999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類宏觀經(jīng)濟學中的二階離散方程的正解的有界性

2011-01-01 00:00:00馬慧莉,徐嘉,馬慧芳
經(jīng)濟數(shù)學 2011年1期

摘 要 利用LeraySchauder 延拓定理,使用對角化方法考慮了來源于宏觀經(jīng)濟學中的一類二階差分方程的有界性.

關鍵詞 正解;對角化方法;邊值問題

中圖分類號 O175.7 文獻標識碼 A

Boundedness of Positive Solutions for Nonlinear Second Order Discrete Equations from Macroeconomics

MA Huili1,XU Jia2,MA Huifang3

(1.College of Economics and Management, Northwest Normal University,Lanzhou,Ganshu 730010,China;

2.College of Physical Education, Northwest Normal University,Lanzhou,Ganshu 730070,China;

3.Coolege of Mathematics and In for mation Science,Northwest Normal University,Lazhou,Gansu 730070,China)

Abstract By using the LeraySchauder continuation theorem and diagonalization method,this paperstudied the existence and boundedness of the positive solutions for the equation from macroeconomics.

Key words positive solution; diagonalization arguments; boundary value problems

1 Introduction

Set Z+={1,2,…},N={0,1,…},N(a)={a,a+1,…},[a,b]={a,a+1,…,b}, a,b∈N,a<b<,[a,b]R={x∈R|a≤x≤b,a,b∈R)}.

Let X[a,b]={ψ|ψ:[a,b]→R} with the norm ‖ψ‖X[a,b]=max{|ψ(t)|t∈[a,b]}.

Let Y[a,b]={ψ|ψ:[a,b]→R} with the norm ‖ψ‖L[a,b]=∑bt=a|ψ(t)|.

Consider the following equation

Δ2u(k-1)+g(k,u(k),Δu(k))=0.(1)

Equation of (1) and similar, arose in some of the earliest mathematical modelsof the macroeconomic “trade cycle”. For example, equation (1) generalizes the classic HasenSamuelson’s acceleratormultiplier model[1], namely,

Yn+1=cYn+αc(Yn-Yn-1)+A0,

where the constant A0=C0+I0+G0 represents the sum of the minimum consumption, the “autonomous” investment and the fixed government spending in period n, and Yn is the outputGNP or national incomein period n. The net investment amount in the same period is given as In=αc(Yn-1-Yn-2).The constant c∈(0,1)represents Keynes’ “marginal propensity to consume” or the MPC, while the coefficient α > 0 is the “accelerator”.

The linear model above improved the earlier Keynesian models in substantial new research. However, this model was soon found to be unsatisfactory and certain nonlinear models were subsequently proposed. For instance, rather than the linear Keynesian consumption C(Y)=cY+C0,Samuelson considered a nonlinear consumption function[2]. Some years later, Hicks proposed a model in which consumption was linear, but investment and output were both piecewise linear[3]. For other similar nonlinear models, the reader can refer the work[4-5] and the references therein.

Few of the existing results in the literature seem directly applicable to equation (1) in setting basic questions such as boundedness and convergence. The objective of this paper is to investigate some of the mathematical properties ofequation(1). Specifically, we study the existence and boundedness of the positive solutions for the equation (1). To be convenient, wediscuss the existence of positive solution of the following corresponding boundary value problem

Δ2u(k-1)+g(k,u(k),Δu(k))=0,k∈Z+,

u(0)=0,u is bounded on N.(2)

The main result of this paper is the following theorem.

Theorem 1Let g: Z+×R+×R+→R+. Assume we have the following

(H1) For any constant H>0, there exists a nonnegative function ψH(k),k∈(0, and a constant o≤γ<1 with

g(k,u,v)≥ψH(k)vγ on Z+×0,H2R;

(H2) There exists functions p,q,r:R+→R+ such that

Q=∑k=1q(k)<,Q1=∑k=1kq(k)<

P1=∑k=1kp(k)<

R=∑ R1=∑

and

|g(k,u,v)|≤p(k)|u|+q(k)|v|+r(k), (k,u,v)∈R+3.

Then equation (2) has at least one solution provided P1+Q<1.

2 Proof of the main results

Lemma 1Let e∈Y[1,n] and x be a function such that

Δ2x(k-1)+e(k)=0,k∈[1,n]

and

x(0)=0,Δx(n)=0.

Then

‖Δx‖x[0,n]≤‖e‖L[1,n].

Proof Since -Δ2x(k-1)=e(k),k∈[1,n] can be extended to

 -Δx(k)+Δx(k-1)=e(k),k∈[1,n], 

summing from k to n for both sides results in

Δ x(k-1)=∑nt=k[-Δ2x(t-1)]=∑nt=ke(t).

that is,

‖Δx‖x[0,n]=‖Δx‖x[0,n-1]≤‖e‖L[1,n].

Lemma 2Let (H1) and (H2) hold. Let n be a positive integer and consider the boundary value problem

Δ2u(k-1)+g(k,u(k),Δu(k))=0,k∈[1,n],u(0)=0,Δu(n)=0.(3)

Then equation (3) has at least one positive solution yn∈X[0,n+1] and there is a constant M>0 independent ofn such that

∑kt=0[∑ns=t+1ψM(s)(b(s))γ]11-γ≤yn(k)≤M,

k∈[0,n],

經(jīng) 濟 數(shù) 學第 28卷第1期馬慧莉等:一類宏觀經(jīng)濟學中的二階離散方程的正解的有界性

where b is some function satisfies 0≤b(t)<1,t∈[1,n] which will be defined later.

Proof Define a linear operator

Ln:D(Ln)X[0,n+1]→Y[1,n]

by setting

D(Ln)={x∈X[0,n+1]:x(0)=Δx(n)=0},and for y∈D(Ln),Lny(k)=-Δ2y(k-1).

We also define a nonlinear mapping N:X[0,n+1]→Y[1,n]by setting

(Nu)(k)=g(k,u(k),Δu(k)).

We have from the fact N is bounded, mapping from X[0,n+1] to Y[1,n].

Next, it is easy to see that L:D(Ln)X[0,n+1]→Y[1,n] is one to one mapping. Moreover, it follows easily by using ArzélaAscoli theorem that

(Ln)-1N:X[0,n+1]→X[0,n+1] is a compact mapping.

We note y is a solution of equation (3) if and only if y is a fixed point of the equation

y=(Ln)-1Ny.

We apply the LeraySchauder continuation theorem[3][6] to obtain the existence of a solution for y=(Ln)-1Ny. To do this, it suffices to verify that the set of all possible solutions of the family of equations

Δ2u(k-1)+λg(k,u(k),Δu(k))=0,k∈[1,n],

u(0)=0,Δu(n)=0(4)

has a prior, bounded in X by a constant independent of λ∈(0,1).

Let y∈X[0,n+1] be any solution of equation (4), then

Δy(k)≥0, k∈[0,n],

y(k)≥0, k∈[0,n+1].

Moreover, we have from y(k+1)=∑kt=0Δy(t) that |y(k+1)|≤k‖Δy‖X[0,n].

Applying lemma 1 and using equation (4), we can get that

‖Δy‖X[0,n]≤‖g(k,y(k),Δy(k))‖L[1,n]≤

‖p(k)y(k)‖L[1,n]+‖q(k)Δy(k)‖L[1,n]+

‖r(k)‖L[1,n]≤(‖(k-1)p(k)‖L[1,n]+

‖q‖L[1,n])‖Δy‖X[0,n]+‖r‖L[1,n]≤

(P1+Q)‖Δy‖X[0,n]+R. 

So we have consequently

‖Δy‖X[0,n]≤R1-P1-Q:=M1.

From equation (4), we have that

y(n)=λ∑nk=1∑nt=kg(t,y(t),Δy(t))

=λ∑nt=1tg(t,y(t),Δy(t)).

Moreover,

y(n+1)≤∑n+1t=1tg(t,y(t),Δy(t))=

‖tg(t,y(t),Δy(t))‖L[1,n+1] ≤

‖tp(t)‖L[1,n+1]‖y‖X[0,n+1] +

‖tq(t)‖L[1,n+1]‖Δy‖X[0,n]+

‖tr(t)‖L[1,n+1]≤P1‖y‖X[0,n+1]+

Q1‖Δy‖X[0,n]+R1,

‖y‖X[0,n+1]≤Q1M1+R11-P1:=M2,

Thus equation (4) has a solution yn with ‖yn‖X[0,n+1]≤M2. In fact,

0≤yn(k)≤M2, k∈[0,n+1];

0≤Δyn(k)≤M1, k∈[0,n].(5)

Finally, it’s obvious that M1 and M2 are independent of n∈Z+. Now (H1) guarantees the existence of a function ψM(k), which is positive on (0,

SymboleB@ ),and a constant γ∈[0,1]with g(k,yn(k),Δyn(k))≥ψM(k)[Δyn(k)]γ for (k,yn(k),Δyn(k))∈[1,n]×[0,M]2R,where M=max{M1,M2}.

Of course, from equation(4) and the fact that Δyn(k)≥0 on [0,n], we have

-Δ2yn(k-1)≥ψM(k)[Δyn(k)]γ.

Sum from k+1 to n to obtain

-∑nt=k+1Δ2yn(t-1)≥∑nt=k+1ψM(t)[Δyn(t)]γ,

that is,

Δyn(k)≥∑nt=kψM(t)[Δyn(t)]γ. (6)

While Δ2yn(t-1)≤0 implies that there exists 0≤b(t)<1 such that

Δyn(t)≥b(t)Δyn(k), t∈{k+1,…,n},

which combined with equation (6) lead to

Δyn(k)≥∑nt=k+1ψM(t)(b(t))γ[Δyn(k)]γ,

Δyn(k)≥[∑nt=k+1ψM(t)(b(t))γ]11-γ.

Thus,

yn(k)≥∑kt=0[∑ns=t+1ψM(s)(b(s))γ]11-γ.

Proof of the main theorem. From equation (4) and (5), we know that

0≤-Δ2yn(k-1)≤φ(k),k∈[1,n],

where φ(k)=[p(k)+q(k)]M+r(k).

In addition, we have

Δyn(k-1)≤∑nt=kφ(t)≤∑

To show equation (2) has a solution, we will apply the diagonalization argument. Let

un(k)=yn(k),k∈[0,n+1],

yn(n),k∈[n+1,∞].

Note that

0≤un(k)≤M,k∈[0,n+1];

0≤Δun(k)≤M,k∈[0,n].

From the definition of un, we get

|Δun(k1)-Δun(k2)|≤∑k2t=k1|φ(t)|, k1,k2∈N.

References

[1] P A Samuelson. Interaction between the multiplier analysis and the principle of acceleration[J]. Review of Econ. Stat., 1939, 21(2): 75-78.

[2] P ASamuelson. A synthesis of the principle of acceleration and the multiplier[J]. JPolitical Ecno, 1939,47(6):786-797.

[3] J R Hicks. A contribution to the theory of the trade cycle[M]. Oxford:Oxford University Press,1950.

[4] P N V Tu. Dynamical systems: an introduction with applications in economics and biology, 2nd edn.[M]. New York:Springer,1994.

[5] Hassan Sedaghat. A class of nonlinear second order difference equations from macroeconomics[J]. Nonlinear Anal., 1997, 29(5): 593-603.

[6] D Guo.Nonlinear functional analysis[M].Jinan:Shandong Science and Technology Press,2002.(In Chinese)

注:本文中所涉及到的圖表、注解、公式等內容請以PDF格式閱讀原文

主站蜘蛛池模板: 国产精品美女免费视频大全| 亚洲乱码在线播放| 99手机在线视频| 欧美国产在线一区| 免费a级毛片18以上观看精品| 欧美激情第一欧美在线| 99久久免费精品特色大片| 国产美女视频黄a视频全免费网站| 激情综合婷婷丁香五月尤物| 国产精品观看视频免费完整版| 超碰免费91| 亚洲日韩欧美在线观看| 在线视频亚洲欧美| 国产真实自在自线免费精品| 国产成人精品亚洲77美色| 欧美区国产区| 国产精品亚欧美一区二区| 欧美一级一级做性视频| 久久精品亚洲热综合一区二区| 色哟哟国产成人精品| 国产97视频在线观看| 亚洲男人的天堂久久香蕉| 伊人久久精品亚洲午夜| 亚洲天堂精品在线观看| 8090成人午夜精品| 91午夜福利在线观看精品| v天堂中文在线| 国产成年女人特黄特色大片免费| 性色在线视频精品| 青青久久91| 91麻豆国产精品91久久久| 色欲综合久久中文字幕网| 国产一区二区三区在线精品专区| igao国产精品| 亚洲首页在线观看| 亚洲成肉网| 国产成人1024精品| 风韵丰满熟妇啪啪区老熟熟女| 亚洲精品另类| 国产毛片高清一级国语| 日韩欧美国产精品| 亚洲手机在线| 国产色偷丝袜婷婷无码麻豆制服| 狠狠色狠狠色综合久久第一次| 高清无码一本到东京热| 国产精品对白刺激| 香蕉99国内自产自拍视频| 欧美性猛交一区二区三区| 亚洲综合色区在线播放2019| 女人18毛片水真多国产| 免费看a级毛片| 中文一区二区视频| 丝袜无码一区二区三区| 婷婷六月色| 成年人免费国产视频| 国产成人精品视频一区二区电影| 色综合五月婷婷| 亚洲欧洲AV一区二区三区| 亚洲色成人www在线观看| 国产福利在线观看精品| 国产大片喷水在线在线视频| 亚洲欧美日韩中文字幕一区二区三区| 国产精品国产三级国产专业不| 国产精品久久久久鬼色| 欧美精品亚洲精品日韩专区va| 青青草国产一区二区三区| 国产精品分类视频分类一区| 激情影院内射美女| 亚洲区一区| 亚洲一区二区三区中文字幕5566| 国产白浆在线观看| 国产成人凹凸视频在线| www.亚洲色图.com| 中文字幕日韩丝袜一区| 久久久久国产一级毛片高清板| 无码精油按摩潮喷在线播放| 麻豆精品在线视频| 国产91色| 亚洲综合第一页| 亚洲日韩精品欧美中文字幕| 国产内射在线观看| 国产精品制服|