DOI:10.16424/j.cnki.cn32-1807/r.2025.05.020
[中圖分類號]R34 [文獻標志碼]A [文章編號] 1674-7887(2025)05-0502-04
Biological functionsand disease relevance of heat shock protein family H1*
JI Yuelong**,YU Guangdong,YUAN Conghu*** (Department of Anesthesiology, Affiliated Hospital 6 of Nantong University, the Yancheng Third People's Hospital, Jiangsu )
[Abstract]Theheatshock proteinfamilyH1(HSPH1)isamolecularchaperonethatplaysakeyprotectiveroleincels,particularlyinresponse toenvironmentalstressandinmaintaining protein homeostasis.Inrecentyears,theHSPH1proteinhas atractedmuchetinfoisprgresinrietyfseassspeiallyceurodegeetieisasdadios cular diseases.Incancerresearch,HSPH1 has been found to promote the growth and survival of tumorcels.In neurodegenerative diseases,HSPH1has been show to preventthe acumulationof misfolded proteins,which isamajorpathological featureof diseasessuchasParkinson’sdisease.Inaddition,HSPH1playsan important protectiveroleincardiovasculardisease. Inthefuture,we shouldcontinue to studythe mechanismandfunctionof HSPH1indepth to provide asmanynew strategies as possible for the treatment of various diseases.
[Key Words]heat shock protein familyH1;cancer; neurodegenerativedisease;cardiovasculardisease;treatmentstrategy
熱休克蛋白家族 H1(heat shock protein family H1,HSPH1)是熱休克蛋白家族H(HSP110)的成員之一,也被稱為HSP105。它屬于HSP70超家族,具有分子伴侶和細胞保護功能,HSPH1具有抗聚集能力,并與HSP70協同促進蛋白質的重折疊,有助于維持細胞內蛋白質的穩態2。在面對不同的應激情況時,HSPH1的表達會被誘導,通過其抗凋亡功能幫助細胞在壓力環境下生存。HSPH1蛋白在細胞內參與多種生物學過程,如蛋白質折疊、轉運、修復和降解等,對細胞的穩態維持和應激響應具有重要作用4。深入了解HSPH1在疾病發生和發展中的作用機制,有助于揭示疾病的病理生理過程,為不同疾病的治療提供新的靶點和策略,同時也有助于深人了解這種分子伴侶蛋白在生理和病理過程中的作用,為相關疾病的診斷和治療提供新的線索和方向。
1HSPH1概述及生物學功能
1.1HSPH1概述HSPH1蛋白家族是指一組與HSPH1具有相似結構或功能的蛋白質,通常被歸類為HSP家族的一部分,與其他HSP家族蛋白密切相關。這些家族成員的結構特征包括保守的HSP結構域,如N-末端的ATP結合結構域和C-末端的熱休克結構域,而功能特點則包括對蛋白質折疊、組裝和解聚等過程的調節,以及在應激條件下對細胞的保護作用。在細胞內,HSPH1主要定位于細胞質,但也可能在細胞核和其他細胞亞結構中發揮作用,通常分布于胞質中的不同亞區,如胞質基質、細胞器和細胞骨架等。HSPH1蛋白在細胞內的定位受到多種因素的影響,主要包括其自身的信號序列、細胞內的轉運機制以及與其他蛋白質的相互作用。HSPH1包含ATP結合結構域和熱休克結構域,前者通過結合和水解ATP調節其活性,后者則在蛋白質的折疊、組裝和解聚中起關鍵作用。結構特征與功能之間存在著密切的聯系,HSPH1蛋白的結構特征決定了其在細胞內的定位和功能表現,進而影響著細胞的生物學過程和應激響應。
1.2HSPH1的生物學功能HSPH1蛋白在生物學中扮演著重要角色。首先,HSPH1參與調節蛋白質折疊和組裝過程,作為分子伴侶蛋白,它能與未正確折疊或失活的蛋白結合并協助其正確折疊或重新組裝,維護細胞內蛋白質的結構和功能穩定。其次,HSPH1在應激條件下發揮重要作用,例如在熱休克反應中,其表達水平會顯著上調以應對環境壓力,從而保護細胞免受損害。此外,HSPH1也參與調控細胞的生存和凋亡過程,在應激條件下,HSPH1的抗凋亡功能可以通過多種途徑抑制細胞凋亡,維持細胞的存活。最后,HSPH1同樣與其他細胞信號通路密切相關,如 Wnt 信號通路[12]和 NF-κB 信號通路[13],通過與這些信號通路的相互作用和調控,HSPH1可以影響細胞的增殖、轉移和炎癥反應等生物學過程,因此,HSPH1的生物學功能及其作用機制對于細胞內穩態的維持和應激響應具有重要意義。
2 HSPH1與疾病
2.1HSPH1與癌癥癌癥是一種嚴重威脅人類健康的疾病,HSPH1蛋白在癌癥中的作用引起了廣泛關注[14。HSPH1蛋白在腫瘤細胞中的表達水平通常較高,且與腫瘤的侵襲5]轉移[耐藥和免疫逃逸等密切相關。HSPH1蛋白通過與多種蛋白質相互作用,調控多種癌癥相關信號通路,如細胞周期[18凋亡[9]乳酸化2%血管生成[2和DNA甲基化[22等,從而對癌癥的發生和發展產生影響。HSPH1是一種分子伴侶,通過與HSP70結合,參與新產生或錯誤折疊的蛋白質的正確折疊,從而阻止蛋白質聚集[23]。HSPH1可由多種應激因子誘導,調節多種炎癥相關信號通路以維持腫瘤細胞存活[24]。在大B細胞淋巴瘤中,HSPH1通過穩定MyD88激活 NF-κB 信號通路[3]。在結腸癌中,HSPH1異常高表達,能通過其抗凋亡和伴侶功能幫助癌細胞抵抗壓力。HSPH1通過直接結合并促進JAK2對STAT3的磷酸化,從而增強結腸癌細胞的增殖2。索拉非尼通過調控轉錄因子ATF2及其下游的HSPH1,誘導胃癌細胞發生鐵死亡。HSPH1通過穩定胱氨酸/谷氨酸轉運體SLC7A11,從而促進鐵死亡的發生,對腫瘤治療產生積極影響[4。在前列腺癌中,HSPH1既是外泌體相關基因,又是參與T細胞應激反應的HSP。它能通過IL2-MYC-IL2RA途徑促進 CD8+T 細胞在腫瘤區域的富集,但與免疫檢查點阻斷的負面應答有關。YTHDF1通過調節下游靶標HSPH1的翻譯,在環境致癌物誘導的胃癌發生中起關鍵作用。敲低HSPH1會削弱胃癌細胞的惡性潛能,表明其在胃癌發生發展中至關重要[2。在乳腺癌MCF7細胞中,HSPA1及其輔因子HSPH1和DNAJB1的選擇性上調,能通過促進核糖體降解和維持新合成蛋白的可溶性來增強細胞的耐熱性。
HSPH1在大腸癌中被發現可促進M2樣巨噬細胞的形成,這些巨噬細胞通常與免疫抑制和腫瘤耐受性相關聯,因而可通過抑制HSPH1來干預腫瘤免疫環境和促進免疫治療效果。HSP在腫瘤發生中的主要作用涉及到突變或異常表達的腫瘤相關基因的功能穩定,高表達的HSPH1是許多癌癥的標志。此外,HSPH1從癌細胞中釋放出來,通過受體介導的信號影響其性質和功能,研究2表明HSPH1在黑色素瘤中過表達。HSPH1在頭頸部鱗狀細胞癌組織中的表達明顯高于正常組織,其表達與頭頸部鱗狀細胞癌患者的腫瘤分期有顯著相關性,且HSPH1高表達與頭頸部鱗狀細胞癌患者的低總生存期相關。由于HSPH1在多種腫瘤中的重要作用,因而被視為潛在的治療靶點,為腫瘤治療提供了新的策略和可能性。
2.2HSPH1與神經系統疾病HSP110在大腦表達的水平最高,且在不同腦區表達不同,多數腦區(如大腦皮層、海馬等)的神經元中含量豐富,但在小腦中卻極少,且主要存在于浦肯野細胞中。這種差異表達模式可能與涉及小腦后遺癥的神經病理過程相關[28。HSPH1可能通過影響蛋白質折疊和解聚,調節神經元對HIV感染引起的神經毒性反應,從而成為治療HIV相關神經認知障礙的潛在靶點[29]。在帕金森病研究中,HSPH1能有效減少 ∝ -突觸核蛋白的聚集,因此被認為在預防和治療該疾病方面具有潛在的價值bo]。多發性硬化癥(multiple sclerosis,MS)研究3中發現少量的HSP過表達可以保護細胞免受應激,但極端上調可能會促進MS的發病機制。亨廷頓舞蹈病研究[32發現SPH1通過與HSC70 和J-pro-tein協同作用形成復合物,能有效抑制并分解變異蛋白的聚合,因此被視為治療神經退行性疾病的潛在靶點。
2.3HSPH1與心血管疾病研究3發現,阿片類藥物持久預處理后通過抑制包括HSPH1在內的HSP基因表達,進而減少炎癥和細胞應激反應,從而對缺血再灌注損傷心肌起到保護作用。HSPH1在阿霉素誘導的慢性心肌毒性中起重要作用,HSPH1作為一個關鍵的中心基因,表現出顯著的上調。HSPH1與血管內皮生長因子A呈正相關,兩者共同參與擴張型心肌病和全身性心力衰竭的病理過程,提示它們在慢性心肌損傷中的關鍵作用[34。HSPH1蛋白在心血管疾病中的作用和臨床應用仍存在許多未知,其具體分子機制(如何抑制細胞凋亡和減輕應激)尚不明確,信號通路調控機制也需深入研究。未來研究需聚焦于揭示其作用機制和遺傳調控,以期為心血管疾病提供新的診療靶點。
2.4HSPH1與其他疾病HSPH1與其他疾病的潛在關聯是當前研究的焦點之一。在免疫系統疾病中,營養不良時HSPH1的表達與免疫抑制和免疫激活分子的表達相關,可能通過下調中性粒細胞、IL-17信號通路和自然殺傷細胞的活性,促進利什曼病的發展(35]。在四氧嘧啶(alloxan,ALX)和鏈脲佐菌素(strep-tozotocin,STZ)處理大鼠胰島的研究[3中,HSPH1基因顯著上調,表明ALX治療通過引發內質網應激對β 細胞造成損傷,參與內在線粒體介導的細胞凋亡通路基因在ALX和STZ處理后上調,HSP基因的表達變化可能與此相關。在急性肺損傷(acute lung injury,ALI)中,HSPH1高度表達,IL-1β/KLF2/HSPH1通路的激活可以促進肺泡巨噬細胞中STAT3的磷酸化,從而加重ALI的肺部炎癥[3。HSPH1蛋白在炎癥、神經退行性以及感染性等多種疾病中都具有潛在作用。未來的研究將致力于探索其在這些疾病中的具體作用機制和表達模式,從而為疾病的診斷和治療提供新的靶點和方向。
3小結與展望
HSPH1作為一種關鍵的分子伴侶蛋白,在癌癥、神經退行性疾病和心血管疾病中顯示出重要作用,目前對HSPH1的功能、結構與功能關系以及臨床應用的研究仍處于早期階段,需更多深入研究和臨床驗證。未來研究方向主要集中在全面解析HSPH1在各疾病中的具體生物學功能和調控網絡,將其作為潛在的藥物靶點,開發新型療法并進行臨床驗證。
[參考又獻]
[1]LI Y K, ZHANG N S, ZHANG L, et al. Oncogene HSPH1 modulated by the rs2280o59 genetic variant diminishes EGFR-TKIs eficiency in advanced lung adenocarcinoma[J]. Carcinogenesis, 2020, 41(9):1195-1202.
[2]ROBICHAUD S, FAIRMAN G, VIJITHAKUMAR V, et al. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells[J]. Autophagy,2021,17(11):3671-3689.
[3]WU XR,ZHU Y J,HU C,et al.Extracellular vesicles related gene HSPH1 exerts anti-tumor efects in prostate cancer via promoting the stress response of CD8 + T cells[J]. Cell Oncol(Dordr), 2024,47(3):1059-1064.
[4]REHMAN S U,NADEEM A,JAVED M, et al. Genomic identification,evolution and sequence analysis of the heatshock protein gene family in buffalo[J]. Genes,2020,11(11): 1388.
[5]TIAN G Y,HU C,YUN Y,et al.Dual roles of HSP70 chaperone HSPA1 in quality control of nascent and newly synthesized proteins[J]. EMBO J,2021,40(13):e106183.
[6]FAN G R, TU YQ, WU N, et al. The expression profiles and prognostic values of HSPs family members in Head and neck cancer[J]. Cancer Cell Int, 2020,20:220.
[7]VANMUYLDER N, EVRARD L, DAELEMANS P, et al. Chaperones in the parotid gland: localization of heat shock proteins in human adult salivary glands[J]. Cels Tissues Organs,2000,167(2/3):199-205.
[8]DEANE C A S, BROWN IR. Intracellular targeting of heat shock proteins in differentiated human neuronal cells following proteotoxic stress[J].JAlzheimers Dis,2018, 66(3): 1295-1308.
[9]MARCION G, HERMETET F,NEIERS F,et al. Nanofitins targeting heat shock protein 11O: an innovative immunotherapeutic modality in cancer[J]. Int JCancer,2O21,148(12): 3019-3031.
[10]MARRERO-WINKENS C, SANKARAN C, SCHATZL H M.From seeds to fibrils and back: fragmentation as an overlooked step in the propagation of prions and prion-like proteins[J]. Biomolecules,2020,10(9):1305.
[11]MARZEC J, CHO H Y, HIGH M,et al. Toll-like receptor 4-mediated respiratory syncytial virus disease and lung transcriptomics in differentially susceptible inbred mouse strains[J]. Physiol Genomics,2019,51(12):630-643.
[12]YANG D H,LV XP, ZHANG SJ,et al. Tandem mass tag-based quantitative proteomic analysis of chicken Bursa of Fabricius infected with reticuloendotheliosis virus[J]. Front Vet Sci,2021, 8:666512.
[13]BOUDESCO C, VERHOEYEN E,MARTIN L, et al. HSP110 sustains chronic NF-kB signaling in activated B-cell diffuse large B-cellymphoma through MyD88 stabilization[J]. Blood,2018,132(5):510-520.
[14]XU X,LIY X, WUYL,et al. Increased ATF2 expression predictspoor prognosis and inhibits sorafenib-induced ferroptosis in gastric cancer[J]. Redox Biol,2O23,59:102564.
[15]MUCHEMWAFC,NAKATSURAT,FUKUSHIMAS,et al.Differential expression of heat shock protein 105 in melanoma and melanocytic naevi[J].Melanoma Res,2008, 18(3):166-171.
[16]ARVANITIDOU S, MARTINELLI-KLAY C P, SAMSON J,et al. HSP1O5 expression in oral squamous cell carcinoma:Correlation with clinicopathological featuresand outcomes[J]. JOral Pathol Med,2020,49(7):665-671.
[17]TESHIMA H, WATANABE H, YASUTAKE R, et al. Functional differences between HsplO5/11O family proteins in cell proliferation,cell division,and drug sensitivity[J].JCell Biochem,2021,122(12):1958-1967.
[18]GRANADOS-SOLER JL,TAHER L,BECK J,et al. Transcription profiling of feline mammary carcinomas and derived cellines reveals biomarkers and drug targets associated with metabolic and cellcycle pathways[J]. Sci Rep, 2022,12(1):17025.
[19]ALMAGHRBI H, ELKARDAWY R, UDHAYA KUMAR S, et al.Analysis of signaling cascades from myeloma cells treated with pristimerin[J].Adv Protein Chem Struct Biol, 2023,134:147-174.
[20]DAI W T, WANG Q J, ZHAO F Q, et al. Understanding the regulatory mechanisms of milk production using integrative transcriptomic and proteomic analyses: improving inefficient utilization of crop by-products as forage in dairy industry[J].BMC Genomics,2018,19(1):403.
[21]JAHEJO A R, NIU S, ZHANG D, et al. Transcriptome analysis of MAPK signaling pathway and associated genes to angiogenesis in chicken erythrocytes on response to thiram-induced tibiallesions[J].ResVetSci,2019,127:65-75.
[22]UNNIKRISHNAN A, JACKSON J, MATYI S A, et al. Role of DNA methylation in the dietary restriction mediated cellular memory[J]. Geroscience,2017,39(3):331-345.
[23] WENTINK A S, NILLEGODA N B,FEUFEL J, et al. Molecular dissection of amyloid disaggregation by human HSP7O[J]. Nature,2020, 587(7834):483-488.
[24]MIKAMI H, SAITO Y, OKAMOTO N, et al.Requirement of Hsp105 in CoCl-induced HIF-1α accumulation and transcriptional activation[J]. Exp Cell Res,2017, 352(2):225- 233.
[25]BERTHENET K, BOKHARI A, LAGRANGE A,et al. HSP11N nromntec colnreetal r wth through STAT3 activation[J]. Oncogene,2017,36(16):2328-2336.
[26]SONG P,LI X, CHEN S,et al. YTHDF1 mediates N-methylN-nitrosourea-induced gastric carcinogenesis by controlling HSPH1 translation[J]. Cell Prolif,2024, 57(7):e13619.
[27]CHEN K J, LI F Z, YE Q, et al. HSP105 expression in cutaneous malignant melanoma: Correlation with clinicopathological characteristics[J]. PLoS One,2021,16(10): e0258053.
[28]HYLANDERBL, CHEN X, GRAF PC, et al. The distribution andlocalization of hspl1Oin brain[J]. Brain Res,2000, 869(1/2):49-55.
[29] ZENON-MELENDEZ C N, CARRASQUILLO CARRION K, CANTRES ROSARIO Y,et al. Inhibition of cathepsin B and SAPC secreted by HIV-infected macrophages reverses common and unique apoptosis pathways[J]. JProteome Res, 2022,21(2):301-312.
[30]TAGUCHI Y V, GORENBERG EL, NAGY M, et al. Hsp110 mitigates α -synuclein pathology in vivo[J].Proc Natl Acad Sci USA,2019,116(48):24310-24316.
[31] CHIRICOSTA L, GUGLIANDOLO A, BRAMANTI P, et al. Could the heat shock proteins 7O family members exacerbate the immune response in multiple sclerosis an in silico study[J]. Genes,2020,11(6):615.
[32]SCIOR A, BUNTRU A,ARNSBURG K, et al. Complete suppression of Httfibrilization and disaggregation of Htt fibrils by a trimeric chaperone complex[J]. EMBO J,2018, 37(2):282-299.
[33]ASHTON K J, TUPICOFF A,WILLIAMS-PRITCHARD G,et al. Unique transcriptional profile of sustained ligand-activated preconditioning in pre- and post-ischemic myocardium[J]. PLoS One,2013, 8(8):e72278.
[34]QIAN HY,QIANY,LIU Y,et al. Identification of novel biomarkers involved in doxorubicin-induced acute and chronic cardiotoxicity,respectively,by integrated bioinformatics[J].Front Cardiovasc Med, 2022,9:996809.
[35]HE JL, ZHANG JH,LIAO X C, et al. Upregulation of PD-1/ PD-Ll and downregulation of immune signaling pathways lead to more severe visceral leishmaniasis in undernutrition mice[J]. Parasit Vectors,2024,17(1):8.
[36]KATO Y, MASAGO Y, KONDO C, et al. Comparison of acute gene expression profiles of islet cells obtained via laser capture microdissection between alloxan- and streptozotocin-treated rats[J]. Toxicol Pathol, 2018,46(6):660- 670.
[37]LIANG YF,LUO JQ,YANG NL, et al. Activation of the IL-1β/KLF2/HSPH1 pathway promotes STAT3 phosphorylation in alveolar macrophages during LPS-induced acute lung injury[J]. Biosci Rep,2020, 40(3):BSR20193572.