中圖分類號:S661.1 文獻標志碼:A 文章編號:1009-9980(2025)05-1077-10
Abstract: Apple (Malus × domestica Borkh.) is one of the major cultivated fruit crops in China,and its cultivation area and yield rank first globally.The selection of excellnt rootstock varieties is the basis and guarantee for high quality and high yield of apple.Rootstock affects not only its stress resistance and adaptability,but also the quality and yield of apple.In recent years,abiotic stressors, such as drought,soil salinity,heat and cold,are major limiting factors,which result in a decline in fruit quality and yield of apple,and seriously affect the healthy and sustainable development of the apple industry. These threats are likely to become even more significant under climate change and the pressures of an ever-growing human population. The stress resistance of apple trees mainly depends on the rootstock. Therefore,it is of great significance for the development of apple industry to identify and evaluate the resources of apple rootstock and screen the excellent rootstocks with strong stress resistance. China is one of the world's largest apple origin centers,abundant in germplasm resources,and holds great potential for resource innovation and utilization. It is of utmost significance for the development of the apple industry to select outstanding rootstocks with strong stress resistance and dwarfing traits. In this paper, the research and utilization situation of apple rootstock resources both at home and abroad was reviewed to provide a basis for the breeding and wide application of apple rootstocks. The main results are as follows: (1) Apple belongs to Rosaceae family, which comprises 36 species in the world,of which 25 are native to China,including more than 1OO variant types.Among these different species and types,there are abundant resources of apple rootstocks with utilization and potential utilization value, which have excellent germplasm such as drought resistance, cold resistance, flood resistance, salt tolerance, iron deficiency resistance and apomixis. Some of these rootstocks are directly used in production. For along time,M.sieversii,M.robusta,M. hupehensis and M. baccata have been used as rootstocks in most apple producing areas in China. (2) Apple often suffers from adverse stresses, such as drought, low temperature,salt and alkali, which affects its growth and development and reduces its yield and fruit quality. It has been found that the drought tolerance of M. sieversi,M. prunifolia and M. toringoides are strong. The salt tolerance of apple rootstock varies greatly among diferent species, ecotypes and even among different individuals, and the salt tolerance of M. xiaojinensis and M. prunifolia were strong. Cold damage often occurs in many apple producing areas in north China, which threatens the development of apple production, so the evaluation on cold resistance of apple rootstock, breeding of cold resistant rootstock and the study on cold resistance mechanism have attracted much attention. In terms of cold resistance evaluation, membrane permeability, relative water content and malondialdehyde are considered to be closely related to cold resistance.GM256 and CX3 are two apple rootstocks that have been reported to be cold-resistant in China. (3)Dwarf cultivation is the development trend of apple production in the world, and dwarf rootstock is one of the main ways to achieve dwarf density-planting. Some dwarfing rootstocks,including SH series,Liaozhen,GM256 and Qingzhen, were bred by hybridization with apple resources in many agricultural institutions in our country. At present, dwarfing rootstocks used in apple production in China mainly include M9T337,M26,MMl06,B9,SH, GM256 and so on. (4) In the past two decades,the cultivation mode of apple in the world has undergone fundamental changes, the tree shape is developing from standard planting to dwarf dense planting,and management is developing from time-consuming and labor-intensive to labor-saving.At present, in the United States,Italy,New Zealandand other countries,the dwarf cultivation has accounted for more than 70% of the total area of apple cultivation However, 80% of apple trees in China are still applying standard planting. Standard-planting apple trees have large crowns, poor light reception, inferior fruit quality, and the cultivation and management costs are high,in which the labor cost has accounted for more than 60% of the total cost of apple production. The stress resistance and tree shape of the apple depend mainly on the rootstock. Under the new situation, how to cultivate and create apple rootstock that is resistant to stress and suitable for labor-saving cultivation and management has become a key scientific problem to be solved urgently in apple cultivation and management in China.(5) Although some apple germplasm resources such as M. sieversii,M. prunifolia and so on have strong drought resistance, they are vigorous.M. hupehensis has the characteristics of apomixis, but its drought resistance is poor and it is vigorous. In addition, the scion varieties on the seedling rootstock have some problems such as delaying fruit maturity. At present, there is a lack of apple rootstock varieties with good comprehensive traits like strong resistance and dwarfing. How to scientifically develop, breed and utilize these excellent germplasm resources is an important topic in the present research.(6) With the rapid development of molecular biology and genomics of fruit crops, people are shifting the research focus of apple rootstock from physiological traits to genetic mechanism. The completion of whole genome sequencing of apple provides a good genomic data platform for further analysis of important agronomic traits of apple rootstocks.At the same time, it will lay a solid foundation for breeding new varieties of apple rootstock with excellnt characteristics such as strong resistance,dwarfing and apomixis.Therefore,accelerating the evaluation, identification,development and utilization of apple wild resources and strengthening the selection and breeding of new apple rootstocks will be of great significance to the healthy,stable and sustainable development of the apple industry in China and even on the world.
Key Words:Apple; Rootstock; Stress resistance; Dwarf; Identification and evaluation
蘋果(Malus × domesticaBorkh.)是我國主要栽培的果樹之一,栽培面積和產量均居世界首位]。蘋果產業在精準扶貧、鄉村振興及生態保護中發揮重要作用。蘋果產業的快速發展離不開優良新品種的選育、應用和推廣。優良的砧木是蘋果優質高效生產的基礎和保證,砧木不僅影響蘋果植株的適應性和抗逆性,還影響品質和產量[2-4]。隨著全球變暖,極端氣候頻繁出現,經常發生大面積、不同程度的干旱、低溫、鹽堿等非生物脅迫,造成蘋果果實品質和產量下降,嚴重影響蘋果產業健康可持續發展[5。蘋果的抗逆性主要取決于砧木,因此,對蘋果砧木資源進行鑒定與評價,篩選抗逆性強并矮化的優良砧木,對蘋果產業的發展具有重要意義。筆者就國內外蘋果砧木資源的研究和應用現狀及抗逆性研究進行了綜述,以期為蘋果砧木的選擇和利用提供依據。
1蘋果砧木資源在非生物脅迫抗性中的評價及利用
據李育農報道,蘋果有36個種,其中原產于我國的有25個種,包含了100多個變異類型。在這些不同的種及其類型中,蘊藏著豐富的具有抗旱、抗寒、抗澇、耐鹽、抗缺鐵及矮化、半矮化和無融合生殖等優異的蘋果砧木資源,其中有些蘋果種質資源可直接應用于生產[6.8-10]。長期以來,多位研究者對蘋果砧木資源在抗旱、抗寒、耐鹽等非生物脅迫中的抗性進行鑒定與評價,挖掘了一批特異種質資源(表1)。

1.1 耐旱性
干旱是蘋果生產中經常遇到的問題,嚴重制約蘋果產業的發展[19-20]。我國是蘋果屬植物的重要起源地之一,擁有大量的抗旱種質資源,耐旱性較強的種質有新疆野蘋果、楸子和東北黃海棠等[9,21-22]。研究發現不同種或類型的蘋果砧木的抗性差異較大(表1)。葉乃好等對10種蘋果砧木資源進行了抗旱性鑒定與評價,發現Luo-6、Luo-2是耐旱性強的砧木,八棱海棠,萊蕪茶果、黃海棠是中等耐旱砧木,山定子、平邑甜茶、六蜜海棠為不耐旱砧木。Ma等[23]用隸屬函數值法對10種蘋果砧木的抗旱性進行了綜合評價,發現楸子和新疆野蘋果耐旱性較強,而平邑甜茶和變葉海棠耐旱性較差。傅明洋[2發現楸子不同類型之間的耐旱性也有顯著差異,耐旱性強的蘋果砧木有富平楸子、東北黃海棠;中等抗旱的砧木為吳起楸子、五棱海棠以及嶗山柰子;抗旱性相對較弱的是紅海棠和白海棠。魏江彤等對8份蘋果種質資源的抗旱性進行評價,發現LC36和L7(M.soulardii)的耐旱性強于新疆野蘋果和楸子。
Wang等[24]比較分析了兩種蘋果砧木的耐旱性差異機制,發現干旱脅迫下耐旱性強的蘋果砧木楸子受到的氧化脅迫傷害較小,且其抗氧化防御能力強于耐旱性較差的平邑甜茶。Tworkoski等[25]對兩種無性系蘋果砧木MM111和M9進行了耐旱性比較分析,結果發現,M9通過提高ABA含量,增強其耐旱性,而MM111則是通過較多的延長根來提高耐旱性。Liu等[2以抗旱性差異顯著的兩種蘋果砧木楸子和平邑甜茶為材料,研究了中度干旱下兩種砧木6個水通道蛋白基因表達的變化,發現干旱脅迫下6個水通道蛋白基因都上調表達,但蘋果砧木間的表達有顯著差異,推測這可能是造成兩種蘋果砧木抗旱性不同的主要原因。
1.2 耐鹽性
土壤鹽堿化是干旱、半干旱及沿海灘涂地區蘋果生產栽培的主要障礙[2。蘋果砧木的耐鹽性在不同蘋果種間、不同生態類型間及不同個體間都有較大差異。杜中軍等通過盆栽對19種蘋果砧木進行了耐鹽性評價,發現Luo-1、Luo-2和珠美海棠為高耐鹽的蘋果砧木,變葉海棠、山定子、麗江山定子、德欽海棠和花紅為不耐鹽蘋果砧木。Yin等通過水培對15種蘋果砧木的耐鹽性進行了綜合評價,發現楸子、東北黃海棠、大果紅三葉海棠和小金海棠屬耐鹽性蘋果砧木,而盧氏紅果、櫻葉海棠和西府海棠則屬不耐鹽蘋果砧木。林冰冰等[15對16個種80份蘋果砧木資源1年實生苗進行了耐鹽性評價分析,發現實施高鹽脅迫10d后,鹽害指數變異為 0.00~ 0.90,變異系數為 0%~173% ;耐鹽性強的種質資源有7份,耐鹽性較強的57份,耐鹽性弱的共16份。
Molassiotis等2以蘋果砧木MM106為試材,比較研究了NaCI和KCI處理下的生理生化指標,發現兩種氯鹽顯著抑制植株生長,降低了葉綠素含量、光合效率和礦質元素利用效率。王慧英等2發現小金海棠和M7耐鹽性有顯著差異,耐鹽性較強的小金海棠葉中的 Na+,[Na+]/[K+] 均小于耐鹽性差的M7,而根中則相反,且耐鹽性較強的蘋果砧木小金海棠根中 Na+ 增加幅度較大。說明蘋果砧木可能的耐鹽機制是根系能截留較多的 Na+ ,并以某種形式阻正部分 Na+ 向地上部的運輸,從而減輕了鹽離子對地上部的毒害作用。Li等2研究發現,鹽脅迫下平邑甜茶葉片中離子轉運蛋白和水通道蛋白相關基因
MdHKT1、MdSOS1和MdNHX1的表達量顯著高于櫻葉海棠,說明平邑甜茶具有更強的使 Na+ 外排和將Na區隔到液泡中的能力,從而提高了耐鹽性。薛浩等[3研究了寒富二倍體和同源四倍體蘋果的耐鹽差異機制,發現鹽脅迫下二倍體和同源四倍體蘋果中水通道相關蛋白基因MdPIPI;1,MdPIP2;1,MdTIP1;1和MdTIP2;1的表達量都呈先下降后上升高趨勢,但四倍體的表達量顯著高于二倍體,推測四倍體蘋果的耐鹽性強可能與水通道蛋白基因的表達水平較高有關。
1.3 抗寒性
我國北方的一些蘋果產區,經常發生低溫凍害,造成枝條干枯,嚴重時甚至整株死亡,影響蘋果品質和產業的健康發展。20世紀60年代中國發現起源于大興安嶺的山定子抗寒性極強,用其做親本選育了多個抗寒砧木,其中GM256和CX3是目前報道的我國選育出最抗寒的兩個砧木[31]。任慶棉[8采用電解質滲出率法對蘋果屬植物11個種18個類型進行了耐寒性評價,發現東北山定子和東北黃海棠抗寒性強,分析認為抗寒能力強與東北山定子和東北黃海棠原產地的氣候有關,長期受嚴寒氣候環境的影響,逐漸適應了低溫環境,因此表現出較強的抗寒性。Mirabdolbaghi等[32]發現5種蘋果砧木B9、M9、MM106、M26和Azayesh的耐寒性存在明顯差異,B9耐寒性強。殷麗麗等[3采用低溫處理對4種蘋果砧木71-3-150、GM256、SH6和M9的抗寒性進行比較分析,發現從俄羅斯引進的矮化砧木71-3-150抗寒性最強,其次為GM256和SH6,M9的抗寒性最差。同時發現低溫脅迫下71-3-150能維持較高的可溶性蛋白水平及較高的SOD和POD活性,這可能與其抗寒能力有關。Mirabdolbaghi等[2將5種蘋果砧木分別種在不同質地的土壤中,結果發現,蘋果砧木Azayesh生長在含淤泥 48% 、砂 20% 、黏土 31% 和石灰 14% 的土壤中抗寒性最好,而M9生長在含淤泥49.2% 、砂泥 19.8% 、黏土 31% 和石灰 18% 的土壤中抗寒性最好,表明土壤質地也影響蘋果砧木的抗寒性。Artlip等34將從桃樹中分離的 CBF genes轉入蘋果砧木M9后增強了蘋果砧木的耐寒性。井俊麗等[5對9份蘋果種質資源的抗寒性進行了評價,發現新選育的砧木(編號100和147)耐寒性強。
鑒定和挖掘抗寒性強的種質資源是蘋果抗寒性砧木育種的前期基礎,而探尋適宜快速評價抗寒性的方法是研究的主要內容之一。在評價抗寒性指標方面,電導率、MDA含量、相對含水量、抗氧化酶活性和脯氨酸含量等指標,被認為與植物的抗寒性密切相關[8,28,33]。金明麗等[3研究發現,枝條的電阻抗參數與蘋果砧木的抗寒性呈負相關,蘋果砧木枝條電阻率及胞外電阻率可以作為評價蘋果砧木抗寒性的參數。以上研究結果對在栽培生產中快速評價蘋果抗寒性,并及早采取相應的防寒措施具有重要的指導意義。
1.4 耐澇性
水分是影響植物生長和發育的重要因素,然而,土壤水分過多并不利于植株正常生長,甚至會引起澇害發生,澇害已成為威脅蘋果生長發育、影響產量及品質提升的主要非生物脅迫之一[37-39]。水分過多對植物造成的傷害主要是根部缺氧所致[40-42]。植物在低氧條件下,有氧呼吸受到抑制,活性氧等有害物質積累,內源激素代謝紊亂,產生乙醇、乳酸,造成細胞質酸化,最終導致生長受抑,嚴重情況下導致植物死亡[37,43-45]。在實際生產栽培中,夏季和秋季的大量集中降雨和果園排水不良等因素,導致部分蘋果園經常積水,蘋果樹葉片黃化、脫落,樹體衰弱,果實品質和產量下降,進而造成嚴重的經濟損失。白團輝等[采用低氧和盆栽淹水的方法評價了12種蘋果砧木的耐澇性,發現平邑甜茶耐澇,而新疆野蘋果和變葉海棠不耐澇。生利霞等[研究表明,平邑甜茶在低氧條件下植株生長受到抑制,根系呼吸速率也受到抑制,并且發現溶氧濃度越低,抑制越明顯。Bai等[43]研究表明,耐低氧的平邑甜茶根系形態保持較好且在根的基部長出許多新根,而新疆野蘋果沒有出現此現象。這表明低氧耐性較強的平邑甜茶能夠通過維持較高的光合性能來適應低氧逆境,這也許正是平邑甜茶比較耐低氧的原因。
1.5 耐缺素
蘋果砧木負責從土壤中吸收水分和礦質元素,并將其運輸至地上部。因此,砧木直接影響蘋果樹體的營養水平和正常的生長發育,林冰冰等對蘋果砧木資源的耐缺鐵性進行了評價,發現不同種和生態型耐缺鐵性表現出極顯著的差異。小金海棠具有較強的穩定的耐缺鐵能力,八棱海棠和平邑甜茶抗缺鐵能力中等,而山定子抗缺鐵能力差。李振俠等研究發現缺鐵脅迫下兩種蘋果砧木SH40和八棱海棠的根系分泌有機酸種類相同,但總量有顯著差異。Zhu等開發了與小金海棠耐缺鐵相關的分子標記,對雜交后代進行鑒定,準確率達到 85% 以上。劉飛等[48]比較了4種蘋果砧木的耐缺鋅能力,發現小金海棠耐低鋅,而山定子對低鋅脅迫敏感。王金花等4比較研究了兩種蘋果砧木小金海棠和平邑甜茶對缺鋅脅迫響應的差異機制,發現缺鋅脅迫下小金海棠的抗氧化能力強,對缺鋅有較強的抵御和耐受能力。
2蘋果矮化砧木資源國內外研究進展及利用
2.1我國蘋果矮化砧木研究進展及利用
矮砧栽培是我國蘋果發展的必然趨勢,與喬化栽培相比,具有樹體矮化、成花早、便于管理等優點[50-52]。我國在蘋果矮化資源的挖掘及砧木的選育方面起步較晚,目前選育的矮化蘋果砧木品種還比較少。SH系是以矮化蘋果資源河南武鄉海棠和國光為親本,選育的矮化蘋果砧木,如SH6、SH38、SH40。經過多年的推廣和應用表明,SH系具有矮化、抗旱、栽植后易成花、結果早等優點,但其抗寒性差,在我國北方地區推廣受到限制[5]。其他研究單位用引進的蘋果矮化砧木M系與我國蘋果矮化資源進行雜交,選育出多個矮化蘋果砧木品種,包括遼砧系列、GM256、青砧系列、77-34、63-2-19等[53],在我國部分蘋果產區推廣應用。目前我國蘋果生產中應用的矮化砧木主要有M9T337、M26、B9、SH系、GM256等。
秦立者等[54對喬化蘋果砧木八楞海棠、半矮化砧木SH3和SH37、矮化砧木SH38、M26和B9及極矮化砧木P22的葉片進行了細胞結構研究,發現蘋果砧木的矮化程度越高,葉片柵欄組織越厚。研究表明,植物葉片柵欄組織的厚度、緊密度和疏松度等指標與植物抗寒性密切相關[5]。羅靜等[發現以M9和M26矮化中間砧嫁接的長富2號,其凈光合速率顯著高于以八棱海棠為基砧的蘋果樹,而氣孔導度和蒸騰速率較低,表明矮化中間砧的蘋果樹光合調節能力強,具有較高的凈光合速率。姜志昂等[57]對蘋果矮化砧木M26、SH28和SH40及嫁接品種嘎拉進行了分析,發現ABA合成基因MdNCED1的表達量與3種砧木嫁接樹的矮化程度呈正相關。Zhou等[通過對B9、G24、M26、SH1、SH6和SH40共6種矮化砧木在高溫脅迫下探究生理和基因水平上的變化,發現SH系列砧木耐熱性最強,M26的適應能力最低,G24的恢復能力較高。
2.2 國外蘋果矮化砧木研究進展及利用
自19世紀英國首次報告蘋果矮化砧木以來,各個國家都很重視蘋果矮化砧木的選育工作,也選育出了一些優良的矮化蘋果砧木。如英國的M系和MM系[52,59-60],美國的G系和CG系[25,61-62],蘇聯的B系[63],日本的JM系[64],加拿大的O系[65-6和波的P系[67-68]。美國從1968年開始對蘋果種質資源進行了廣泛評價和篩選,并將蘋果砧木育種目標定為矮化、抗火疫病、抗蘋果綿蚜、抗重茬、早產豐產等。經過連續多年常規雜交,多層次的評價與篩選,最終成功選育出了14個廣泛推廣應用的蘋果砧木品種,包括1個極矮化砧木(G65)、5個矮化砧木(G16、G41、G214、G814、G213)、8個半矮化砧木(G30、G11、G202、G935、G969、G210、G890、G222)[69]。
目前,M9系列中以M9-T337應用最為廣泛,M9-T337是荷蘭從M系中選育出的蘋果矮化砧木,用其嫁接的蘋果樹樹體生長矮小,易成花,結果早,且豐產性好[7]。由于M系砧木抗寒性稍差,蘇聯選擇用抗寒資源與M系砧木進行雜交,選育了抗寒性極強的B系列矮化砧木,其中B9砧木矮化、抗寒性強,且其嫁接的蘋果樹結果早、豐產、固地性強、能抗 -12°C 的低溫,是推廣應用較廣的抗寒矮化砧木之一[7]。美國康奈爾大學利用M27、M26、Robusta5和Ottawa3做親本培育了G系砧木,其中G16,G41和G935矮化且抗蘋果再植病[72-73]。
3展望
3.1加強野生蘋果種質資源評價與優異基因的挖掘與利用
我國擁有豐富的蘋果種質資源,已鑒定出了抗旱種質資源新疆野蘋果、楸子,抗寒資源山定子,耐缺鐵的小金海棠,矮化資源河南海棠、嶗山柰子,無融合生殖資源平邑甜茶、變葉海棠等。但目前僅對部分蘋果種質資源進行了鑒定與評價,一些資源還有待鑒定與評價。蘋果遺傳背景復雜,雜合度高、童期長、個體差異大,精準鑒定與評價比較困難。此外,鑒定與評價方法和技術以傳統的形態學觀察和生理生化分析為主,重要農藝性狀的遺傳規律及優異基因的定位與挖掘等研究與其他農作物相比仍有較大差距。因此,應提升蘋果種質資源的鑒定與評價水平,加快優異基因的挖掘與利用,為優良蘋果砧木的創制提供優異的基因資源。
3.2創制抗逆和省力化栽培的蘋果砧木是將來的育種目標
長期以來,我國蘋果產區主要以新疆野蘋果、八棱海棠、山定子、平邑甜茶和楸子等作為砧木。雖然新疆野蘋果、楸子等抗旱性強,但喬化。平邑甜茶具有無融合生殖特性,但抗旱性差且喬化,且以種子播種的實生苗為砧木,接穗品種存在結果晚等問題。當前缺少抗性強、矮化等綜合性狀優良的蘋果砧木品種。在過去的30年中,全球蘋果的栽培模式發生了較大變化,由稀植大冠形向矮砧小冠形發展,栽培管理由費時費工向省力化發展。目前,美國、意大利和新西蘭等國家蘋果矮砧密植栽培占其栽培總面積的 70% 以上[74,而我國仍有 80% 的蘋果為喬砧稀植栽培,此栽培模式的蘋果,樹冠大、易密閉、光照不良、品質差,且栽培管理成本高,其中勞動力成本已占蘋果生產總成本的 60% 以上。因此,在新形勢下,如何培育和創制抗逆和省力化栽培管理的蘋果砧木,是將來蘋果砧木育種的目標。
3.3利用現代生物技術助力對蘋果砧木新品種的選育
蘋果砧木培育需要經過長期、系統的鑒定與評價方可推廣應用。因此,蘋果砧未育種及評價工作比接穗品種的難度更大,周期更長。隨著分子生物學和基因組學的快速發展,已經對部分蘋果品種進行了全基因組測序,構建了完善的蘋果數據庫,為優異資源和基因的挖掘、重要基因的克隆和重要性狀分子標記的開發提供了堅實的基礎。同時,利用基因工程技術和分子輔助育種手段,將特定基因轉入蘋果砧木的細胞或組織中,有目的地改變性狀,培育出抗逆、矮化和無融合生殖的優良砧木已成為可能。
參考文獻References:
[1] 馬鋒旺.中國蘋果產業發展的思考:現狀、問題與出路[J].落 葉果樹,2023,55(4):1-4. MAFengwang.Reflections on the development of China's appleindustry:Current situation,problemsand solutions[J].DeciduousFruits,2023,55(4):1-4.
[2] 束懷瑞.果樹栽培生理學[M].北京:農業出版社,1993. SHUHuairui.Physiology of fruit cultivation[M].Beijing:Agriculture Press,1993.
[3] JIVANC,SALAF.Relationship between treenutritional status and apple quality[J].Horticultural Science,2014,41(1):1-9.
[4] YUANPH,WEIYY,GAOX,SONGCH,JIAOJ,WANGM M,ZHANG K X,SONG S W,ZHENG X B,BAI T H. The RING-H2 type E3 ubiquitin ligase gene MdATL16 positively regulates salt tolerance in transgenic tomato and apple[J].Environmental and Experimental Botany,2024,220:105689.
[5] CHEN P X,YAN M J,LIL,HE JQ,ZHOU S X,LI Z X,NIU C D,BAO C N,ZHI F,MA F W,GUAN Q M. The apple DNAbinding one zinc-finger protein MdDof54 promotes drought resistance[J].Horticulture Research,2020,7(1):195.
[6] LIYX,TIANXC,LIUTF,SHIYJ,LIYH,WANGHT,CUI YL,LU SY,GONGXQ,MAO K,LIMJ,MAFW,LI C Y. MdSINA2-MdNAC104 module regulates apple alkaline resistance by affecting y-aminobutyric acid synthesis and transport[J].Advanced Science,2024,11(35):2400930.
[7] 李育農.蘋果屬植物種質資源研究[M].北京:中國農業出版 社,2001. LI Yunong.Researches of germplasm resources of Malus Mill[M].Beijing:China Agriculture Press,2001.
[8] 任慶棉.果樹種質資源抗逆性研究進展與鑒定方法[J].北方 園藝,1993(6):1-3. REN Qingmian.Research progress and identification methods of stress resistance of fruit germplasm resources[J].Northern Horitic Ulture,1993(6): 1-3.
[9] 葉乃好,翟衡,杜中軍,許宏.水分脅迫條件下10種蘋果砧木 抗旱性評價[J].果樹學報,2004,21(5):395-398. YE Naihao,ZHAI Heng,DU Zhongjun,XU Hong. Evaluation of drought resistance of ten apple rootstocks[J]. Journal of Fruit Science,2004,21(5):395-398.
[10]白團輝,馬鋒旺,李翠英,束懷瑞,韓明玉,王昆.蘋果砧木幼 苗對根際低氧脅迫的生理響應及耐性分析[J].中國農業科學, 2008,41(12):4140-4148. BAI Tuanhui,MA Fengwang,LI Cuiying,SHU Huairui, HAN Mingyu,WANG Kun.Physiological responses and analysis of tolerance of apple rootstocks to root-zone hypoxia stress[J]. Scientia Agricultura Sinica,2008,41(12):4140-4148.
[11]魏江彤,馬孝穎,李雪雯,張志軍,李超,馬鋒旺.8份蘋果種質 資源的抗旱性評價[J].果樹學報,2024,41(4):569-578. WEI Jiangtong,MA Xiaoying,LI Xuewen, ZHANG Zhijun,LI Chao,MA Fengwang.Evaluationof drought resistance of eight apple germplasm resources[J]. JournalofFruit Science,2024,41 (4):569-578.
[12]杜中軍,翟衡,羅新書,程述漢,潘志勇.蘋果砧木耐鹽性鑒定 及其指標判定[J].果樹學報,2002,19(1):4-7. DU Zhongjun, ZHAI Heng,LUO Xinshu,CHENG Shuhan,PAN Zhiyong. Salt- tolerance identification on apple rootstocks[J]. Journal ofFruit Science,2002,19(1):4-7.
[13] 劉修麗,劉成,周晏起,祝軍.42個蘋果屬種質資源抗寒性初 步鑒定[J].北方果樹,2018(4):11-14. LIU Xiuli,LIU Cheng,ZHOU Yanqi, ZHU Jun. Preliminary identification of cold resistance in fourty-two of Malus germplasm[J]. Northern Fruits,2018(4):11-14.
[14]李翠英.蘋果屬砧木資源幼苗的耐低氧性評價及其對低氧脅 迫適應的生理機理研究[D].楊凌:西北農林科技大學,2008. LI Cuiying.Evaluation of hypoxia tolerance for Malus rootstock seedlings and study on physiological metabolism of adaptation to hypoxia stress[D]. Yangling:Northwest A amp; F University, 2008.
[15]林冰冰,韓振海,王憶,吳婷,張新忠.蘋果實生砧木種質資源 耐缺鐵和耐鹽堿性評價[J].中國農業大學學報,2016,21(1): 48-58. LIN Bingbing,HAN Zhenhai,WANG Yi,WU Ting,ZHANG Xinzhong.Evaluation on the tolerance of apple seedling rootstock resources to iron- deficiency,salinity and alkalinity[J]. Journal ofChina Agricultural University,2016,21(1):48-58.
[16]YINR,BAITH,MAFW,WANG XJ,LIYH,YUE ZY. Physiological responses and relative tolerance by Chinese apple rootstocks to NaCl stress[J]. Scientia Horticulturae,2010,126(2): 247-252.
[17]潘增光,辛培剛,束懷瑞.我國蘋果砧木資源及砧木育種[C]. 中國園藝學會成立70周年紀念優秀論文選編,1999:53-61. PAN Zengguang,XIN Peigang,SHU Huairui. Apple rootstock resources and breeding in China[C]. Selected papers on the 70th Anniversary of the establishment of Chinese Society of Horticulture,1999:53-61.
[18]張德,張瑞,張夏燚,吳玉霞,趙婷,張仲興,王雙成,王延秀.不 同抗鹽性蘋果砧木對鹽脅迫的生理響應[J].干旱地區農業研 究,2021,39(4):86-94. ZHANGDe,ZHANGRui,ZHANGXiayi,WUYuxia,ZHAO Ting,ZHANG Zhongxing,WANG Shuangcheng, WANG Yanxiu. Physiological response of different salt-tolerant apple rootstocks to salt stress[J].Agricultural Research in the Arid Areas,2021, 39(4): 86-94.
[19]ATKINSONCJ,POLICARPO M,WEBSTERAD,KUDENA M.Drought tolerance of apple rootstocks:Production and partitioning of dry matter[J].Plant and Soil,1999,206(2):223-235.
[20]傅明洋.楸子不同類型抗旱耐鹽性評價及遺傳差異分析[D]. 楊凌:西北農林科技大學,2013. FU Mingyang.Drought and salinity tolerance evaluation and characterization of genetic relationships among different biotypes of Malus prunifolia[D].Yangling: Northwest Aamp;F University,2013.
[21]LIUCH,LIC,LIANGD,MAFW,WANG SC,WANG P, WANG R C.Aquaporin expression in response to water-deficit stress in two Malus species: Relationship with physiological status and drought tolerance[J]. Plant Growth Regulation,2013,70 (2):187-197.
[22] 邢麗敏,槐心體,張新忠,王憶,韓振海.蘋果實生砧木資源重 要性狀的遺傳多樣性分析[J].果樹學報,2013,30(4):516-525. XINGLimin,HUAI Xinti,ZHANGXinzhong,WANGYi,HAN Zhenhai. Genetic diversity in morphology,stress tolerance and graft-compatibility among species,ecotypes and their segregation within populations of apple rootstock resources[J]. Journal ofFruit Science,2013,30(4):516-525.
[23]MAXW,MAFW,LICY,MIYF,BAITH,SHUHR.Biomass accumulation,allocation,and water-use efficiency in 10 Malus rootstocks under two watering regimes[J]. Agroforestry Systems,2010,80(2):283-294.
[24]WANG SC,LIANGD,LIC,HAOYL,MAFW,SHUHR. Influence of drought stress on the celular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks[J].Plant Physiologyand Biochemistry, 2012,51:81-89.
[25]TWORKOSKI T,FAZIO G. Hormone and growth interactions of scions and size-controlling rootstocks of young apple trees[J]. Plant Growth Regulation,2016,78(1):105-119.
[26]WANG Y X,HU Y,CHEN B H,ZHU Y F,DAWUDA M M, SVETLA S.Physiological mechanisms of resistance to cold stress associated with 10 elite apple rootstocks[J]. Journal of IntegrativeAgriculture,2018,17(4):857-866.
[27]MOLASSIOTIS A N,SOTIROPOULOS T,TANOU G,KOFIDIS G,DIAMANTIDIS G,THERIOS E. Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl,KCl,mannitol or sorbitol[J].Biologia Plantarum,2006,50(3):331-38.
[28]王慧英,孫建設,張建光.NaCI脅迫對蘋果砧木K*和 Na*吸收 的影響及其與耐鹽性的關系[J].河北農業大學學報,2002,25 (增刊 1):104-107. WANG Huiying,SUN Jianshe,ZHANG Jianguang. Studieson absorption of sodium and potassium ions by apple rootstocks under sodium chloride stress and its relation to salt tolerance[J]. Journal of Agricultural Universityof Hebei,2002,25(Suppl.1): 104-107.
[29]LI C,WEI ZW,LIANG D,ZHOU SS,LIYH,LIU CH,MA FW.Enhanced salt resistance in appe plants overexpressing a Malusvacuolar Na+/H+ antiporter gene isassociatedwithdifferences in stomatal behaviorand photosynthesis[J].Plant Physiology and Biochemistry,2013,70:164-173.
[30]薛浩,張鋒,張志宏,傅俊范,王豐,張兵,馬躍.‘寒富'蘋果與其 同源四倍體耐鹽差異研究[J].園藝學報,2015,42(5):826-832. XUE Hao,ZHANG Feng,ZHANG Zhihong,FU Junfan, WANGFeng,ZHANG Bing,MA Yue.Differences insalt tolerance between the diploid and autotetraploid‘Hanfu’apple[J]. Acta Horticulturae Sinica,2015,42(5):826-832.
[31]ZHANG MJ,DING L H,WANG Q,LIY B, YAN X K,XING G J.Development of cold resistant apple rootstocks in China[J]. Acta Horticulturae,2011(903): 183-186.
[32] MIRABDOLBAGHI M, ZARGHAMI R,AZGHANDI A V. Cold hardiness of different apple rootstock clones[J]. International Journal ofAgriculture and Biology,2010,12(1):153-56.
[33]殷麗麗,李曉燕,劉修麗,祝軍,戴洪義.幾種蘋果矮化砧木的 抗寒性研究[J].青島農業大學學報(自然科學版),2011,28 (3):198-200. YIN Lili,LI Xiaoyan,LIU Xiuli,ZHU Jun,DAI Hongyi. Study on cold resistance of several apple rootstocks[J]. Journal of Qingdao Agricultural University (Natural Science),2011,28(3): 198-200.
[34]ARTLIP T S,WISNIEWSKI M E,NORELLI JL. Field evaluation of apple overexpressing a peach CBF gene confirms its effect on cold hardiness,dormancy,and growth[J]. Environmental and Experimental Botany,2014,106:79-86.
[35]井俊麗,劉銘瀟,魏欣,徐繼忠,李中勇,張學英,周莎莎.幾種 蘋果中間砧的抗寒性評價[J].果樹學報,2022,39(6):970-981. JING Junli,LIU Mingxiao,WEI Xin,XU Jizhong,LI Zhongyong, ZHANG Xueying, ZHOU Shasha.Evaluation of cold hardiness of several apple interstocks[J].Journal of Fruit Science,2022,39(6):970-981.
[36]金明麗,徐繼忠,張鋼.蘋果砧木枝條電阻抗參數與其抗寒性 的關系[J].園藝學報,2011,38(6):1045-1051. JIN Mingli,XU Jizhong, ZHANG Gang. Relation between electrical impedance spectroscopy parameters and frost hardiness in shoots of apple rootstocks[J].Acta Horticulturae Sinica,2011,38 (6):1045-1051.
[37]BAILEY-SERRES J,CHANG R. Sensing and signalling in response to oxygen deprivation in plants and other organisms[J]. Annals of Botany,2005,96(4):507-518.
[38]生利霞,束懷瑞.低氧脅迫對平邑甜茶根系活力及氮代謝相關 酶活性的影響[J].園藝學報,2008,35(1):7-12. SHENG Lixia,SHU Huairui.Effects of hypoxia on the root activity,respiratory rate and the activities of enzymes involved in nitrogen metabolism in roots ofMalus hupehensis Rehd.[J].Acta Horticulturae Sinica,2008,35(1):7-12.
[39]BAILEY-SERRES J, VOESENEK L J. Flooding stress:Acclimations and genetic diversity[J].AnnualReviewofPlant Biology, 2008,59:313-339.
[40]BAI TH,LICY,MAFW,FENGFJ,SHUHR.Responses of growth and antioxidant system to root- zone hypoxia stress in two Malus species[J].Plantand Soil,2010,327(1):9-105.
[41]SALVATIERRA A,PIMENTEL P,ALMADA R,HINRICHSEN P. Exogenous GABA application transiently improves the tolerance to root hypoxia on a sensitive genotype of Prunus rootstock[J].Environmental and Experimental Botany,2016, 125:52-66.
[42]ISMOND KP,DOLFERUSR,DE PAUW M,DENNISE S, GOOD A G. Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway[J]. Plant Physiology,2003,132(3):1292-1302.
[43]BAI TH,LICY,LIC,LIANG D,MAFW. Contrasting hypoxia tolerance and adaptation in Malus species is linked to differences in stomatal behavior and photosynthesis[J].Physiologia Plantarum,2013,147(4):514-523.
[44]ELLER C B,LIMA A L,OLIVEIRA R S. Foliar uptake of fog waterand transport belowground alleviates drought effects in the cloud forest tree species,Drimys brasiliensis (Winteraceae)[J]. New Phytologist,2013,199(1):151-162.
[45]YAMAUCHI T,COLMER TD,PEDERSEN O,NAKAZONO M. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress[J]. Plant Physiology,2018,176 (2):1118-1130.
[46]李振俠,徐繼忠,高儀,邵建柱,張媛.蘋果砧木 SH40 和八棱海 棠缺鐵脅迫下根系有機酸分泌的差異[J].園藝學報,2007,34 (2):279-282. LI Zhenxia,XU Jizhong,GAO Yi, SHAO Jianzhu, ZHANG Yuan.Difference of organic acid exudation from roots of SH40 and Balenghaitang under iron-deficiency stress[J]. Acta Horticulturae Sinica,2007,34(2):279-282.
[47]ZHU M T,WANG R,KONG PH,ZHANG X Z,WANG Y, WU T,JIAW S,HAN ZH. Development of a dot blot macroarrayand its use in gene expression marker-assisted selection for iron deficiency tolerant apple rootstocks[J]. Euphytica,2015, 202(3):469-477.
[48]劉飛,王金花,張洪毅,付春霞,王衍安.四種蘋果砧木幼苗對 鋅脅迫的耐性差異[J].中國農業科學,2012,45(18):3801- 3811. LIUFei,WANGJinhua,ZHANGHongyi,FUChunxia,WANG Yan'an. Differences in tolerance of four apple rootstock seedlings to zinc stress[J]. Scientia Agricultura Sinica,2012,45(18): 3801-3811.
[49]王金花,譚秀山,劉飛,張洪毅,付春霞,王衍安.缺鋅脅迫對 蘋果砧木幼苗抗氧化能力和激素含量的影響[J].園藝學報, 2012,39(8):1429-1436. WANG Jinhua,TAN Xiushan,LIU Fei, ZHANG Hongyi, FU Chunxia,WANG Yan’an. Effects of zinc deficiency stress on the antioxidative capabilityand plant hormone level of the different apple rootstocks[J].Acta Horticulturae Sinica,2012,39 (8):1429-1436.
[50]李民吉,張強,李興亮,周貝貝,孫健,張軍科,魏欽平.五個 SH 系矮化中間砧對‘富士'蘋果樹體生長、產量和品質的影響[J]. 中國農業科學,2016,49(22):4419-4428. LI Minji,ZHANG Qiang,LI Xingliang,ZHOU Beibei,SUN Jian, ZHANG Junke,WEI Qinpig.Effectoffive different dwarfing interstocksofSHon growth,yield and quality in‘Fuji’apple trees[J].Scientia Agricultura Sinica,2016,49(22):4419-4428.
[51]YANG W W,CHEN XL,SAUDREAU M, ZHANG X Y, ZHANG MR,LIU H K,COSTES E,HAN M Y. Canopy structure and light interception partitioning among shoots estimated from virtual trees:Comparison between apple cultivars grown on different interstocks on the Chinese Loess Plateau[J].Trees, 2016,30(5):1723-1734.
[52]GAO YP,MOTOSUGI H,SUGIURA A.Rootstock effects on growth and flowering in young apple trees grown with ammonium and nitrate nitrogen[J]. Journal of the American Society for Horticultural Science,1992,117(3):446-452.
[53]王田利.蘋果矮化密植栽培熱的思考[J].河北果樹,2016(6): 10-11. WANG Tianli. Thoughts on the recent trend of dwarf and dense planting of apple[J]. Hebei Fruits,2016(6):10-11.
[54]秦立者,楊素苗,張春鋒,石海強,王順,顧玉紅.蘋果不同矮化 砧木品種葉片的組織細胞學研究[J].河北農業科學,2018,22 (2):41-45. QIN Lizhe, YANG Sumiao,ZHANG Chunfeng,SHI Haiqiang, WANG Shun,GU Yuhong.Histological studies of leaves from different apple dwarf rootstock cultivars[J]. Journal of Hebei Agricultural Sciences,2018,22(2):41-45.
[55]趙秀明,王飛,韓明玉,張文娥,田治國,羅靜,余亮.新引進蘋 果矮化砧木的葉片解剖結構及抗旱性[J].西北農林科技大學 學報(自然科學版),2012,40(5):136-142. ZHAO Xiuming,WANG Fei,HAN Mingyu,ZHANGWene, TIAN Zhiguo,LUO Jing,YU Liang.Relationship between leaf anatomical structures and drought resistance of newly introduced apple dwarf rootstocks[J]. Journal of Northwest Aamp; F University (Natural Science Edition),2012,40(5):6-14.
[56]羅靜,易盼盼,王飛,韓明玉,吳維芳,王榮花.不同矮化中間砧 對蘋果苗光合特性的影響[J].西北農林科技大學學報(自然科 學版),2016,44(4):177-184. LUO Jing, YI Panpan,WANG Fei,HAN Mingyu,WU Weifang, WANG Ronghua.Effects of different dwarfing interstocks on photosynthetic characteristics of grafted apple trees[J]. Journal of Northwest Aamp;FUniversity (Natural Science Edition),2016, 44(4):177-184.
[57]姜志昂,孫建設,彭建營,邵建柱.蘋果砧木 SH40 MdNCED1 基因克隆與表達分析[J].植物遺傳資源學報,2014,15(1):153- 159. JIANG Zhiang,SUN Jianshe,PENG Jianying,SHAO Jianzhu. Isolationand expression of MdNCED1 gene from apple rootstock SH40[J]. Journal of Plant Genetic Resources,2014,15(1): 153-159.
[58] ZHOU B B,SUN J,LIU S Z,JIN WM,ZHANGQ,WEI QP. Dwarfing apple rootstock responses to elevated temperatures : A study on plant physiological features and transcription level of related genes[J]. Journal of IntegrativeAgriculture,2Ol6,15(5): 1025-1033.
[59]SADAMORI S,MURAKAMI H. Studies on root-stocks of apples[J].Journal of the Japanese Society for Horticultural Science,1952,21(2):107-112.
[60]LOCKARD R G,SCHNEIDER G W. Stock and scion growth relationships and the dwarfing mechanism inapple[J]. HorticulturalReviews,1981,3:315-375.
[61]FAZIO G,ROBINSON TL,ALDWINCKLE H S. The Geneva apple rootstock breeding program[J]. Plant Breeding Reviews, 2015,39:379-424.
[62] ADAMS S,LORDAN J,FAZIO G,BUGBEE B,FRANCESCATTO P,ROBINSONTL,BLACKB.Effectof scion and graft type on transpiration,hydraulic resistance and xylem hormone profile of apples grafted on Geneva B41 andM.9-NIC m29 rootstocks[J].Scientia Horticulturae,2018,227:213-222.
[63] CUMMINS JN,ALDWINCKLE H S. Breeding apple rootstocks[M]//Plant BreedingReviews.Boston,MA:SpringerUS, 1983:294-394.
[64]SCHMIDTH.The effect of‘Latent’virus infections on the yield of maiden trees on 20 apomictic apple seedling rootstocks[J]. Journal ofHorticultural Science,1972,47(2):159-163.
[65]MILLER SR,HEENEYHB,NELSON SH. Studies on apple rootstock selections relating respiration rates to an anatomical method of predicting dwarfness[J].Canadian Journal of Plant Science,1961,41(2):221-226.
[66]KHANIZADEH S,GROLEAUY,LEVASSEURA,GRANGERR,ROUSSELLE GL,DAVIDSON C.Development and evaluationof St Jean-Morden apple rootstock series[J].HortScience,2005,40(3):521-522.
[67]JAKUBOWSKI T,ZAGAJA S W. 45 years of apple rootstocks breedingin Poland[J].Acta Horticulturae,2000(538):723-727.
[68]ZURAWICZE,BIELICKI P,CZYNCZYK A,BARTOSIEWICZB,BUCZEK M,LEWANDOWSKI M.Breeding of applerootstocks in Poland-The latest results[J].Acta Horticulturae,2011(903):143-150.
[69]王大江,BUSVINCENTGM,王昆,高源,趙繼榮,劉立軍,李 連文,樸繼成.美國蘋果砧木育種歷史、現狀及其商業化砧木 特性[J].中國果樹,2018(6):107-110. WANGDajiang,BUSVINCENTGM,WANGKun,GAOYuan, ZHAO Jirong,LIU Lijun,LI Lianwen,PIAO Jicheng. The historyand present situation of applerootstock breedingin America andits commercial rootstock characteristics[J].China Fruits, 2018(6): 107-110.
[70]趙玲玲,宋來慶,李元軍,于青,劉美英,張振英,姜中武.抗輪 紋病蘋果砧木‘煙砧一號'抗病機理初探[J].園藝學報,2010, 37(2):297-302. ZHAOLingling,SONGLaiqing,LI Yuanjun,YUQing,LIU Meiying,ZHANG Zhenying,JIANG Zhongwu. Studies on breedingof‘Yanzhen1’apple stock and itsmechanism of apple rough bark disease resistance[J].Acta Horticulturae Sinica, 2010,37(2):297-302.
[71]徐明舉.蘋果高紡錘形栽培新模式技術應用[J].果農之友, 2014(10):11-12. XUMingju.Application of new model technology for apple high spindle cultivation[J].Fruit Growers’Friend,2014(10):11-12.
[72]YAO SR,MERWINIA,ABAWIGS,THIESJE.Soil fumigation and compost amendment alter soil microbial community composition but do not improve tree growth or yield in anapple replant site[J]. Soil Biologyand Biochemistry,2006,38(3):587- 599.
[73]ISUTSA DK,MERWINIA.Malus germplasm varies in resistanceortolerance to apple replant diseaseinamixture ofNew York orchard soils[J].HortScience,2000,35(2):262-268.
[74]李丙智,張林森,韓明玉,馮煥德.世界蘋果矮化砧木應用現 狀[J].果農之友,2007(7):4-6. LI Bingzhi, ZHANG Linsen, HAN Mingyu,FENG Huande. Application status of dwarfing rootstock in the world [J].Fruit Growers'Friend,2007(7):4-6.
[75]趙德英.我國蘋果省力化栽培模式的選擇[J].果樹實用技術 與信息,2023(2):4-5. ZHAO Deying. Selection of labor-saving cultivation mode for applein China[J].Fruit Tree Practical Technologyand Information,2023(2):4-5.