DOI:10.16424/j.cnki.cn32-1807/r.2025.05.016
中圖分類號(hào)]R745 [文獻(xiàn)標(biāo)志碼]A [文章編號(hào)] 1674-7887(2025)05-0482-05
Research progress on macrophage polarization in peripheral nervous regeneration*
GAO Zizhenl**,YAO Xiaomin2,ZHOU Yuxiang2,ZHANG Chi’,GONGLeilei2,YANG Pengxiang 2*** ,JIE Jing*** (1Medical SchoolofNantong UniversityJiangsu 226Ool;KeyLaboratoryofNeuroregenerationofJiangsuProvinceandMinistryofEducation,Nantong University;3Departmentof ClinicalLaboratory,AffiliatedHospital2of Nantong University)
[Abstract]Macrophagespolarizeinto M1 macrophagesand M2 macrophagesunder the stimulationof microenvironmental signals.Follwing peripheral nerve injury,M1macrophagesplayrolesintheearlyinflammatoryclearancewhileM2 macrophages participate intisserepair processs respectively.Macrophage polarization influences axonalregeneration,vascularangiogenesis,andthe expresionofneurotrophic factorsafterperipheralnerve injury.M1 macrophages initiate the regenerationprocessbyclearingcellulardebris attheinjurysiteandsecreting pro-inflammatoryfactors, while M2 macrophages promoteaxonalregeneration,angiogenesis,andShwanncellproliferationbysecretinganti-inflammatoryfactorsandneurotrophicfactors.Thisarticleexploresthemolecularmechanismsof macrophagepolarizationanditspotentialapplicationsin thetreatmentofperipheralnerveinjuries,providingatheoreticalbasisforfutureimmunetherapystrategiesbasedon macrophage polarization.
[Key words]macrophage polarization; peripheral nerve injury;M1/M2 phenotype; immune regulation; nerve repair
周圍神經(jīng)損傷(peripheral nerve injury,PNI)是臨床上常見的創(chuàng)傷性疾病,嚴(yán)重的神經(jīng)損傷極大影響了患者生活質(zhì)量,甚至導(dǎo)致患側(cè)肢體感覺障礙和運(yùn)動(dòng)失能。外周神經(jīng)系統(tǒng)相較于中樞神經(jīng)系統(tǒng)有良好的再生能力,研究2表明巨噬細(xì)胞極化在周圍神經(jīng)再生中發(fā)揮關(guān)鍵作用。周圍神經(jīng)再生能力基于復(fù)雜的組織微環(huán)境的構(gòu)建,其中巨噬細(xì)胞極化通過(guò)整合免疫、代謝與神經(jīng)信號(hào),構(gòu)建了損傷后再生的多維調(diào)控網(wǎng)絡(luò)。巨噬細(xì)胞極化可分為經(jīng)典激活的M1型和旁路途徑激活的M2型,M1型巨噬細(xì)胞具有強(qiáng)烈的促炎和抗病原功能,而M2型巨噬細(xì)胞則有助于免疫調(diào)節(jié)和組織修復(fù)。近年來(lái),巨噬細(xì)胞極化在PNI的免疫治療策略研究中越來(lái)越受到重視,因此本文就巨噬細(xì)胞極化及其在周圍神經(jīng)軸突再生、損傷部位血管新生和神經(jīng)營(yíng)養(yǎng)因子(neurotrophin,NT)研究的進(jìn)展進(jìn)行綜述。
1巨噬細(xì)胞極化概述
巨噬細(xì)胞在體內(nèi)廣泛存在,是免疫系統(tǒng)的重要組成部分,具有遷移和吞噬的能力,對(duì)維持體內(nèi)穩(wěn)態(tài)和抵抗病原體的入侵起關(guān)鍵作用。巨噬細(xì)胞在微環(huán)境信號(hào)刺激下經(jīng)歷極化過(guò)程,分化為具有不同功能表型的巨噬細(xì)胞亞型。M1型巨噬細(xì)胞由輔助性T細(xì)胞(Thelpercell,Th)1細(xì)胞因子或病原相關(guān)分子激活,清除病原體并啟動(dòng)炎癥反應(yīng)。而M2型巨噬細(xì)胞由Th2細(xì)胞因子或抗炎信號(hào)誘導(dǎo),參與組織修復(fù)、血管生成和免疫調(diào)節(jié)。極化過(guò)程具有時(shí)空動(dòng)態(tài)性,損傷早期巨噬細(xì)胞以M1極化主導(dǎo)以清除壞死組織,后期M2極化增強(qiáng)以促進(jìn)再生。兩者的平衡對(duì)疾病轉(zhuǎn)歸至關(guān)重要:M1型過(guò)度活化可能導(dǎo)致慢性炎癥,而M2型功能缺陷則延緩修復(fù)。
1.1M1型巨噬細(xì)胞的作用及機(jī)制M1型巨噬細(xì)胞主要由Th1細(xì)胞因子 ?TNF-α 或細(xì)菌脂多糖(lipopolysaccharide,LPS)激活。LPS結(jié)合Toll樣受體4觸發(fā)髓樣分化因子88(myeloid differentiation primaryresponse88,MyD88)依賴的 NF-κB 信號(hào)通路,提高促炎因子IL-1β、IL-6、TNF- σ?α∝ 等的表達(dá)。 IFN-γ 則通過(guò)JAK-STAT1通路增強(qiáng)干擾素調(diào)節(jié)因子5(inter-feronregulatoryfactor5,IRF5)等轉(zhuǎn)錄因子的活性,進(jìn)一步激活I(lǐng)L-12等促炎因子的表達(dá)。粒細(xì)胞-巨噬細(xì)胞集落刺激因子與TNF- σ?α 和IL-12 等細(xì)胞因子協(xié)同促進(jìn)巨噬細(xì)胞向M1型極化。此外, NF-κB 介導(dǎo)的細(xì)胞間黏附分子-1和血管細(xì)胞黏附分子-1上調(diào)可抑制M2極化,進(jìn)一步維持M1的促炎特性。M1型巨噬細(xì)胞分泌高水平的促炎因子(如TNF- σ?α?α?α IL-6、IL-12 和IL-23)和低水平的抑炎因子IL-10,并通過(guò)誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)產(chǎn)生一氧化氮(nitricoxide,NO)和活性氧(reac-tiveoxygenspecies,ROS)直接殺傷病原體。此外,M1型巨噬細(xì)胞主要激活分解代謝途徑,產(chǎn)生大量NO和ROS,增強(qiáng)其組織氧化能力8。傳統(tǒng)觀點(diǎn)認(rèn)為M1型巨噬細(xì)胞過(guò)度激活會(huì)加劇炎癥損傷,但新近研究[揭示了其激活神經(jīng)元再生潛能的新機(jī)制。M1型巨噬細(xì)胞在LPS刺激下分泌含NADPH氧化酶2復(fù)合物的外泌體,催化ROS的生成,氧化修飾磷酸酶與張力蛋白同源蛋白(PTEN)使其失活,進(jìn)而激活下游促生存與再生信號(hào),促進(jìn)軸突延伸與突觸重塑[0。這些結(jié)果表明M1型巨噬細(xì)胞可能通過(guò)調(diào)控外泌體影響周圍神經(jīng)再生。然而結(jié)合代謝調(diào)控、外泌體工程化及多靶點(diǎn)干預(yù)等促進(jìn)周圍神經(jīng)再生的策略仍需進(jìn)一步探索[1-14]
1.2M2型巨噬細(xì)胞的作用及機(jī)制M2型巨噬細(xì)胞主要通過(guò)Th2細(xì)胞因子IL-4和IL-13激活。IL-4和IL-13結(jié)合IL-4受體后激活JAK-STAT6信號(hào)通路,誘導(dǎo)精氨酸酶-1(arginase-1,Arg-1)、甘露糖受體(mannose receptor,CD206)等 M2標(biāo)志物的表達(dá)。此外,IL-10通過(guò)結(jié)合IL-10受體激活STAT3調(diào)控M2極化,進(jìn)一步抑制TNF- ??a,IL-12 等促炎因子的分泌并增強(qiáng)TGF- ?{β 等抗炎因子的分泌[15]。特別是IL-1家族成員IL-33通過(guò)結(jié)合ST2L/IL-1RAcP復(fù)合物激活MAPK、NF- ??κB 和鞘氨醇激酶通路,不僅誘導(dǎo)IL-4、IL-13等Th2細(xì)胞因子分泌,還能直接增強(qiáng)IL-13對(duì)M2極化的作用,上調(diào)Arg-1和趨化因子,放大抗炎和組織修復(fù)功能。
M2 型巨噬細(xì)胞可分為 M2a,M2b,M2c 和M2d四類亞型。 M2a 主要由IL-4和IL-13誘導(dǎo),高表達(dá)CD206和 Arg-1 ,分泌趨化因子,主導(dǎo)Th2免疫反應(yīng)并參與組織重塑。免疫復(fù)合物由 Fcγ 受體家族識(shí)別,通過(guò)ToII樣受體IL-1R誘導(dǎo)M2b亞型,其表面高表達(dá)主要組織相容性復(fù)合體I和CD86,通過(guò)分泌IL-10、IL-6和TNF- σ?∝ 等因子進(jìn)行免疫調(diào)節(jié)[7]。M2c型巨噬細(xì)胞又稱失活型巨噬細(xì)胞,其表面高表達(dá)信號(hào)淋巴細(xì)胞激活分子(signaling lymphocytic activationmolecule,SLAM)和血紅蛋白清道夫受體(hemoglobinscavenger receptor, CD163),分泌 IL-10 和 TGF- ?{β ,可促進(jìn)免疫耐受參與腫瘤微環(huán)境中的免疫逃逸[8。腺昔通過(guò)TLR誘導(dǎo)M2d亞型,分泌血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)、IL-10,低表達(dá)IL-12,促進(jìn)血管生成,與腫瘤相關(guān)巨噬細(xì)胞(tumor-associated macrophages,TAMs)表型相似,具有促進(jìn)腫瘤生長(zhǎng)的功能。M2型巨噬細(xì)胞主要參與傷口愈合和組織修復(fù)。該生物學(xué)過(guò)程需要持續(xù)的能量供應(yīng),而脂肪酸氧化是M2型巨噬細(xì)胞最重要的代謝途徑,為其抗炎和組織修復(fù)功能提供能量支持。同時(shí),M2型巨噬細(xì)胞高表達(dá)Arg-1,通過(guò)催化Arg-1分解生成多胺,促進(jìn)膠原合成、細(xì)胞增殖和組織重塑,在纖維化和傷口愈合中發(fā)揮關(guān)鍵作用。這一代謝特征使M2型巨噬細(xì)胞在慢性炎癥、組織修復(fù)和腫瘤微環(huán)境中具有重要功能。M2型巨噬細(xì)胞分泌多種細(xì)胞因子和生長(zhǎng)因子,參與神經(jīng)損傷微環(huán)境的免疫調(diào)節(jié),促進(jìn)周圍神經(jīng)再生能力的構(gòu)建20]。
2巨噬細(xì)胞極化與周圍神經(jīng)再生
巨噬細(xì)胞作為機(jī)體重要的免疫細(xì)胞,具有高度的可塑性,可以在特定時(shí)間和環(huán)境中不斷調(diào)整自身功能。巨噬細(xì)胞極化涉及復(fù)雜的分子機(jī)制,調(diào)控巨噬細(xì)胞極化在周圍神經(jīng)再生中的潛力受到越來(lái)越多的關(guān)注。在神經(jīng)損傷早期,M1型巨噬細(xì)胞占主導(dǎo),分泌相關(guān)細(xì)胞因子,招募更多的單核細(xì)胞并激活周圍神經(jīng)的再生潛力;M2型巨噬細(xì)胞主要在損傷修復(fù)期起作用。M2型巨噬細(xì)胞多數(shù)來(lái)源于先前形成的單核細(xì)胞庫(kù),誘導(dǎo)血管形成并提供營(yíng)養(yǎng)物質(zhì),促進(jìn)施萬(wàn)細(xì)胞的遷移和增殖,通過(guò)塑造有利于再生的微環(huán)境介導(dǎo)激活軸突再生和髓鞘形成。深入研究巨噬細(xì)胞極化的分子代謝機(jī)制和表觀遺傳調(diào)控有望加深對(duì)周圍神經(jīng)再生機(jī)制的理解。
2.1巨噬細(xì)胞極化對(duì)施萬(wàn)細(xì)胞活化和軸突再生的影響巨噬細(xì)胞是瓦勒變性(Walleriandegeneration,WD)過(guò)程中的關(guān)鍵細(xì)胞,對(duì)再生微環(huán)境的構(gòu)建起重要作用[2]。PNI早期,施萬(wàn)細(xì)胞分泌趨化因子CCL2作用于巨噬細(xì)胞CCR2形成巨噬細(xì)胞池[22。施萬(wàn)細(xì)胞釋放髓鞘碎片,經(jīng)歷去分化過(guò)程,這些細(xì)胞殘骸能夠促進(jìn)巨噬細(xì)胞向M1型極化,且能誘導(dǎo)M2型轉(zhuǎn)化為M1型[23]。M1型巨噬細(xì)胞分泌促炎因子并清理?yè)p傷微環(huán)境。研究24表明,巨噬細(xì)胞通過(guò)上調(diào)軸突引導(dǎo)分子Plexin-B2介導(dǎo)的物理接觸機(jī)制重組細(xì)胞外基質(zhì),引導(dǎo)再生軸突頂端的生長(zhǎng)錐的定向延伸。隨著時(shí)間推移,巨噬細(xì)胞會(huì)從M1型向M2型轉(zhuǎn)化,增強(qiáng)M2型是促進(jìn)周圍神經(jīng)再生的常見策略。在中性 pH 下,巨噬細(xì)胞分泌的組織蛋白酶S可水解成纖維細(xì)胞表面的Ephrin-B2蛋白,釋放其胞外段,作為配體激活施萬(wàn)細(xì)胞的EphB2受體。通過(guò)這種直接接觸式信號(hào)傳導(dǎo),施萬(wàn)細(xì)胞轉(zhuǎn)化為高表達(dá) c-Jun 的修復(fù)表型[25]。EphB2信號(hào)通路誘導(dǎo)施萬(wàn)細(xì)胞的定向集體遷移和增殖,促進(jìn)周圍神經(jīng)在損傷部位的再生。M2型巨噬細(xì)胞與修復(fù)表型的施萬(wàn)細(xì)胞之間的細(xì)胞通信有助于促進(jìn)PNI后長(zhǎng)期和有效的軸突再生2。
2.2巨噬細(xì)胞極化對(duì)血管新生的影響新生血管是長(zhǎng)距離周圍神經(jīng)再生的關(guān)鍵。新生成的血管作為“橋\"引導(dǎo)軸突再生,為施萬(wàn)細(xì)胞的增殖、遷移及軸突的生長(zhǎng)提供適宜的微環(huán)境,是影響神經(jīng)再生和功能恢復(fù)的重要因素27。血管新生是一個(gè)多步驟的連續(xù)過(guò)程,血管重建的第一階段對(duì)應(yīng)于巨噬細(xì)胞的募集和WD產(chǎn)生的髓鞘碎片的清除,而第二階段對(duì)應(yīng)于神經(jīng)再生后期的施萬(wàn)細(xì)胞增殖、軸突延伸和髓鞘形成。VEGF是PNI部位血管新生所必需的血管生長(zhǎng)因子,研究2表明巨噬細(xì)胞選擇性應(yīng)答損傷部位兩端的缺氧環(huán)境,浸潤(rùn)到遠(yuǎn)端神經(jīng)刺激神經(jīng)再生并分泌VEGF促進(jìn)血管新生,巨噬細(xì)胞來(lái)源的VEGF是神經(jīng)再生后斷端神經(jīng)肌肉連接點(diǎn)建立再支配的關(guān)鍵影響因素,這可能與新生成的血管被施萬(wàn)細(xì)胞作為再生神經(jīng)的引導(dǎo)路徑有關(guān)。M2型巨噬細(xì)胞分泌VEGF、成纖維細(xì)胞生長(zhǎng)因子-2(fibroblast growth factor-2,F(xiàn)GF-2)和TGF- ?β 等具有誘導(dǎo)血管再生作用的生長(zhǎng)因子[29]。這些結(jié)果也表明,M1型和M2型巨噬細(xì)胞在PNI的不同階段發(fā)揮著不同的作用,M1型巨噬細(xì)胞在促進(jìn)血管化的早期階段活躍,促進(jìn)內(nèi)皮細(xì)胞出芽,而M2型巨噬細(xì)胞影響血管化和血管成熟的后期階段。因此,調(diào)控巨噬細(xì)胞極化有望為周圍神經(jīng)再生進(jìn)程中血管新生提供新的策略。
2.3巨噬細(xì)胞極化對(duì)NT的影響NT促進(jìn)周圍神經(jīng)再生的機(jī)制已有許多研究3闡明。巨噬細(xì)胞可以釋放多種不同類型的IVT和生長(zhǎng)因子,研究數(shù)據(jù)[3]顯示,在周圍神經(jīng)再生過(guò)程中,M1型巨噬細(xì)胞內(nèi)腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic factor,BDNF的表達(dá)水平較高,而M2型巨噬細(xì)胞內(nèi)胰島素樣生長(zhǎng)因子1(insulin-like growth factor 1,IGF1) 胰島素樣生長(zhǎng)因子 2(insulin-like growth factor 2,IGF2)和肝細(xì)胞生長(zhǎng)因子(hepatocyte growth factor,HGF)的表達(dá)水平較高,且均高于M1型巨噬細(xì)胞。與損傷處巨噬細(xì)胞的增多相協(xié)調(diào),神經(jīng)生長(zhǎng)因子(nervegrowthfactor,NGF)BDNF、NT-3和NT-4/5等是在再生過(guò)程中起關(guān)鍵作用的NT,于損傷處顯著上調(diào)[32。M1型巨噬細(xì)胞在神經(jīng)損傷和修復(fù)早期占主導(dǎo)地位,在清除損傷部位細(xì)胞碎片的同時(shí),分泌少量NT。此外,分泌的細(xì)胞因子IL-1可以刺激施萬(wàn)細(xì)胞合成和分泌NGF和FGF-2等NT。M2型巨噬細(xì)胞通過(guò)分泌抗炎因子和大量NT,直接促進(jìn)軸突再生、施萬(wàn)細(xì)胞增殖及髓鞘形成。NT與抗炎因子協(xié)同作用,抑制炎癥過(guò)度反應(yīng)并減少膠質(zhì)瘢痕形成,為受損周圍神經(jīng)的再生提供了良好的再生微環(huán)境。如IGF1可以促進(jìn)施萬(wàn)細(xì)胞遷移和增殖,加速神經(jīng)纖維的髓鞘再生。NGF和GDNF可以激活PI3K/Akt、MAPK等刺激軸突生長(zhǎng)的信號(hào)通路,引導(dǎo)軸突向靶組織延伸[33]。
3總結(jié)與展望
綜上所述,巨噬細(xì)胞作為免疫系統(tǒng)中的關(guān)鍵角色,在調(diào)控周圍神經(jīng)再生過(guò)程中起著重要作用。巨噬細(xì)胞可極化為M1和M2型,深入探究巨噬細(xì)胞極化的詳細(xì)機(jī)制以精準(zhǔn)調(diào)控其功能有望為周圍神經(jīng)再生提供新思路,為臨床運(yùn)用基于巨噬細(xì)胞極化的周圍神經(jīng)再生免疫療法提供理論基礎(chǔ)。
[參考文獻(xiàn)]
[1] MODRAKM,HASSANTALUKDERMA,GURGENASHVILI K,etal. Peripheral nerve injury and myelination: potential therapeutic strategies[J].JNeurosci Res,2O20,98 (5):780-795.
[2] LOPESB,SOUSA P,ALVITESR,etal.Peripheral nerve injury treatments and advances:one health perspective[J]. Int JMol Sci,2022,23(2):918.
[3] DERVAN A,F(xiàn)RANCHI A,ALMEIDA-GONZALEZFR, et al.Biomaterial and therapeutic approaches for the manipulation of macrophage phenotype in peripheral and central nerve repair[J]. Pharmaceutics, 2021,13(12):2161.
[4]ROSS E A, DEVITT A, JOHNSON JR. Macrophages: the good,the bad,and the gluttony[J].Front Immunol,2021,12: 708186.
[5]TOMLINSON JE, ZYGELYTE E, GRENIER J K, et al. Temporal changes in macrophage phenotype after peripheral nerve injury[J].JNeuroinflammation,2O18,15(1):185.
[6]OWEN A M,LUAN L M, BURELBACH K R,et al. MyD88- dependent signaling drives toll-like receptor-induced trained immunity inmacrophages[J.FrontImmunol,222,13:14662
[7]LINY H,WANG Y H,PENG YJ,et al.Interleukin 26 skews macrophage polarization towards M1 phenotype by activating cJUN and the NF-kB pathway[J]. Cells,2020,9 (4):938.
[8]LIU P S, CHEN Y T,LI X Y, et al. CD4O signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions[J]. Nat Immunol,2023, 24(3):452-462.
[9]WANG Y F, ZHOU Y F,LIU JH,et al. Temporal and spatial expression of Phosphodiesterase-4B after sciatic nerve compression in rats and its mechanism of action on sciatic nerve repair[J]. Neurochem Int,2025,185:105940.
[10]HERVERA A,DE VIRGILIS F, PALMISANO I, et al. Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injuredaxons[J].Nat CellBiol,218,20(3):30 319.
[11]BI S W,HEC Y, ZHOU Y N,et al. Versatile conductive hydrogel orchestrating neuro-immune microenvironment for rapid diabetic wound healing through peripheral nerve regeneration[J]. Biomaterials, 2025,314:122841.
[12]YANG L,LIU S J, HE Y,et al. Exosomes regulate SIRT3- related autophagy by delivering miR-421 to regulate macrophage polarization and participate in OSA-related NAFLD[J]. J Transl Med, 2024,22(1):475.
[13]ZHANG J, LIU X Q, WAN C Y, et al. NLRP3 inflammasome mediates M1 macrophage polarization and IL- ?1β production in inflammatory root resorption[J].JClin Periodontol,2020,47(4):451-460.
[14]JACOBI A,TRAN N M, YAN W J, et al. Overlapping transcriptional programs promote survival and axonal regenerationof injured retinal ganglion cells[J]. Neuron, 2022,110 (16):2625-2645.e7.
[15]WEISSER S B,MCLARREN K W, KURODA E,et al. Generation and characterization of murine alternatively activated macrophages[J].Methods Mol Biol,2013,946: 225-239.
[16]YANG Y E,HU MH, ZENG Y C,et al. IL-33/NF-kB/ST2L/ Rab37 positive -feedback loop promotes M2 macrophage to limit chemotherapeutic efficacy in lung cancer[J].Cell Death Dis,2024,15(5):356.
[17]WANG L X, ZHANG S X, WU H J, et al. M2b macrophage polarization and its roles in diseases[J]. JLeukoc Biol,2019, 106(2):345-358.
[18]LIU Y, XUE M T, HAN Y G,et al. Exosomes from M2c macrophages alleviate intervertebral disc degeneration by promoting synthesis of the extracellular matrix via miR-124/ CILP/TGF-β[J]. Bioeng Transl Med,2023,8(6):e10500.
[19]HUANG X, LI Y,F(xiàn)U M G, et al. Polarizing macrophages in vitro[J]. Methods Mol Biol,2018,1784:119-126.
[20]YANG P X, PENG Y,DAI X,et al.Bionic peptide scaffoldinsitupolarizationandrecruitment ofM2 macrophages to promote peripheral nerve regeneration[J]. Bioact Mater,2023,30:85-97.
[21]LI L X, XU Y Z, WANG X H,et al Ascorbic acid accelerates Wallerian degeneration after peripheral nerve injury[J].Neural Regen Res,2021,16(6):1078-1085.
[22]NIEMI J P, DEFRANCESCO-LISOWITZ A, CREGG J M, et al.Overexpression of the monocyte chemokine CCL2 in dorsal root ganglion neurons causes a conditioning-like increase in neurite out growth and does so via a STAT3 dependent mechanism[J]. Exp Neurol, 2016, 275(1):25-37.
[23]WANG X, CAO K, SUN X, et al. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris[J]. Glia,2015, 63(4):635-651.
[24]LI Y H, KANG S,HALAWANI D,et al. Macrophages facilitate peripheral nerve regeneration by organizing regeneration tracks through Plexin-B2[J]. Genes Dev,2022,36 (3/4):133-148.
[25]JESSEN KR, MIRSKY R. The role of c-Jun and autocrine signaling loops in the control of repair Schwann cells and regeneration[J]. Front Cell Neurosci, 2022,15:820216.
[26]OSHIMA E, HAYASHI Y, XIE Z, et al. M2 macrophagederived cathepsin S promotes peripheral nerve regeneration via fibroblast-Schwann cell-signaling relay[J]. JNeuroinflammation,2023,20(1):258.
[27]SAFFARI T M, BEDAR M, HUNDEPOOL C A, et al. The role of vascularization in nerve regeneration of nerve graf[J]. Neural Regen Res, 2020,15(9):1573-1579.
[28]LU C Y, SANTOSA K B, JABLONKA-SHARIFF A, et al. Macrophage-derived vascular endothelial growth factor-a isintegral to neuromuscular junction reinnervation after nerve injury[J]. J Neurosci, 2020, 40(50):9602-9616.
[29]DING Z H, JIANG MR, QIAN J X, et al. Role of transforming growth factor- β in peripheral nerve regeneration[J]. Neural Regen Res, 2024,19(2):380-386.
南通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2025年5期