999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類宏觀經濟學中的二階離散方程的正解的有界性

2011-01-01 00:00:00馬慧莉,徐嘉,馬慧芳
經濟數學 2011年1期

摘 要 利用LeraySchauder 延拓定理,使用對角化方法考慮了來源于宏觀經濟學中的一類二階差分方程的有界性.

關鍵詞 正解;對角化方法;邊值問題

中圖分類號 O175.7 文獻標識碼 A

Boundedness of Positive Solutions for Nonlinear Second Order Discrete Equations from Macroeconomics

MA Huili1,XU Jia2,MA Huifang3

(1.College of Economics and Management, Northwest Normal University,Lanzhou,Ganshu 730010,China;

2.College of Physical Education, Northwest Normal University,Lanzhou,Ganshu 730070,China;

3.Coolege of Mathematics and In for mation Science,Northwest Normal University,Lazhou,Gansu 730070,China)

Abstract By using the LeraySchauder continuation theorem and diagonalization method,this paperstudied the existence and boundedness of the positive solutions for the equation from macroeconomics.

Key words positive solution; diagonalization arguments; boundary value problems

1 Introduction

Set Z+={1,2,…},N={0,1,…},N(a)={a,a+1,…},[a,b]={a,a+1,…,b}, a,b∈N,a<b<,[a,b]R={x∈R|a≤x≤b,a,b∈R)}.

Let X[a,b]={ψ|ψ:[a,b]→R} with the norm ‖ψ‖X[a,b]=max{|ψ(t)|t∈[a,b]}.

Let Y[a,b]={ψ|ψ:[a,b]→R} with the norm ‖ψ‖L[a,b]=∑bt=a|ψ(t)|.

Consider the following equation

Δ2u(k-1)+g(k,u(k),Δu(k))=0.(1)

Equation of (1) and similar, arose in some of the earliest mathematical modelsof the macroeconomic “trade cycle”. For example, equation (1) generalizes the classic HasenSamuelson’s acceleratormultiplier model[1], namely,

Yn+1=cYn+αc(Yn-Yn-1)+A0,

where the constant A0=C0+I0+G0 represents the sum of the minimum consumption, the “autonomous” investment and the fixed government spending in period n, and Yn is the outputGNP or national incomein period n. The net investment amount in the same period is given as In=αc(Yn-1-Yn-2).The constant c∈(0,1)represents Keynes’ “marginal propensity to consume” or the MPC, while the coefficient α > 0 is the “accelerator”.

The linear model above improved the earlier Keynesian models in substantial new research. However, this model was soon found to be unsatisfactory and certain nonlinear models were subsequently proposed. For instance, rather than the linear Keynesian consumption C(Y)=cY+C0,Samuelson considered a nonlinear consumption function[2]. Some years later, Hicks proposed a model in which consumption was linear, but investment and output were both piecewise linear[3]. For other similar nonlinear models, the reader can refer the work[4-5] and the references therein.

Few of the existing results in the literature seem directly applicable to equation (1) in setting basic questions such as boundedness and convergence. The objective of this paper is to investigate some of the mathematical properties ofequation(1). Specifically, we study the existence and boundedness of the positive solutions for the equation (1). To be convenient, wediscuss the existence of positive solution of the following corresponding boundary value problem

Δ2u(k-1)+g(k,u(k),Δu(k))=0,k∈Z+,

u(0)=0,u is bounded on N.(2)

The main result of this paper is the following theorem.

Theorem 1Let g: Z+×R+×R+→R+. Assume we have the following

(H1) For any constant H>0, there exists a nonnegative function ψH(k),k∈(0, and a constant o≤γ<1 with

g(k,u,v)≥ψH(k)vγ on Z+×0,H2R;

(H2) There exists functions p,q,r:R+→R+ such that

Q=∑k=1q(k)<,Q1=∑k=1kq(k)<

P1=∑k=1kp(k)<

R=∑ R1=∑

and

|g(k,u,v)|≤p(k)|u|+q(k)|v|+r(k), (k,u,v)∈R+3.

Then equation (2) has at least one solution provided P1+Q<1.

2 Proof of the main results

Lemma 1Let e∈Y[1,n] and x be a function such that

Δ2x(k-1)+e(k)=0,k∈[1,n]

and

x(0)=0,Δx(n)=0.

Then

‖Δx‖x[0,n]≤‖e‖L[1,n].

Proof Since -Δ2x(k-1)=e(k),k∈[1,n] can be extended to

 -Δx(k)+Δx(k-1)=e(k),k∈[1,n], 

summing from k to n for both sides results in

Δ x(k-1)=∑nt=k[-Δ2x(t-1)]=∑nt=ke(t).

that is,

‖Δx‖x[0,n]=‖Δx‖x[0,n-1]≤‖e‖L[1,n].

Lemma 2Let (H1) and (H2) hold. Let n be a positive integer and consider the boundary value problem

Δ2u(k-1)+g(k,u(k),Δu(k))=0,k∈[1,n],u(0)=0,Δu(n)=0.(3)

Then equation (3) has at least one positive solution yn∈X[0,n+1] and there is a constant M>0 independent ofn such that

∑kt=0[∑ns=t+1ψM(s)(b(s))γ]11-γ≤yn(k)≤M,

k∈[0,n],

經 濟 數 學第 28卷第1期馬慧莉等:一類宏觀經濟學中的二階離散方程的正解的有界性

where b is some function satisfies 0≤b(t)<1,t∈[1,n] which will be defined later.

Proof Define a linear operator

Ln:D(Ln)X[0,n+1]→Y[1,n]

by setting

D(Ln)={x∈X[0,n+1]:x(0)=Δx(n)=0},and for y∈D(Ln),Lny(k)=-Δ2y(k-1).

We also define a nonlinear mapping N:X[0,n+1]→Y[1,n]by setting

(Nu)(k)=g(k,u(k),Δu(k)).

We have from the fact N is bounded, mapping from X[0,n+1] to Y[1,n].

Next, it is easy to see that L:D(Ln)X[0,n+1]→Y[1,n] is one to one mapping. Moreover, it follows easily by using ArzélaAscoli theorem that

(Ln)-1N:X[0,n+1]→X[0,n+1] is a compact mapping.

We note y is a solution of equation (3) if and only if y is a fixed point of the equation

y=(Ln)-1Ny.

We apply the LeraySchauder continuation theorem[3][6] to obtain the existence of a solution for y=(Ln)-1Ny. To do this, it suffices to verify that the set of all possible solutions of the family of equations

Δ2u(k-1)+λg(k,u(k),Δu(k))=0,k∈[1,n],

u(0)=0,Δu(n)=0(4)

has a prior, bounded in X by a constant independent of λ∈(0,1).

Let y∈X[0,n+1] be any solution of equation (4), then

Δy(k)≥0, k∈[0,n],

y(k)≥0, k∈[0,n+1].

Moreover, we have from y(k+1)=∑kt=0Δy(t) that |y(k+1)|≤k‖Δy‖X[0,n].

Applying lemma 1 and using equation (4), we can get that

‖Δy‖X[0,n]≤‖g(k,y(k),Δy(k))‖L[1,n]≤

‖p(k)y(k)‖L[1,n]+‖q(k)Δy(k)‖L[1,n]+

‖r(k)‖L[1,n]≤(‖(k-1)p(k)‖L[1,n]+

‖q‖L[1,n])‖Δy‖X[0,n]+‖r‖L[1,n]≤

(P1+Q)‖Δy‖X[0,n]+R. 

So we have consequently

‖Δy‖X[0,n]≤R1-P1-Q:=M1.

From equation (4), we have that

y(n)=λ∑nk=1∑nt=kg(t,y(t),Δy(t))

=λ∑nt=1tg(t,y(t),Δy(t)).

Moreover,

y(n+1)≤∑n+1t=1tg(t,y(t),Δy(t))=

‖tg(t,y(t),Δy(t))‖L[1,n+1] ≤

‖tp(t)‖L[1,n+1]‖y‖X[0,n+1] +

‖tq(t)‖L[1,n+1]‖Δy‖X[0,n]+

‖tr(t)‖L[1,n+1]≤P1‖y‖X[0,n+1]+

Q1‖Δy‖X[0,n]+R1,

‖y‖X[0,n+1]≤Q1M1+R11-P1:=M2,

Thus equation (4) has a solution yn with ‖yn‖X[0,n+1]≤M2. In fact,

0≤yn(k)≤M2, k∈[0,n+1];

0≤Δyn(k)≤M1, k∈[0,n].(5)

Finally, it’s obvious that M1 and M2 are independent of n∈Z+. Now (H1) guarantees the existence of a function ψM(k), which is positive on (0,

SymboleB@ ),and a constant γ∈[0,1]with g(k,yn(k),Δyn(k))≥ψM(k)[Δyn(k)]γ for (k,yn(k),Δyn(k))∈[1,n]×[0,M]2R,where M=max{M1,M2}.

Of course, from equation(4) and the fact that Δyn(k)≥0 on [0,n], we have

-Δ2yn(k-1)≥ψM(k)[Δyn(k)]γ.

Sum from k+1 to n to obtain

-∑nt=k+1Δ2yn(t-1)≥∑nt=k+1ψM(t)[Δyn(t)]γ,

that is,

Δyn(k)≥∑nt=kψM(t)[Δyn(t)]γ. (6)

While Δ2yn(t-1)≤0 implies that there exists 0≤b(t)<1 such that

Δyn(t)≥b(t)Δyn(k), t∈{k+1,…,n},

which combined with equation (6) lead to

Δyn(k)≥∑nt=k+1ψM(t)(b(t))γ[Δyn(k)]γ,

Δyn(k)≥[∑nt=k+1ψM(t)(b(t))γ]11-γ.

Thus,

yn(k)≥∑kt=0[∑ns=t+1ψM(s)(b(s))γ]11-γ.

Proof of the main theorem. From equation (4) and (5), we know that

0≤-Δ2yn(k-1)≤φ(k),k∈[1,n],

where φ(k)=[p(k)+q(k)]M+r(k).

In addition, we have

Δyn(k-1)≤∑nt=kφ(t)≤∑

To show equation (2) has a solution, we will apply the diagonalization argument. Let

un(k)=yn(k),k∈[0,n+1],

yn(n),k∈[n+1,∞].

Note that

0≤un(k)≤M,k∈[0,n+1];

0≤Δun(k)≤M,k∈[0,n].

From the definition of un, we get

|Δun(k1)-Δun(k2)|≤∑k2t=k1|φ(t)|, k1,k2∈N.

References

[1] P A Samuelson. Interaction between the multiplier analysis and the principle of acceleration[J]. Review of Econ. Stat., 1939, 21(2): 75-78.

[2] P ASamuelson. A synthesis of the principle of acceleration and the multiplier[J]. JPolitical Ecno, 1939,47(6):786-797.

[3] J R Hicks. A contribution to the theory of the trade cycle[M]. Oxford:Oxford University Press,1950.

[4] P N V Tu. Dynamical systems: an introduction with applications in economics and biology, 2nd edn.[M]. New York:Springer,1994.

[5] Hassan Sedaghat. A class of nonlinear second order difference equations from macroeconomics[J]. Nonlinear Anal., 1997, 29(5): 593-603.

[6] D Guo.Nonlinear functional analysis[M].Jinan:Shandong Science and Technology Press,2002.(In Chinese)

注:本文中所涉及到的圖表、注解、公式等內容請以PDF格式閱讀原文

主站蜘蛛池模板: 国内精品视频| 操国产美女| 亚洲欧州色色免费AV| 尤物成AV人片在线观看| 精品乱码久久久久久久| 91探花国产综合在线精品| 91精品情国产情侣高潮对白蜜| 婷婷色一二三区波多野衣| 国产h视频免费观看| 91娇喘视频| 91久久国产成人免费观看| 婷婷开心中文字幕| 91黄视频在线观看| 国产麻豆aⅴ精品无码| 精品亚洲欧美中文字幕在线看| 亚洲视频二| 国产一级二级三级毛片| 无码人中文字幕| 国产97视频在线观看| 国产一级在线观看www色| 亚洲精品第一在线观看视频| 扒开粉嫩的小缝隙喷白浆视频| 丁香五月婷婷激情基地| 综合色在线| 人妻一本久道久久综合久久鬼色| 国产成人精品一区二区三区| 97se亚洲综合| 99久久精品国产麻豆婷婷| 香蕉网久久| 黄色网站在线观看无码| 久久久91人妻无码精品蜜桃HD| 国产亚洲视频中文字幕视频| 亚洲αv毛片| 欧美精品成人一区二区在线观看| 亚洲天堂在线免费| 免费观看无遮挡www的小视频| 精品久久久无码专区中文字幕| 高清欧美性猛交XXXX黑人猛交| 精品欧美视频| 72种姿势欧美久久久大黄蕉| 91视频日本| 久久久久无码精品| 国产精品网曝门免费视频| 色综合中文综合网| 国产精品成人一区二区不卡 | 在线视频亚洲色图| 欧美在线天堂| 色偷偷综合网| 亚洲欧美综合在线观看| 国产精品专区第1页| 亚洲丝袜中文字幕| 极品性荡少妇一区二区色欲| 国产精品视频观看裸模| 午夜在线不卡| 国产真实乱了在线播放| 视频一本大道香蕉久在线播放 | 久久无码av三级| 欧美自拍另类欧美综合图区| 久久精品国产亚洲麻豆| 欧美性精品不卡在线观看| 国产色婷婷| 女人18毛片一级毛片在线 | 在线亚洲精品福利网址导航| 91午夜福利在线观看| 干中文字幕| 91午夜福利在线观看| 男人的天堂久久精品激情| 国产区91| 国产亚洲一区二区三区在线| 国产成人亚洲综合a∨婷婷| 亚洲av日韩av制服丝袜| 国产在线观看91精品| 人妻中文字幕无码久久一区| 国产精品永久在线| 18禁黄无遮挡免费动漫网站 | 亚欧成人无码AV在线播放| 亚洲第一中文字幕| 91丝袜乱伦| 蜜桃视频一区二区| 九九热精品免费视频| 国产成人乱无码视频| 91色综合综合热五月激情|