


[摘要] 目的 系統評估類風濕關節炎(rheumatoid arthritis,RA)患者中奇異變形桿菌(proteus mirabilis,PM)的感染水平,并探討其與RA發病的潛在關聯。方法 依據流行病學觀察性研究的Meta分析及系統評價和Meta分析的首選報告條目指南,在PubMed、Web of Science和Embase數據庫中進行全面檢索,篩選時間截至2024年12月,納入比較RA患者與健康對照者抗PM抗體水平的相關研究,采用紐卡斯爾–渥太華量表評估納入研究的質量。通過Q檢驗和I2檢驗評估研究間的異質性,并據此選擇固定效應或隨機效應模型,通過敏感度分析、Begg檢驗及剪補法評估結果的穩健性。結果 最終納入18篇符合標準的文獻,涉及753例RA患者和716名健康對照者,RA患者的總抗體水平[加權均數差(weighted mean difference,WMD)=0.86,95%CI:0.38~1.34,I2=98.3%,P=0.000]和免疫球蛋白A抗體水平(WMD=0.17,95%CI:0.06~0.28,I2=96.7%,P=0.000)均高于健康對照者,亞組分析顯示地域和檢測方法中存在顯著異質性。結論 防治PM感染可能成為RA管理的補充策略且在一定程度上為“PM抗原–泌尿生殖道黏膜–自身免疫”的病理假說提供循證依據。
[關鍵詞] 類風濕關節炎;奇異變形桿菌;對照研究;尿路感染
[中圖分類號] R593.22" """"[文獻標識碼] A """""[DOI] 10.3969/j.issn.1673-9701.2025.18.005
Epidemiologic evidence of proteus mirabilis infection in patients with rheumatoid arthritis: A systematic evaluation and Meta-analysis of included global controlled studies
ZHANG Jiawei1, JI Li2, DING Guoyong3, LIU Shuman4, WU Mengyun1, ZHANG Xue1, ZHOU Aihong1
1.Department of Rheumatology and Immunology, the Second Affiliated Hospital of Shandong First Medical University, Tai’an 271000, Shandong, China; 2.Department of Critical Care Medicine, Tai’an Central Hospital Affiliated to Qingdao University, Tai’an 271000, Shandong, China; 3.Shandong First Medical University, Shandong Academy of Medical Sciences School of Public Health and Health Management, Jinan 250117, Shandong, China; 4.Department of Rheumatology and Immunology, Nanjing Gulou Hospital, Nanjing 210008, Jiangsu, China
[Abstract] Objective To systematically evaluate the level of proteus mirabilis (PM) infection in patients with rheumatoid arthritis (RA) and to investigate its potential association with the development of RA. Methods Based on Meta-analysis of observational studies in epidemiology and preferred reporting items for systematic review and Meta-analysis guide, a comprehensive search of PubMed, Web of Science and Embase databases was conducted to screen relevant literature published up to December 2024 for studies comparing the levels of anti-PM antibodies between RA patients and healthy populations, and the quality of the included studies was assessed by using the Newcastle-Ottawa scale. Heterogeneity among studies was assessed by Q-test and I2-test, and accordingly, fixed-effects or random-effects models were selected, and the robustness of the results was assessed by sensitivity analyses, Begg’s test, and clipping and patching method. Results Finally, 18 eligible articles were included, involving 753 RA patients and 716 healthy controls. The total antibody levels [weighted mean difference (WMD)=0.86, 95%CI: 0.38-1.34, I2=98.3%, P=0.000] and IgA antibody levels (WMD=0.17, 95%CI: 0.06-0.28, I2=96.7%, P=0.000) of RA patients were higher than those of healthy controls, and subgroup analyses revealed significant heterogeneity among geographic regions and testing methods. Conclusion Prevention and treatment of PM infections may be a complementary strategy for RA management and provide evidence-based support for the “PM antigen-genitourinary tract mucosa-autoimmunity” pathology hypothesis.
[Key words] Rheumatoid arthritis; Proteus mirabilis; Controlled studies; Urinary tract infections
類風濕關節炎(rheumatoid arthritis,RA)是一種以慢性滑膜炎癥為特征的自身免疫性疾病,典型癥狀包括關節疼痛、晨僵及功能障礙[1]。盡管RA的確切發病機制尚未完全闡明,但現有研究普遍支持感染因素在其發生發展中起關鍵作用[2-3]。研究顯示RA患者尿路感染(urinary tract infection,UTI)發病率較健康人群顯著升高(2~9倍)[4];且奇異變形桿菌(proteus mirabilis,PM)作為復雜性UTI及菌血癥的主要病原體,可能通過分子模擬等機制參與RA病理進程[5-7]。目前關于RA群體中PM感染的真實流行率仍缺乏直觀且高等級的可信證據。本研究通過Meta分析評估全球RA患者與健康人群的抗PM抗體水平差異,并探討其潛在致病機制。
1" 材料與方法
檢索PubMed、Web of Science及Embase數據庫,篩選時間截至2024年12月。本研究根據流行病學觀察性研究的Meta分析(Meta-analysis of observational studies in epidemiology,MOOSE)[8]及系統評價和Meta分析的首選報告條目(preferred reporting items for systematic review and Meta-analysis,PRISMA)[9]指南開展。
1.1" 篩選標準
納入標準:①研究設計為對照研究;②患者符合美國風濕病學會(American College of Rheumatology,ACR)分類標準[10]或來自醫院數據庫的RA患者;③暴露因素是通過血液、尿液和糞便檢查所發現的PM感染情況;④對照組為健康對照者,無RA病史;⑤關注的結局指標為抗PM總抗體水平、免疫球蛋白(immunoglobulin,Ig)G抗體水平、IgA抗體水平及IgM抗體水平。排除標準:①重復發表的文獻;②綜述、動物研究、病例報告、Meta分析或會議文集;③具有無法提取的結局指標、數據不完整及聯系作者后仍無法獲取相關資料的研究;④病例組患者合并有其他風濕性疾病的情況;⑤質量評估為低質量的研究。兩名作者(張加偉和紀莉)獨立篩選標題和摘要,然后對所有納入文獻進行全文評估,以確保納入的研究符合納入標準。如有分歧則由另一名作者(丁國勇)解決。
1.2" 數據提取和質量評價
構建基礎文獻信息表,包括第1作者、發表年份、國家、樣本量(RA/對照)、年齡、性別、RA診斷標準、PM檢測方法、各抗體水平(總抗體/IgG/IgA/IgM)及紐卡斯爾–渥太華(Newcastle- Ottawa,NOS)評分。文獻質量基于NOS量表分級:≥7分為高質量,4~6分為中等,lt;4分為低質量。數據由張加偉和紀莉獨立提取評估,分歧通過丁國勇、劉淑曼、吳夢云、張雪協商解決。
1.3" 統計學方法
采用Stata 16.0統計學軟件對數據進行處理分析。加權均數差(weighted mean difference,WMD)及其95%CI作為效應值。運用Q檢驗和I2統計量評估納入研究的異質性。使用D-L隨機效應模型或倒方差固定效應模型對效應量進行合并。后續進行亞組及敏感度分析。采用Begg檢驗及剪補法評估發表偏倚。Plt;0.05為差異有統計學意義。
2" 結果
2.1" 文獻檢索、研究篩選與研究特征
初步檢索共獲得305篇文獻(PubMed 82篇,Web of Science 67篇,Embase 156篇),去重后剩余212篇;閱讀標題/摘要后排除130篇,剩余82篇經全文審查后排除64篇,最終納入18篇[5-7, 11-25]符合標準的文獻。納入文獻的特征見表1。
2.2" PM總抗體差異分析
5項研究[12-13, 19, 21, 24](238例RA患者,290名健康對照者)顯示RA患者的抗PM總抗體滴度顯著高于健康對照者(WMD=0.86,95%CI:0.38~1.34),但存在高度異質性(I2=98.3%,P=0.000)。亞組分析表明酶聯免疫吸附試驗(enzyme linked immunosorbent assay,ELISA)(WMD=0.25)與其他方法(WMD=1.87)、英國(WMD=1.07)與波蘭(WMD=0.11)存在顯著差異(Plt;0.05);診斷標準和樣本量亞組無差異,見表2。敏感度分析顯示剔除Tiwana研究后合并WMD升至1.10(95%CI:0.88~1.32),見圖1。
2.3" 抗PM IgG抗體差異分析
13項研究[5-7, 14-18, 20, 22-25](465例RA患者,426名對照者)顯示RA患者的抗PM IgG抗體滴度顯著高于健康對照者(WMD=0.545,95%CI:0.402~ 0.688),見表2,但存在高度異質性。亞組分析表明國家、檢測方法、樣本類型及樣本規模間差異顯著,而診斷標準無統計學差異。剔除Chandrashekara研究后,合并WMD升至1.30(95%CI:1.14~1.46),見圖1。
2.4 "抗PM IgA及IgM抗體差異分析
7項研究[6-7, 14-15, 17-18, 22](252例RA患者,199名健康對照者)顯示RA患者的抗PM IgA抗體滴度顯著高于健康對照者(WMD=0.17,95%CI:0.06~ 0.28),見表2。6項研究[6, 14-15, 17-18, 22](222例RA患者,158名健康對照者)表明RA患者的抗PM IgM抗體滴度顯著高于健康對照者(WMD=0.25,95%CI:0.12~0.39),見表2。
2.5 "發表偏移
Begg檢驗顯示抗PM總抗體和IgA抗體無發表偏倚,而IgG抗體和IgM抗體可能存在偏倚。結合Egger檢驗分析,總抗體(P=0.29)、IgA抗體(P=0.16)無發表偏倚,IgG抗體(P=0.03)、IgM抗體(P=0.04)存在發表偏倚。對存在發表偏倚的IgG抗體和IgM抗體進一步剪補法分析表明發表偏倚對IgG(校正WMD=1.19,95%CI:1.02~1.38)和IgM(校正WMD=1.07,95%CI:0.92~1.23)的合并結果有部分影響,但結論仍穩健。
3" 討論
本研究發現RA患者的抗PM抗體水平顯著高于健康對照者,但受限于原始研究多為橫斷面研究設計,因此基于目前證據,筆者推測二者之間可能存在雙向因果關系:①PM感染參與RA免疫啟動。既往研究發現PM溶血素及尿素酶與人類白細胞抗原DR抗原(human leucocyte antigen-DR antigen,HLA-DR)、Ⅺ型膠原存在交叉免疫反應,其誘導產生的抗菌抗體在清除病原體過程中,可能通過表位擴散機制攻擊關節滑膜及軟骨中的同源抗原[26-27]。因此反復的PM感染引發抗體波動及滑膜炎癥,最終可能導致RA病理進展。②RA病理狀態加劇PM易感性。RA患者免疫紊亂、慢性炎癥及免疫抑制治療會增加感染風險,形成“易感–感染–再活化”循環,使RA患者更易發生PM定植及復雜性UTI,從而為自身抗體的持續產生提供抗原刺激[28-29]。
本研究顯示RA患者抗PM IgA抗體顯著升高,結合既往文獻分析其在RA病程中的機制。既往研究發現IgA(尤其是分泌型IgA)在黏膜免疫中發揮關鍵作用[30]。雖然單體或二聚體形式的IgA具有抗炎特性,但當侵襲性病原體(如PM)與IgA結合后,可形成IgA免疫復合物,參與構成黏膜免疫防線[31-32]。這類免疫復合物不僅局限于原發感染部位,還可經血液循環遷移至滑膜組織,通過與巨噬細胞表面IgA Fc受體特異性結合,激活吞噬功能并誘導促炎細胞因子大量釋放,導致滑膜增生性改變、單核細胞浸潤及新生血管生成等,最終導致關節破壞和骨質流失[33-34]。此外,研究發現活動期RA患者的IgA水平與關節破壞程度呈正相關[35]。該發現不僅支持RA的黏膜起源假說,更將其范圍從傳統關注的呼吸道及腸道黏膜擴展至泌尿生殖道,為系統性免疫–黏膜病理軸提供新證據。
亞組分析顯示英國RA患者的PM抗體水平顯著高于其他地區,該結果與尿路感染高發于欠發達地區的流行病學特征相悖。盡管目前缺乏針對PM感染率的地理分布研究,但有文獻報道英國人群的變形桿菌抗體滴度普遍偏高[36];筆者基于現有的流行病學證據并針對這種地域差異提出“病原體–宿主相互作用”的假設:①病原體方面。既往研究發現菌株毒力因子表達存在地域差異,推測英國流行的PM菌株可能攜帶獨特毒力基因導致人群感染率升高[37];②宿主方面。既往研究發現不同人群間存在不同的HLA-DR等位基因分布差異[38];如高加索人群的DRB103:01、DRB107:01等位基因攜帶率顯著高于亞洲人群,其可能增強對PM的免疫應答[39]。但上述假設仍需通過多中心隊列研究動態監測菌株基因組特征、宿主遺傳多態性與抗體水平的關聯加以驗證。
在RA臨床管理領域,系統分析提示抗PM抗體陽性的RA患者群體存在疾病活動性惡化及發生復雜性UTI的可能,因此PM篩查具有納入RA疾病管理的潛在價值。筆者建議結合相關診療指南[40]將PM血清學篩查納入以下臨床場景:①初診RA患者伴不明原因泌尿系癥狀;②疾病活動度突然升高且排除其他誘因;③計劃采用高風險免疫治療前的感染風險評估。具體實施可采用策略:首先通過ELISA檢測血清抗PM抗體,其次對陽性者進一步行尿液或血清病原學檢測,這種分層檢測模式在考慮敏感度及特異性的基礎上可節省成本開支。但仍存在一些臨床應用障礙,如缺乏PM商業標準化抗體檢測試劑盒等,而且仍需進一步驗證該路徑對感染發生率及疾病緩解率的實際影響。
本研究偏倚結果顯示抗PM總抗體和IgA抗體未發現顯著發表偏倚,提示結論可靠性較高,支持本研究RA患者抗PM抗體水平升高及黏膜免疫在RA中發揮關鍵作用的核心結論,抗PM的IgG與IgM抗體存在顯著發表偏倚,但校正后的效應量水平升高,表明原始結果可能低估真實效應,仍支持RA患者抗PM抗體水平升高的結論。后續需擴大樣本量增強結論的穩健性。
本研究仍存在若干方法學限制:首先,主要納入研究多采用橫斷面設計,難以建立微生物暴露與疾病進展之間的因果關系;其次,原始研究未對血清抗體檢測結果進行急性感染期與既往感染后的動態區分,導致無法明確抗體水平升高反映的是近期活躍感染抑或長期免疫記憶應答。后續有必要完善前瞻性研究以進一步明確因果關系。
綜上,本研究通過Meta分析與系統評價發現RA患者抗PM抗體水平升高的循證依據,為優化RA患者UTI管理策略及為“PM抗原–泌尿生殖道黏膜–自身免疫”的病理假說提供高級別的循證支持,盡管因果關系需進一步驗證,但這一發現仍為RA的早期預防開辟新思路——針對PM感染的干預可能成為阻斷自身免疫進程的關鍵靶點。未來研究將聚焦于通過類器官感染模型闡明PM穿透泌尿系黏膜屏障的分子機制;在RA高危人群中評估PM預防性干預措施的臨床轉化價值。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1]"" SCOTT D L, WOLFE F, HUIZINGA T W J. Rheumatoid arthritis[J]. Lancet Lond Engl, 2010, 376(9746): 1094–1108.
[2]" HITCHON C A, EL-GABALAWY H S. Infection and rheumatoid arthritis: Still an open question[J]. Curr Opin Rheumatol, 2011, 23(4): 352–357.
[3]" ARLEEVSKAYA M I, GABDOULKHAKOVA A G, FILINA Y V, et al. A transient peak of infections during onset of rheumatoid arthritis: A 10-year prospective cohort study[J]. BMJ Open, 2014, 4(8): e005254.
[4]"" PUNTIS D, MALIK S, SARAVANAN V, et al. Urinary tract infections in patients with rheumatoid arthritis[J]. Clin Rheumatol, 2013, 32(3): 355–360.
[5]"" WILSON C, THAKORE A, ISENBERG D, et al. Correlation between anti-proteus antibodies and isolation rates of P mirabilis in rheumatoid arthritis[J]. Rheumatol Int, 1997, 16(5): 187–189.
[6]"" CHRISTOPOULOS G, CHRISTOPOULOU V, ROUTSIAS J G, et al. Greek rheumatoid arthritis patients have elevated levels of antibodies against antigens from proteus mirabilis[J]. Clin. Rheumatol, 2017, 36(3): 527–535.
[7]"" EBRINGER A, PTASZYNSKA T, CORBETT M, et al. Antibodies to proteus in rheumatoid arthritis[J]. Lancet Lond Engl, 1985, 2(8450): 305–307.
[8]"" STROUP D F, BERLIN J A, MORTON S C, et al. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group[J]. JAMA, 2000, 283(15): 2008–2012.
[9]"" PAGE M J, MOHER D. Evaluations of the uptake and impact of the preferred reporting items for systematic reviews and Meta-analyses (PRISMA) statement and extensions: A scoping review[J]. Syst Rev, 2017, 6(1): 263.
[10] ARNETT F C, EDWORTHY S M, BLOCH D A, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis[J]. Arthritis Rheum, 1988, 31(3): 315–324.
[11] FIELDER M, TIWANA H, YOUINOU P, et al. The specificity of the anti-proteus antibody response in tissue-typed rheumatoid arthritis (RA) patients from Brest[J]. Rheumatol Int, 1995, 15(2): 79–82.
[12] DEIGHTON C M, GRAY J W, BINT A J, et al. Anti-proteus antibodies in rheumatoid arthritis same-sexed sibships[J]. Br J Rheumatol, 1992, 31(4): 241–245.
[13] KHALAFPOUR S, EBRINGER A, ABULJADAYEL I, et al. Antibodies to Klebsiella and proteus microorganisms in ankylosing spondylitis and rheumatoid arthritis patients measured by ELISA[J]. Br J Rheumatol, 1988, 27 Suppl 2: 86–89.
[14] M?KI-IKOLA O, H?LLGREN R, KANERUD L, et al. Enhanced jejunal production of antibodies to Klebsiella and other enterobacteria in patients with ankylosing spondylitis and rheumatoid arthritis[J]. Ann Rheum Dis, 1997, 56(7): 421–425.
[15] SENIOR B W, ANDERSON G A, MORLEY K D, et al. Evidence that patients with rheumatoid arthritis have asymptomatic “non-significant” proteus mirabilis bacteriuria more frequently than healthy controls[J]. J Infect, 1999, 38(2): 99–106.
[16] CHANDRASHEKARA S, RAMESH M N, SHOBHA A, et al. Proteus mirabilis and rheumatoid arthritis: No association with the disease[J]. Clin Rheumatol, 2003, 22(4-5): 268–270.
[17] SENIOR B W, MCBRIDE P D, MORLEY K D, et al. The detection of raised levels of IgM to proteus mirabilis in sera from patients with rheumatoid arthritis[J]. J Med Microbiol, 1995, 43(3): 176–184.
[18] RASHID T, LEIRISALO-REPO M, TANI Y, et al. Antibacterial and antipeptide antibodies in Japanese and Finnish patients with rheumatoid arthritis[J]. Clin Rheumatol, 2004, 23(2): 134–141.
[19] TIWANA H, WILSON C, WALMSLEY R S, et al. Antibody responses to gut bacteria in ankylosing spondylitis, rheumatoid arthritis, Crohn’s disease and ulcerative colitis[J]. Rheumatol Int, 1997, 17(1): 11–16.
[20] EBRINGER A, COX N L, ABULJADAYEL I, et al. Klebsiella antibodies in ankylosing spondylitis and proteus antibodies in rheumatoid arthritis[J]. Br J Rheumatol, 1988, 27 Suppl 2: 72–85.
[21] EBRINGER A, KHALAFPOUR S, WILSON C. Rheumatoid arthritis and proteus: A possible aetiological association[J]. Rheumatol Int, 1989, 9(3-5): 223–228.
[22] RASHID T, JAYAKUMAR K S, BINDER A, et al. Rheumatoid arthritis patients have elevated antibodies to cross-reactive and non cross-reactive antigens from proteus microbes[J]. Clin Exp Rheumatol, 2007, 25(2): 259–267.
[23] WILSON C, EBRINGER A, AHMADI K, et al. Shared amino acid sequences between major histocompatibility complex class Ⅱ glycoproteins, type Ⅺ collagen and proteus mirabilis in rheumatoid arthritis[J]. Ann Rheum Dis, 1995, 54(3): 216–220.
[24] ARABSKI M, FUDALA R, KOZA A, et al. The presence of anti-LPS antibodies and human serum activity against proteus mirabilis S/R forms in correlation with TLR4 (Thr399Ile) gene polymorphism in rheumatoid arthritis[J]. Clin Biochem, 2012, 45(16-17): 1374–1382.
[25] WILSON C, RASHID T, TIWANA H, et al. Cytotoxicity responses to peptide antigens in rheumatoid arthritis and ankylosing spondylitis[J]. J Rheumatol, 2003, 30(5): 972–978.
[26] EBRINGER A, CUNNINGHAM P, AHMADI K, et al. Sequence similarity between HLA-DR1 and DR4 subtypes associated with rheumatoid arthritis and proteus/serratia membrane haemolysins[J]. Ann Rheum Dis, 1992, 51(11): 1245–1246.
[27] SEWARD R J, DROUIN E E, STEERE A C, et al. Peptides presented by HLA-DR molecules in synovia of patients with rheumatoid arthritis or antibiotic-refractory lyme arthritis[J]. Mol Cell Proteomics MCP, 2011, 10(3): M110.002477.
[28] THOMAS K, LAZARINI A, KALTSONOUDIS E, et al. Incidence, risk factors and validation of the RABBIT score for serious infections in a cohort of 1557 patients with rheumatoid arthritis[J]. Rheumatol Oxf Engl, 2021, 60(5): 2223–2230.
[29] DIXON W G. Rheumatoid arthritis: Biological drugs and risk of infection[J]. Lancet Lond Engl, 2015, 386(9990): 224–225.
[30] BREEDVELD A, VAN EGMOND M. IgA and FcαRI: Pathological roles and therapeutic opportunities[J]. Front Immunol, 2019, 10: 553.
[31] HANSEN I S, BAETEN D L P, DEN DUNNEN J. The inflammatory function of human IgA[J]. Cell Mol Life Sci CMLS, 2019, 76(6): 1041–1055.
[32] BUNKER J J, ERICKSON S A, FLYNN T M, et al. Natural polyreactive IgA antibodies coat the intestinal microbiota[J]. Science, 2017, 358(6361): 6619.
[33] HANSEN I S, HOEPEL W, ZAAT S A J, et al. Serum IgA immune complexes promote proinflammatory cytokine production by human macrophages, monocytes, and kupffer cells through FcαRI-TLR cross-talk[J]. J Immunol Baltim Md, 2017, 199(12): 4124–4131.
[34] RASHID T, EBRINGER A, WILSON C. The link between proteus mirabilis, environmental factors and autoantibodies in rheumatoid arthritis[J]. Clin Exp Rheumatol, 2017, 35(5): 865–871.
[35] HE Y, ZHA Q, LIU D, et al. Relations between serum IgA level and cartilage erosion in 436 cases of rheumatoid arthritis[J]. Immunol Invest, 2007, 36(3): 285–291.
[36] RASHID T, DARLINGTON G, KJELDSEN-KRAGH J, et al. Proteus IgG antibodies and C-reactive protein in English, Norwegian and Spanish patients with rheumatoid arthritis[J]. Clin Rheumatol, 1999, 18(3): 190–195.
[37] WIENS K E, WOYCZYNSKI L P, LEDESMA J R, et al. Global variation in bacterial strains that cause tuberculosis disease: A systematic review and Meta-analysis[J]. BMC Med, 2018, 16(1): 196.
[38] CHEN P L, FANN C S J, CHU C C, et al. Comprehensive genotyping in two homogeneous graves’ disease samples reveals major and novel HLA association alleles[J]. PLoS One, 2011, 6(1): e16635.
[39] SUGIYAMA N, TERRY F E, GUTIERREZ A H, et al. Individual and population-level variability in HLA-DR associated immunogenicity risk of biologics used for the treatment of rheumatoid arthritis[J]. Front Immunol, 2024, 15: 1377911.
[40] FRAENKEL L, BATHON J M, ENGLAND B R, et al. 2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritis[J]. Arthritis Care Res, 2021, 73(7): 924–939.
(收稿日期:2025–03–11)
(修回日期:2025–06–07)
通信作者:周愛紅,電子信箱:tadszx@126.com