opinion inPlant Biology,2009,12(1):49-56.

[40]KIMJ,YIH,CHOIG,SHINB,SONG PS,CHOIG.Functional characterization of phytochrome interacting factor3in phytochrome-mediated light signal transduction[J].The Plant Cell, 2003,15(10):2399-2407.

猜你喜歡
關聯
不懼于新,不困于形——一道函數“關聯”題的剖析與拓展
“苦”的關聯
當代陜西(2021年17期)2021-11-06 03:21:36
船山與宋學關聯的再探討
原道(2020年2期)2020-12-21 05:47:06
“一帶一路”遞進,關聯民生更緊
當代陜西(2019年15期)2019-09-02 01:52:00
新制度關聯、組織控制與社會組織的倡導行為
奇趣搭配
基于廣義關聯聚類圖的分層關聯多目標跟蹤
自動化學報(2017年1期)2017-03-11 17:31:17
智趣
讀者(2017年5期)2017-02-15 18:04:18
探討藏醫學與因明學之間的關聯
西藏科技(2016年5期)2016-09-26 12:16:39
GPS異常監測數據的關聯負選擇分步識別算法
主站蜘蛛池模板: 4虎影视国产在线观看精品| 国产女人水多毛片18| 亚洲欧洲美色一区二区三区| 毛片手机在线看| 国产小视频网站| 久久精品人人做人人| 久久中文字幕2021精品| 亚洲精品中文字幕无乱码| 精品国产三级在线观看| 国产女同自拍视频| 国产丝袜啪啪| 成人午夜免费观看| 日韩高清一区 | 美女啪啪无遮挡| 日韩无码视频专区| 99er精品视频| аⅴ资源中文在线天堂| 中文字幕啪啪| 午夜福利视频一区| 国产欧美精品专区一区二区| 精品久久综合1区2区3区激情| 91亚洲精选| 欧美国产综合色视频| 亚洲成在人线av品善网好看| 久久国产精品影院| 亚洲美女操| 国产aⅴ无码专区亚洲av综合网| 超碰aⅴ人人做人人爽欧美 | 日韩精品一区二区三区免费| 亚洲精品图区| 欧美日本激情| 欧美日韩中文字幕在线| 国产高清在线精品一区二区三区| 国产区91| 久草性视频| 国产成年女人特黄特色大片免费| 亚洲三级视频在线观看| 亚洲精品日产精品乱码不卡| 国产精品色婷婷在线观看| 国产区免费| 中文字幕自拍偷拍| 99热6这里只有精品| 久草网视频在线| 四虎综合网| 广东一级毛片| 欧美亚洲一二三区| 波多野结衣无码AV在线| 99资源在线| 激情乱人伦| 国产综合网站| 国产成人精品亚洲77美色| 亚洲中文字幕无码爆乳| 成人午夜视频网站| 国产精品久久自在自线观看| 久久久久亚洲AV成人人电影软件| 韩国自拍偷自拍亚洲精品| 久久久久亚洲AV成人人电影软件| 亚洲丝袜中文字幕| 国产一区二区人大臿蕉香蕉| 国产啪在线| 97免费在线观看视频| …亚洲 欧洲 另类 春色| 午夜在线不卡| 成年网址网站在线观看| 国产三级视频网站| 精品久久久久无码| 免费a在线观看播放| 91精品久久久无码中文字幕vr| 午夜国产不卡在线观看视频| 国产99热| 另类综合视频| 欧美伦理一区| 亚洲九九视频| 日韩av无码精品专区| 亚洲a级毛片| 久久人搡人人玩人妻精品| www.亚洲色图.com| 中文字幕日韩丝袜一区| 一级毛片免费不卡在线| 国产免费a级片| 在线国产你懂的| 精品一区二区无码av|