中圖分類號:S511.07 文獻標志碼:A 文章編號:1002-1302(2025)14-0001-08
我國是農業大國,水稻(OryzasativaL.)是我國的第一大糧食作物[1],占作物總產量的 35%[2] ,全國有2/3的人口以稻米為主食[3]。近年來,全球溫室效應不斷加劇。甲烷( CH4 )是僅次于二氧化碳( CO2 )的第二大溫室氣體[4],稻田是重要的 CH4 排放來源,占農業 CH4 排放總量的 22%[5] 。據估算,CH4 的全球增溫潛勢(globalwarmingpotential,GWP,即在一定時期內,排放到大氣中的 1kg 溫室氣體的輻射強迫與 1kgCO2 輻射強迫的比值)在100 年時間范圍內是 CO2 的34倍[6]
水稻生長需要大量水分,我國水稻栽培面積約為3000萬 hm2 ,水稻灌溉用水量約占我國農業用水總量的 70%[7-9] 。然而,我國水資源十分緊缺,且分布不均,缺水已成為水稻生產的限制因素之二[10]。發展節水農業,特別是實行水稻高產節水灌溉,是我國的一項重大戰略需求[11]。干濕交替(alternatewetinganddrying,AWD)灌溉是在生產中被廣泛應用的一種灌溉措施[12-13],在節約大量灌溉用水的同時,還能夠增加作物產量。此外,AWD灌溉在稻田溫室氣體減排方面具有非常好的應用潛力。據統計,我國有 41% 的稻田(約1200萬 hm2 )采用AWD灌溉方式[14]。AWD灌溉是指在水稻生育過程中,在一段時間里保持水層,然后自然落干至土壤不嚴重干裂時再灌水,再自然落干,再灌水,如此循環[15-16]。據報道,AWD 灌溉作為一種重要的節水減排技術,已在中國、印度、菲律賓、孟加拉國、越南等國家得到推廣應用[17]。AWD灌溉在節水增產的同時,能夠減少 64.8% 的稻田 CH4 排放,溫室氣體排放強度降低了 65.9%[18-19] 。對于AWD灌溉減少稻田 CH4 排放的影響因素以及AWD灌溉與其他栽培措施相結合對稻田 CH4 排放影響的研究較少,是否充分發揮了AWD灌溉對稻田CH4 減排的潛力,值得深人研究。基于前人的研究,本文介紹稻田 CH4 產生、氧化和排放過程,綜述在AWD灌溉過程中,土壤水勢、進行AWD調控的時期以及土壤類型對稻田 CH4 排放的影響,探討AWD灌溉與氮肥運籌、品種選擇和秸稈還田措施相結合對稻田 CH4 排放的影響,旨在為實現水分精準調控、節水減排以及我國水稻優質高產、綠色低碳發展提供有效的理論依據。
1稻田 CH4 排放機理
稻田 CH4 排放是 CH4 產生、氧化和向大氣排放這3個過程的綜合結果。 CH4 是有機物仕厭氧條件(氧化還原電位 lt;-150mV )下礦化的最終產物之一[21]。有機底物和厭氧環境是稻田土壤產甲烷菌產生 CH4 的必要條件[22]。 CH4 由產甲烷菌產生,產甲烷菌主要屬于古細菌領域,包括乙酸營養型產甲烷菌和氫營養型產甲烷菌[23]。在稻田 CH4 產生過程中,土壤有機質作為碳源被產甲烷菌消耗,進而釋放出 CH4 氣體[24]。土壤有機質的主要來源包括根系分泌物、前茬作物的殘留物和外部有機物質添加物等[25]。產甲烷菌在稻田中產生 CH4 的速率取決于多個因素,如環境條件、基質豐富度和其他微生物群落的競爭等。通常,稻田 CH4 的產生方式主要有3種:第1種是以 H2/CO2 為底物,即CO2+4H2?CH4+2H2O ;第2種是以乙酸為底物,即 CH3COOH?CH4+CO2 ;第3種是以含甲基類化合物為底物,即 CH3OH?CH4+H2O[26-27] ,其中第2種是稻田產生 CH4 的主要途徑[28]。在稻田中,僅有 12%~16% 的 CH4 排放到大氣中,剩余的大部分在根際微氧區和水土界面被氧化[29]。稻田 CH4 的氧化反應主要受甲烷氧化菌的作用,它能氧化 80% 的 CH4[30] 。此外,還有一些異養菌、放線菌和真菌等也可以氧化一定量的 CH4 。 CH4 的氧化過程主要包括好氧 CH4 氧化和厭氧 CH4 氧化,但多以好氧(204 CH4 氧化為主[31]。好氧甲烷氧化菌在自然界中包括專性的(僅使用 CH4 作為碳源和能源)和兼性的(利用多種碳底物),具有中溫特性(最佳生長溫度為 20~40°C )和中性特性(最佳生長pH值為6~8)[32]。氧氣 (02) 的可利用性在好氧甲烷氧化菌氧化 CH4 過程中起著重要作用。好氧甲烷氧化菌可以是低親和性甲烷氧化菌(氧化高濃度 CH4 ,即濃度 gt;100μL/L )和高親和性甲烷氧化菌(氧化低濃度 CH4 ,如 1.8μL/L )[33]。 CH4 的好氧氧化是通過利用不同的酶將 CH4 依次轉化為 CO2 。首先是甲烷單加氧酶催化 CH4 和 02 生成甲醇( CH3OH 和甲醛(HCHO);接著 CH3OH 和HCHO受甲酸脫氫酶和甲醛脫氫酶等的作用轉化為乙酸鹽,乙酸鹽進一步被氧化產生醋酸( CH3COOH) ;隨后 CH3COOH 被醋酸脫氫酶氧化生成 CO2 排放到環境中。稻田CH4 排放是產甲烷菌產生 CH4 和甲烷氧化菌氧化CH4 這2個過程的凈平衡。稻田 CH4 最終通過以下途徑排放到大氣中:溶解的 CH4 在水-空氣和土壤-水界面上擴散損失、冒泡(形成氣泡)損失以及通過水稻植株的通氣組織排放到大氣中[34-35]。其中通過水稻植株的通氣組織排放到大氣中是稻田 CH4 排放的最主要途徑,占3種排放途徑的90%以上[36]
2AWD灌溉對稻田 CH4 排放的影響因素
水分對土壤中有機碳的溶解度和微生物生長代謝活性具有重要影響[37]。同時,水分也是影響稻田 CH4 產生與排放的主要因素[38-39]。目前,AWD灌溉在水稻生產中被廣泛推廣[40-41]。AWD 灌溉中淹水與落干的交替過程促進了土壤可溶性有機碳的分解,減少了產甲烷菌所需的有機底物,從而減少稻田 CH4 的生成[42]。此外,AWD灌溉減少了稻田水分持續淹沒時間,改善了土壤理化性質,提高了土壤通氣性和氧化還原電位[43]。這能抑制稻田產甲烷菌活性,并刺激甲烷氧化菌活性,從而降低CH4 排放量[44]。然而,在AWD灌溉過程中,土壤水勢、進行AWD調控的時期以及土壤類型等的不同,可能對稻田 CH4 排放產生不同程度的影響[45-47],這些方面還需要進一步探索。
2.1土壤水勢
AWD灌溉不可避免地會導致土壤水勢發生變化,而土壤水勢的控制對稻田 CH4 排放有著重要影響[48]。土壤的干濕程度影響土壤好氧和厭氧微生物的活性,田間水層的高低控制 CH4 氧化過程與擴散途徑,同時淹水時間的長短決定土壤氧化還原電位的高低,這些因素都影響稻田 CH4 的排放[49]。Arai 等試驗發現,與常規灌溉相比,輕度AWD灌溉(土壤水勢 ∣?-15kPa 使稻田 CH4 排放量減少了 51%[50] 輕度AWD灌溉能有效地控制土壤水勢,避免稻田長時間處于淹水狀態,減少產甲烷菌在厭氧條件下產生的 CH4[51] 。同時,輕度 AWD 灌溉能經常創造有氧環境,刺激甲烷氧化菌活性,促進 CH4 氧化,因此減少CH4 的排放量[52]。Balaine 等研究指出,輕度AWD灌溉(落干至土壤體積含水量為 41%~44% 時復水)、中度AWD灌溉(落干至土壤體積含水量為 35% 時復水)和重度AWD灌溉(落干至土壤體積含水量為 25% 時復水)分別使稻田 CH4 排放量減少 41% !56%~73% 和 60%~67% ,同時他們研究發現,增加AWD灌溉的落干程度會降低中度AWD灌溉的 CH4 排放,但是增加土壤落干程度對在重度AWD灌溉時降低 CH4 的排放方面沒有進一步的好處[53]Linquist等的研究表明,當土壤落干時間增加、土壤落干程度加劇時并不能更進一步地減少稻田 CH4 排放[54]。這其中的具體原因尚待進一步探索。此外,Carrijo等的Meta分析結果顯示,水稻產量在輕度AWD灌溉(土壤水勢 ?-15kPa 下不會顯著減少,但在重度AWD灌溉(土壤水勢 lt;-15kPa 下相對于常規灌溉顯著減少 22.6%[55] 。這是因為在重度AWD灌溉下落干期水稻光合作用受到明顯抑制,影響了植株生長與籽粒灌槳,導致產量下降。因此,在AWD灌溉過程中,建議通過控制田間土壤水勢 ?-15kPa 來實現稻田減排不減產的目標。
2.2進行AWD調控的時期
稻田 CH4 排放動態通常有4種類型,第1種是“早期高峰”,即移栽或播種水稻后, CH4 排放通量開始上升,在分蘗期達到峰值后逐漸下降,直至收獲前落干接近零[56-57]。第2種是“雙高峰”,即移栽或播種水稻后, CH4 排放通量開始上升,在分蘗期達到首個峰值后下降,在孕穗期或抽穗期出現第2個峰值,隨后再次下降,直至收獲前落干接近零[58-60]。第3種是“后期高峰”,即水稻移栽或播種后初始 CH4 排放通量較低,隨后逐漸上升,在孕穗期或抽穗期達到峰值后開始下降,直至收獲前落干接近零[61-63]。第4種是“鐘型”,即 CH4 排放通量在移栽或播種水稻后開始上升,保持在較高水平浮動后開始下降,直至收獲前落干接近零[64-65]。根據Qian等的研究,我國的稻田 CH4 排放動態以前2種類型為主,約 40% 是“早期高峰”型,約 27% 是“雙高峰”型[5]
基于稻田 CH4 的排放動態,進行AWD調控的時期是影響 CH4 減排效果的重要因素[27]。Souza等指出,在連續淹水狀態下, CH4 排放達到峰值前幾天是稻田 CH4 減排的最佳時機[66]。針對“雙高峰”型,許多研究采用全生育期AWD灌溉進行減排。Hossain等研究表示,與常規灌溉相比,全生育期AWD灌溉(水稻移栽2周后開始落干-復水循環直到收獲期停止,開花期除外)的 CH4 排放量平均減少約 47%[67] 。全生育期AWD 灌溉能夠在 CH4 排放高峰到來之前適時地使土壤落干,從而改善土壤通氣性、土壤含水量和養分有效性[68]。這種灌溉方式能更好地控制田間水位,降低土壤含水量,進而有效增強土壤通氣性和氧化還原電位,并通過抑制產甲烷菌活性、刺激甲烷氧化菌活性來減少 CH4 排放。對于“早期高峰”型,多可采用早期的AWD灌溉來緩解稻田 CH4 排放。Islam等在早期AWD灌溉[第1次落干最早在4DAT(daysaftertransplanting,移栽后天數)]研究中發現, CH4 排放的第1個高峰比常規灌溉低得多,且沒有第2個高峰, CH4 排放量比在常規灌溉下減少 69% ~85%[69] 。早期AWD 灌溉減排的關鍵是在稻田早期落干過程中減少了產甲烷菌的底物,增加了土壤氧化還原電位,從而抑制 CH4 的產生[70]。此外,落干過程還能增強土壤通氣性,刺激甲烷氧化菌,促進CH4 氧化。
2.3土壤類型
AWD灌溉和土壤類型之間的相互作用對稻田CH4 排放也有重要影響。土壤類型是決定AWD灌溉周期持續時間的重要因素之一。根據土壤類型的不同,AWD灌溉周期的持續時間可能為 1~10d 不等[71]。例如,壤土需要頻繁和輕度的灌溉,而黏土則需要長時間間隔的大量灌溉[72]。一般來說,黏土的滲透率(單位時間內地表單位面積土壤的入滲水量)是 2.6~3.6mm/d ;而壤土的滲透率較高,能達到 13mm/d[73] 。此外,植物利用黏土土壤水分的有效性也小于壤土[74]。土壤類型會影響土壤 02 含量和有機質的分解速率,導致黏土 CH4 排放量顯著低于壤土[75]。黏土中存在強氧化劑如氧化鐵、氧化錳等,這些物質會競爭并消耗產甲烷菌所需要的有機底物,從而阻礙 CH4 的形成過程[76]。黏土顆粒細小但比表面積大,可以吸附和保護土壤有機碳不分解,從而抑制 CH4 的生成[。 CH4 分子也很難從黏土中逃逸到大氣中或向水稻植株移動。 CH4 分子在黏土中停留時間更長,被困在土壤孔隙中,使得甲烷氧化菌有更多時間將其重新氧化為 CO2[78] 。因此,AWD灌溉在黏土上減排效果不明顯。相比之下,壤土具有較高的氣體擴散率,利于 CH4 通過大孔擴散, CH4 也更容易通過植物介導的運輸從根際土壤擴散到大氣中。壤土的GWP是黏土的5倍,其中 CH4 排放是主要貢獻者(貢獻率 gt;50% )[79]。與黏土相比,在攘土上更適合通過實施AWD灌溉來減少稻田 CH4 的排放[80]。壤土表現出更快的地表水排水性,能產生頻繁的短期落干,更容易實現AWD灌溉的調控;頻繁的落干可以改善土壤透氣性,減緩 CH4 生成速率,刺激甲烷氧化菌活性,從而有效減少稻田的 CH4 排放[81]。
3AWD灌溉與其他栽培措施相結合對稻田 CH4 排放的影響
稻田 CH4 排放的調控涉及 CH4 產生、氧化和排放全過程,而這些過程又與水稻的栽培管理和生長特性緊密相關。近年來,關于AWD灌溉與氮肥運籌、品種選擇以及秸稈還田等措施相結合對稻田CH4 排放影響的研究較少,是否充分發揮了AWD灌溉對稻田 CH4 減排的潛力,值得深入研究。
3.1 氮肥運籌
施肥是水稻生產中不可或缺的重要農藝措施。在水稻種植中,水分和氮肥是影響 CH4 產生與排放的兩大因素。AWD灌溉可以調節土壤水位,改善土壤通氣性,減少 CH4 的產生與排放。氮肥的使用也會對 CH4 的排放產生一定的影響。Jiang等研究表明,施氮會增加稻田 CH4 排放[82]。這是由于氮肥能促進水稻生長發育,增加水稻根系分泌物和通氣組織,從而增加產甲烷菌的基質數量,使得 CH4 更易向大氣傳輸。然而,Zhong等指出,施氮能減少稻田 CH4 排放[83]。 CH4 排放量與 NH4+ 的有效性呈強反比關系。氮肥的施用可增加水稻的生物量,導致根系向土壤輸入更多的 02 ,同時結合更高的 NH4+ 有效性,刺激 CH4 氧化,從而減少 CH4 排放[84]。氮肥對 CH4 排放的凈效應受其他栽培措施的影響[85。因此,在結合AWD灌溉與氮肥運籌時,需綜合考慮它們對 CH4 排放的影響。Li等研究發現,AWD灌溉和控釋氮肥聯合使用可減少 28%~49% 的稻田 CH4 排放量[2]。Ma等也報道,與AWD灌溉 + 常規氮肥相比,AWD灌溉 + 控釋氮肥處理的稻田 CH4 排放量減少 50.8%[86] 。控釋氮肥可以減緩氮素的釋放速率,使其更符合水稻的生長需要,避免氮素的過量積累[87]。AWD灌溉和控釋氮肥相結合能有效控制植株無效分蘗,降低土壤中有機碳的輸入,優化根際氧氣環境,從而減少 CH4 的產生與排放[88]。此外,AWD灌溉和控釋氮肥相結合可降低甲烷古菌屬和參與 CO2 還原產甲烷途徑有關基因的相對豐度。這與Dong 等的研究結果[89]一致。在 CO2 還原產甲烷途徑中,產甲烷菌和相關基因的豐度與累積 CH4 排放量呈正相關。因此,AWD灌溉和控釋氮肥處理可通過降低 CO2 還原產甲烷途徑中產甲烷菌和相關基因的豐度減少了 CH4 排放[86]。
3.2 品種選擇
水稻植株的通氣組織是稻田 CH4 排放的主要途徑,因此水稻品種的選擇對 CH4 排放具有重要影響。不同品種之間的根系特征、分蘗能力、生物量和固碳能力等差異會導致CH4排放存在差異[90]Chen等指出,地上性狀對稻田 CH4 排放的影響很小,而根系性狀是調節稻田 CH4 排放量的關鍵因素。通氣組織作為水稻根系的重要組成部分,包括根系的氣孔和根系的氣孔間隙,其結構和功能對水稻根部內 02 的供應以及 CH4 的生成和排放具有較大影響[93]。通氣組織較為發達的水稻品種,根系氣孔數量多、大小適中,且根系的氣孔間隙較大,有助于增大 O2 進入根系內部的速率,提高根際氣體的擴散速率,減少 CH4 在根系中的積累,因而表現出較低的 CH4 排放量。相反,通氣組織不發達的水稻品種,根系氣孔數量少、大小不一,且根系的氣孔間隙較小,導致 02 進入根系內部的速率較低,使得 CH4 在根系中更易積累,從而表現出較高的 CH4 排放量[94]。水稻能通過通氣組織將 O2 分泌到根系,足夠的 02 可以刺激甲烷氧化菌的活性,從而促進 CH4 的氧化,減少 CH4 的排放[95]。Qi等發現,不同水稻品種的根系氧化能力存在顯著差異[]。水稻根系可通過增加根系氧化區的氧化還原電位來氧化 CH4 ,從而減少 CH4 排放。因此,品種的 CH4 排放特性是AWD灌溉與品種選擇結合減排 CH4 的關鍵。對于AWD灌溉來說,選擇具有良好通氣組織的水稻品種可以進一步增強其減排效果。此外,董文軍等指出,選用根系活力強、根系發達的品種,能有效降低稻田 CH4 的排放[97]。根系活力強、根系發達的品種可促進 O2 向土壤轉移、增強甲烷氧化菌活性等,從而促進 CH4 氧化,減少CH4 排放[98]。Zhang等的研究結果還顯示,在AWD灌溉下,水稻根系生物量增加,根系活性顯著增強[]。根系較高的氧化能力、氧氣分泌能力以及較高的根際氧化還原狀態抑制產甲烷菌的活性,增強甲烷氧化菌的活性,從而促進 CH4 的氧化,減少(204號 CH4 的排放[100]。
3.3 秸稈還田
近年來,秸稈還田政策受到廣泛的關注和支持,秸稈還田是一種環保和可持續的農業管理實踐[101]。秸稈中含有豐富的碳元素,其還田可以有效補充土壤有機質,但也會促進稻田 CH4 的產生[102]。秸稈分解過程中消耗土壤中的 02 ,創造了一個利于 CH4 產生的厭氧環境;同時,秸稈分解增加產甲烷菌所需的土壤有機碳,進而增加 CH4 的排放量[103]。為減少秸稈還田后稻田的 CH4 排放,嘗試將秸稈還田與AWD灌溉相結合。成臣等研究指出,與淹水灌溉相比,AWD處理使秸稈還田的稻田(204 CH4 排放量降低 7%~24.6%[104] 。Han 等研究發現,與常規灌溉 + 秸稈還田相比,AWD灌溉 + 秸稈還田使稻田 CH4 排放量減少 17.22%[6] 。由于水管理制度對 CH4 排放的影響更為顯著,AWD灌溉可以減少秸稈還田后稻田的 CH4 排放。同樣, Wu 等研究發現,秸稈還田對 CH4 排放的影響取決于水分狀況[105]。AWD灌溉使秸稈還田下的 CH4 排放量減少 35% 。盡管秸稈還田可為產甲烷菌提供豐富的有效碳源,促進 CH4 的產生[106],但在秸稈還田條件下進行AWD灌溉能夠減少稻田的淹水時間,增強土壤通氣性,提高氧化還原電位,激發甲烷氧化菌活性,從而促進 CH4 氧化,減少 CH4 排放。秸稈還田和AWD灌溉之間存在有效的互作效應,二者相結合可改變秸稈還田對土壤微生物群落結構和功能以及碳含量的影響,最終實現 CH4 減排[51]因此,協同運籌水分管理與秸稈還田是降低秸稈還田對環境不利影響的重要手段。
4展望
稻田 CH4 的排放是一個復雜的過程,受到許多不定因素的影響和制約。AWD灌溉通過水分管理在水稻生育期內引入周期性的有氧條件,從而減少連續淹水產生的 CH4 排放。然而,在AWD灌溉過程中,土壤水勢、進行AWD調控的時期以及土壤類型等均會對稻田 CH4 排放產生不同程度的影響。未來,不僅需要優化完善這些AWD灌溉的影響因素,還需要使AWD灌溉在其他栽培措施下充分發揮其 CH4 減排潛力。可以從多個角度出發,加強各領域的交叉融合,通過綜合AWD灌溉與氮肥運籌、水稻品種選擇以及添加有機質等多種措施的互作效應,形成最佳的稻田減排栽培管理方式,實現更加有效的溫室氣體減排和可持續發展農業目標。
參考文獻:
[1]WangJY,ZhangZW,Liu YS.Spatial shiftsin grain production increases in Chinaand implications for food security[J].Land Use Policy,2018,74:204-213.
[2]LiJL,LiYE,WanYF,etal.Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissionsand increasericeyield[J].Geoderma,2018,315:1-10.
[3]ChenY,YangWL,GaoRF,etal.Genome-wideanalysisof microRNAsand theirtarget genesin Dongxiangwild rice(Oryza rufipogon Griff.)respondingto salt stress[J].International Journal ofMolecular Sciences,2023,24(4):4069.
[4]MaLH,LiuB,CuiYL,etal.Variationsand driversofmethane fluxes from double-cropping paddy fields insouthern China at diurnal,seasonal and inter- seasonal timescales[J]. Water,2021, 13(16) :2171.
[5]Qian H Y,Zhu X C,Huang S,et al. Greenhouse gas emissions and mitigation in riceagriculture[J].Nature Reviews Earthamp; Environment,2023,4:716-732.
[6]Han Y,ZhangZ X,Li T C,et al.Straw return alleviatesthe greenhouse effectof paddy fieldsby increasing soil organic carbon sequestration under water- saving irigation[J].Agricultural Water Management,2023,287:108434.
[7]Tian Z,FanYD,WangK,et al.Searching for“Win-Win” solutions for food-water-GHG emissions tradeoffs across irrigation regimes of paddy rice in China[J]. Resources,Conservation and Recycling,2021,166:105360.
[8]張士龍.不同水稻種植方式對中粳稻產量的影響[J].中國農業 文摘-農業工程,2024,36(2):63-67.
[9]SongT,DasD,YangF,etal.Genome-wide transcriptome analysis ofrootsin two rice varietiesin response to alternate wettingand drying irrigation[J].The Crop Journal,2020,8(4):586-601.
[10]Zhang W Y,Yu JX, Xu YJ,et al.Alternate wetting and drying irrigation combined with the proportion of polymer-coated urea and conventional urea rates increases grain yield,water and nitrogen use efficiencies in rice[J].Field Crops Research,2021,268:108165.
[11]顧希,劉昆,高捷,等.節水灌溉技術及其對水稻產量影 響的研究進展[J].雜交水稻,2022,37(2):7-13.
[12]Liu L H,Ouyang W,Liu HB,et al.Potential of paddy drainage optimization to water and food security in China[J].Resources, Conservationand Recycling,2021,171:105624.
[13]Surendran U,Raja P,Jayakumar M,et al.Use of efficient water saving techniques for production of rice in India under climate change scenario:a critical review[J].Journal of Cleaner Production,2021,309:127272.
[14]Chu G,Chen TT,Chen S,et al.Agronomic performance ofdroughtresistance rice cultivars grown under alternate weting and drying irrigation management in Southeast China[J]. The Crop Journal, 2018,6(5) :482-494.
[15]唐樹鵬,劉洋,簡超群,等.干濕交替灌溉對水稻產量、水氮利 用效率和稻米品質影響的研究進展[J].華中農業大學學報, 2022,41(4) :184 -192.
[16]Schneider P, Sander B O,Wassmann R,et al. Potential and versatility of WEAP model (Water Evaluation and Planning System) forhydrological assessments of AWD (Alternate Wetting and Drying)in irigatedrice[J].Agricultural Water Management, 2019,224 :105559.
[17]張鮮鮮,周勝,孫會峰,等.干濕交替灌溉對水稻生產和溫室 氣體減排影響研究進展[J].生態學雜志,2020,39(11): 3873-3880.
[18]Wang H,Zhang Y,Zhang YJ,et al. Water-saving irrigation is a ‘ win - win’management strategy in rice paddies: with both reduced greenhouse gas emissions and enhanced water use efficiency[J]. Agricultural Water Management,2020,228:105889.
[19]Islam S MM,GaihreY K,Islam MR,et al. Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management[J].Journal of Environmental Management,2022,307:110.
[20] Zhang W Z,Sheng R,Zhang M M,et al. Efects of continuous manureapplicationonmethanogenicandmethanotrophic communities and methane production potentials in rice paddy soil [J].Agriculture,Ecosystemsamp;Environment,2018,258:121-128.
[21]韓雪,陳寶明.增溫對土壤 N2O 和 CH4 排放的影響與微生物 機制研究進展[J].應用生態學報,2020,31(11):3906-3914.
[22]Win EP,Win KK,Belingrath-Kimura SD,et al.Influence of rice varieties,organic manure and water management on greenhouse gas emissions from paddy rice soils[J]. PLoS One,2021,16 (6) :53755.
[23]Joshi S J,Deshmukh A,Sarma H.Biotechnology for sustainable environment[M]. Singapore:Springer Singapore,2021.
[24]Gupta D K,Bhatia A,Kumar A,et al.Mitigationof greenhouse gas emission from rice-wheat system of the Indo-Gangetic Plains: throughtillage,irrigationandfertilizermanagement[J]. Agriculture,Ecosystemsamp; Environment,2016,230:1-9.
[25]Zhao X,Pu C,Ma S T,et al. Management- induced greenhouse gases emission mitigation in global rice production[J]. Science of the Total Environment,2019,649:1299-1306.
[26]謝立勇,許婧,郭李萍,等.水肥管理對稻田 CH4 排放及其全 球增溫潛勢影響的評估[J].中國生態農業學報,2017,25(7): 958 -967.
[27]余鋒,李思宇,邱園園,等.稻田甲烷排放的微生物學機理及節水 栽培對甲烷排放的影響[J].中國水稻科學,2022,36(1):1-12.
[28]Alpana S,VishwakarmaP,Adhya TK,et al.Molecular ecological perspectiveofmethanogenicarchaeal communityinrice agroecosystem[J]. Science of the Total Environment,2017,596: 136 -146.
[29]任麗娜,楊紅艷,左智,等.稻田溫室氣體排放研究概述[J]. 農業展望,2023,19(6) :93-99.
[30]Begum K,Kuhnert M,Yeluripati JB,etal.Modellng greenhouse gasemissions and mitigation potentials in fertilizedpaddy rice fields in Bangladesh[J].Geoderma,2019,341:206-215.
[31]Cheng C,HeQ,Zhang J,et al.Is the role of aerobic methanotrophs underestimated in methane oxidation under hypoxic conditions ? [J].Science of the Total Environment,2022,833 :155244.
[32]Ahmad Lone S,Malik A. Microbiomes and the global climate change[M]. Singapore:Springer Singapore,2021.
[33]Malyan SK,Bhatia A,Kumar A,et al.Methane production, oxidation and mitigation:a mechanisticunderstandingand comprehensive evaluation of influencing factors[J]. Science of the Total Environment,2016,572:874-896.
[34]夏龍龍,顏曉元,蔡祖聰.我國農田土壤溫室氣體減排和有機碳 固定的研究進展及展望[J].農業環境科學學報,2020,39(4): 834 -841.
[35]Davamani V,Parameswari E,Arulmani S. Mitigationof methane gas emissions infloodedpaddysoilthrough theutilization of methanotrophs「J].Science of the Total Environment.2020.
[36]Bandh S A. Strategizing agricultural management for climate change mitigationand adaptation[M].Cham:SpringerInternational Publishing AG,2023.
[37]Shaaban M,Khalid M S,Hu RG,et al.Effects of water regimes on soil N2O,CH4 and CO2 emissions following addition of dicyandiamide andN fertilizer[J].Environmental Research,2022,212:113544.
[38]Cheng H M,Shu K X,Zhu TY,etal.Effectsof altermateweing and drying irrigation onyield,water and nitrogen use,and greenhouse gas emissions in rice paddy fields[J].Journal of Cleaner Production,2022,349:131487.
[39]Song JY,Chen Y T,Mao Q,et al.The efect of early season rice varieties and establishment methods on greenhouse gas emissions in Southeast China[J].Cereal Research Communications,2021,49 (4) :567 -576.
[40]Ishfaq M,Faroq M,Zulfiqar U,etal.Alternate weting and drying: a water- saving and ecofriendly rice production system[J]. Agricultural Water Management,2020,241:106363.
[41]ZhangYJ,Wang WL,Li SY,etal.Integrated management approaches enabling sustainable rice production under alternate wetting and drying irrigation[J]. Agricultural Water Management, 2023,281:108265.
[42]Peyron M,Bertora C,Peliseti S,et al.Greenhouse gas emissins a affected by different watermanagementpracticesintemperaterice paddies[J].Agriculture,Ecosystemsamp; Environment,2016,232: 17-28.
[43]SanderBO,SchneiderP,RomasantaR,etal.Potential of alternate wetting and drying irrigation practices for themitigation of GHG emissions from rice fields:two cases in central Luzon (Philippines) [J].Agriculture,2020,10(8) 350.
[44]Hiya H J,AliMA,BatenM A,et al. Effect of water saving irrigation management practices on rice productivity and methane emission from paddy field[J].Journal of Geoscience and Environment Protection,2020,8(9):182-196.
[45]Li Z K,ShenY,Zhang W Y,et al. A moderate wetting and drying regimeproducesmoreand healthierricefood withless environmental risk[J].Field Crops Research,2023,298:108954.
[46]Hou DP,Wei Y,LiuK,et al.The response of grain yield and quality of water-saving and drought -resistant rice to irrigation regimes[J].Agriculture,2023,13(2) :302.
[47]Loaiza S,Verchot L,Valencia D,et al.Evaluating grenhouse gas mitigation throughalternatewettinganddryingirrgationin Colombian rice production[J].Agriculture,Ecosystemsamp; Environment,2024,360:108787.
[48]Bwire D,Saito H,Mugisha M,etal.Water productivityand harvest indexresponse of paddyrice with alterate weting and drying practice foradaptation to climate change[J].Water,2022,14 (21):3368.
[49]唐志偉,張俊,鄧艾興,等.我國稻田甲烷排放的時空特征與 減排途徑[J].中國生態農業學報(中英文),2022,30(4): 582-591. through alternate wetting and drying ina triple-cropped rice field intheMekongDelta[J].Science ofthe Total Environment,2022, 842:156958.
[51]Rassaei F. Assessing the efficacy of water management and wheat straw addition in mitigating methane emissions from rice paddy fields [J].Environmental Progress amp; Sustainable Energy,2023,42(5): e14168.
[52]LiaoB,CaiTC,WuX,etal.Acombination of organic fertilizers partially substitutionwithalternate wet and dry irrigation could further reduce greenhouse gases emission in rice field[J]. Journal of Environmental Management,2023,344:118372.
[53]Balaine N,Carrijo D R,Adviento-Borbe MA,et al. Greenhouse gases from irigated rice systems under varying severity of alternatewetting and drying irrigation[J].Soil Science Society of America Journal,2019,83(5) :1533-1541.
[54]LinquistBA,AndersMM,Adviento-Borbe M AA,et al. Reducing greenhouse gas emissions, water use,and grain arsenic levels in rice systems[J].Global Change Biology,2015,21(1): 407 -417.
[55]Carrijo D R,Lundy M E,Linquist B A. Rice yields and water use under alternate wetting and drying irigation:a meta -analysis[J]. Field Crops Research,2017,203:173 -180.
[56]Vo TBT,WassmannR,Tirol-Padre A,etal.Methane emission fromrice cultivation in different agro -ecological zones of the Mekong river delta:seasonal pattrns and emission factors for baseline water management[J].Soil Science and Plant Nutrition, 2018,64(1) :47-58.
[57]江瑜,朱相成,錢浩宇,等.水稻豐產與稻田甲烷減排協同的 研究展望[J].南京農業大學學報,2022,45(5):839-847.
[58] Raheem A,Wang T S,Huang J,et al. Leguminous green manure mitigates methane emissions in paddy field by regulating acetoclastic and hydrogenotrophic methanogens[J].European Journal of Soil Biology,2022,10810380.
[59]Lu WF,Chen W,Duan BW,etal.Methane emissions and mitigation options inirigated rice fieldsin Southeast China[J]. Nutrient Cycling in Agroecosystems,200o,58:65-73.
[60]Hang X N,Zhang X,Song C L,et al.Differences in rice yield and (204號 CH4 and N2O emissions among mechanical planting methods with straw incorporation in Jianghuai area,China[J].Soil and Tillage Research,2014,144:205-210.
[61]HaqueMM,Kim G W,KimPJ,et al.Comparison of net global warmingpotential between continuous flooding and midseason drainage in monsoon region paddy during rice cropping[J].Field Crops Research,2016,193:133-142.
[62]SimmondsMB,AndersM,Adviento-Borbe MA,etal.Seasonal methane and nitrous oxide emissions of several rice cultivars in direct- seeded systems[J]. Journal of Environmental Quality, 2015,44(1) :103-114.
[63]Takakai F,Hatakeyama K,Nishida M,et al.Effect of the longterm application of organic matter on soil carbon accumulation and Japan II.Effect of different compost applications[J]. Soil Science and Plant Nutrition,2020,66(1) :96 -105.
[64]Alberto M CR,Wassmann R,Gummert M,et al. Straw incorporated after mechanized harvesting of irrigated rice affcts net emissions of CH4 and CO2 based on eddy covariance measurements[J].Field Crops Research,2015,184:162-175.
[65]DashPK,Padhy SR,Bhattacharyya P,etal.Mitigationof grenhouse gases emisson through value -added straw amendments inrice- greengram system[J].International Journal of Environmental Science and Technology,2023,20(1) :1019 -1036.
[66]Souza R, Yin J,Calabrese S. Optimal drainage timing for mitigating methane emissions from rice paddy fields[J]. Geoderma,2021, 394:114986.
[67]Hossain MM,Islam MR.Farmers’participatory alternate weting and drying irrigation method reduces greenhouse gas emission and improves water productivityand paddy yieldin Bangladesh[J]. Water,2022,14(7) :1056.
[68]張鮮鮮,周勝,孫會峰,等.干濕交替灌溉對水稻生產和溫室 氣體減排影響研究進展[J].生態學雜志,2020,39(11): 3873 -3880.
[69]Islam S F,de Nergaard A,Sander B O,et al.Reducing greenhouse gasemisionsand grain arsenicandleadlevelswithout compromising yield inorganically producedrice[J].Agriculture, Ecosystems amp; Environment,2020,295:106922.
[70]Bertora C,Moreti B,Peyron M,et al.Carbon input management in temperate rice paddies:implications for methane emissions and crop response[J]. Italian Journal of Agronomy,2020,15(2):144-155.
[71]Mallareddy M ,ThirumalaikumarR,Balasubramanian P,etal. Maximizing water use efficiency in rice farming:a comprehensive review of innovative irrigation management technologies[J]. Water, 2023,15(10) :1802.
[72]Darzi-Naftchali A,Ritzema H,Karandish F,etal.Alternate wetting and drying for diffrent subsurface drainage systems to improve paddy yield and water productivity in Iran[J].Agricultural Water Management,2017,193:221-231.
[73]張志偉,秦曉波,樊建凌,等.干濕交替灌溉模式在湖南稻區適 用性及其甲烷減排潛力評估[J].農業工程學報,2022,38(增 刊1):232-239.
[74]Hamoud YA,Guo X P,Wang Z C,et al. Effects of irrigatin water regime,soil clay content and their combinationon growth,yield,and water use efficiency of rice grown in South China[J].International Jourmal of Agricultural and Biological Enginering,2O18,11(4): 144 -155.
[75] Kim SH,Lee JH,Lim JS,et al. Comparison of methane emissions on soil texture in Korean paddy fields[J].Journal of the Faculty of Agriculture Kyushu University,2018,63(2) :393-397.
[76]Inubushi K,Saito H,Arai H,etal.Effct ofoxidizing andreducing agents in soil on methane production in Southeast Asian paddies [J].Soil Science and Plant Nutrition,2018,64(1):84-89.
[77]PerrvHCarrin D R Duncan AHetalMid-ceason drain metal uptake in grain:evidence from on- farm studies[J]. Field Crops Research,2024,307 :109248.
[78]Smartt AD,Brye KR,Rogers C W,et al.Characterization of methane emissions from rice production on a clay soil in Arkansas [J]. Soil Science,2016,181(2):57 -67.
[79]Ariani M,HanudinE,Haryono E.The effct of contrasting soil textures on the efficiency ofalternate wetting-drying to reduce water use and global warming potential[J].Agricultural Water Management,2022,274:107970.
[80]Tirol-Padre A,Minamikawa K,TokidaT,etal.Site-specific feasibility of alternate weting and drying as a greenhouse gas mitigation option in irrigated rice fieldsin Southeast Asia:a synthesis[J]. Soil Science andPlant Nutrition,2018,64(1) :2-13.
[81]Rakshit A,Singh SK,Abhilash PC,etal.Soil science: fundamentals to recent advances[M].Singapore:Springer Singapore, 2021.
[82]Jiang MD,Xu P,Zhou W,etal.Priornitrogen fertlizationregulates CH4 emissions from rice cultivation by increasing soil carbon storage inarapeseed-rice rotation[J].Applied Soil Ecology,2020, 155:103633.
[83]Zhong Y M,Wang X P,Yang JP,etal.Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields[J].Science of the Total Environment, 2016,565:420-426.
[84]Yang T,WangMJ,Wang XD,et al.Product type,rice variety,and agronomic measures determined the efficacy of enhanced - efficiency nitrogen fertilizer on the CH4 emission and rice yields inpaddy fields:a meta-analysis[J]. Agronomy, 2022,12(10):2240 :
[85]Banger K,Tian H 2,1uC Q.Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields?[J].Global Change Biology,2012,18(10):3259-3267.
[86]Ma CL,Wu JF,LiF S. Impacts of combined water- saving irrigation and controlled-release urea on CH4 emission and its associated microbial communities and function[J]. Science of the Total Environment,2022,830:154724.
[87]Rakshit A,BiswasA,SarkarD,etal.Handbookofenergy management in agriculture[M].Singapore:Springer Nature Singapore,2023.
[88]Cao X C,Yuan L,Liu X X,et al. Benefits of controlled-release/ stable fertilizersplus biochar for rice grain yield and nitrogen utilization under alternating wetand dry irigation[J]. European Journal of Agronomy,2021,129:126338.
[89]Dong D,Li J,Ying S S,etal.Mitigationof methane emission i a rice paddy field amended with biochar-based slow-release fertilizer[J].Science of the Total Environment,2O21,792:148460.
[90]肖志祥,傅志強,徐華勤,等.雙季稻品種根際特征與甲烷排放 差異及其關系[J].環境科學,2019,40(2):904-914.
[91]Chen Y,Li SY,ZhangYJ,etal.Rice root morphological and physiological traits interactionwith rhizosphere soil and itseffcton methaneemissonsinpaddy fields[J].Soil Biologyand
[92]Jiménez JC,Pedersen O.Mitigation of greenhouse gas emissions from riceviamanipulationofkeyroot traits[J].Rice,2023,16(1):24.
[93]Li HB,Zhang HQ,YangY J,et al.Effects and oxygen-regulated mechanisms of water management on cadmium (Cd)accumulation inrice(Oryza sativa)[J].Science of the Total Environment, 2022,846:157484.
[94] Kim WJ,Bui L T,ChunJB,etal.Correlation between methane ( CH4 )emissions and root aerenchyma of rice varieties[J].Plant Breeding and Biotechnology,2018,6(4) :381-390.
[95]Fang K K,Dai W,Chen HY,etal.The effect of integrated rice frog ecosystem on rice morphological traits and methane emission from paddy fields[J].Science of the Total Environment,2021, 783;147123.
[96]Qi Z J, Guan S,Zhang Z X,et al. Effct and mechanism of root characteristics of different rice varieties on methane emissions[J]. Agronomy,2024,14(3) :595.
[97]董文軍,來永才,孟英,等.稻田生態系統溫室氣體排放影響 因素的研究進展[J].黑龍江農業科學,2015(5):145-148.
[98]JiangY,van Groenigen KJ,Huang S,et al.Higher yields and lower methane emissions with new rice cultivars[J].Global Change Biology,2017,23(11) :4728-4738.
[99]ZhangXX,Zhou S,BiJG,etal.Drought-resistance rice variety with water - saving management reduces greenhouse gas emissions frompaddieswhile maintaining riceyields[J].Agriculture, Ecosystemsamp;Environment,1,20:0592.
[100]Zhang H,Liu HL,Hou DP,et al.The efeet of integrative crop management on root growth and methane emission of paddy rice [J].The Crop Journal,2019,7(4) :444 -457.
[101]Cao H,Zhu X Q,Heijman W,et al. The impact of land transfer and farmers’knowledge of farmland protection policy on pro - environmental agricultural practices:the case of straw return to fields in Ningxia,China[J].Journal of Cleaner Production,2020, 277:123701.
[102]Xu D,Zhang Z X,Nie T Z. Effects of straw returning and water management on yield and non- CO ′2 greenhouse gas emissions in cold black soil paddies[J].Applied Ecology and Environmental Research,2023,21(5) :4099-4115.
[103]Gao HJ,Chen X,Wei JL,et al.Decomposition dynamics and changes in chemical composition of wheat straw residue under anaerobic and aerobic conditions[J].PLoS One,2016,11(7): e0158172.
[104]成臣,楊秀霞,汪建軍,等.秸稈還田條件下灌溉方式對雙季 稻產量及農田溫室氣體排放的影響[J].農業環境科學學報, 2018,37(1) :186-195.
[105]Wu XH,WangW,Xie KJ,etal.Combined effects of straw and water management on CH4 emissions fromrice fields[J]. Journal of Environmental Management,2019,231:1257-1262.
[106]杭玉浩,王強盛,許國春,等.水分管理和秸稈還田對稻麥輪作 系統溫室氣體排放的綜合效應[J].生態環境學報,2017,26 (11):1844-1855.