999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類宏觀經濟學中的二階離散方程的正解的有界性

2011-01-01 00:00:00馬慧莉,徐嘉,馬慧芳
經濟數學 2011年1期

摘 要 利用LeraySchauder 延拓定理,使用對角化方法考慮了來源于宏觀經濟學中的一類二階差分方程的有界性.

關鍵詞 正解;對角化方法;邊值問題

中圖分類號 O175.7 文獻標識碼 A

Boundedness of Positive Solutions for Nonlinear Second Order Discrete Equations from Macroeconomics

MA Huili1,XU Jia2,MA Huifang3

(1.College of Economics and Management, Northwest Normal University,Lanzhou,Ganshu 730010,China;

2.College of Physical Education, Northwest Normal University,Lanzhou,Ganshu 730070,China;

3.Coolege of Mathematics and In for mation Science,Northwest Normal University,Lazhou,Gansu 730070,China)

Abstract By using the LeraySchauder continuation theorem and diagonalization method,this paperstudied the existence and boundedness of the positive solutions for the equation from macroeconomics.

Key words positive solution; diagonalization arguments; boundary value problems

1 Introduction

Set Z+={1,2,…},N={0,1,…},N(a)={a,a+1,…},[a,b]={a,a+1,…,b}, a,b∈N,a<b<,[a,b]R={x∈R|a≤x≤b,a,b∈R)}.

Let X[a,b]={ψ|ψ:[a,b]→R} with the norm ‖ψ‖X[a,b]=max{|ψ(t)|t∈[a,b]}.

Let Y[a,b]={ψ|ψ:[a,b]→R} with the norm ‖ψ‖L[a,b]=∑bt=a|ψ(t)|.

Consider the following equation

Δ2u(k-1)+g(k,u(k),Δu(k))=0.(1)

Equation of (1) and similar, arose in some of the earliest mathematical modelsof the macroeconomic “trade cycle”. For example, equation (1) generalizes the classic HasenSamuelson’s acceleratormultiplier model[1], namely,

Yn+1=cYn+αc(Yn-Yn-1)+A0,

where the constant A0=C0+I0+G0 represents the sum of the minimum consumption, the “autonomous” investment and the fixed government spending in period n, and Yn is the outputGNP or national incomein period n. The net investment amount in the same period is given as In=αc(Yn-1-Yn-2).The constant c∈(0,1)represents Keynes’ “marginal propensity to consume” or the MPC, while the coefficient α > 0 is the “accelerator”.

The linear model above improved the earlier Keynesian models in substantial new research. However, this model was soon found to be unsatisfactory and certain nonlinear models were subsequently proposed. For instance, rather than the linear Keynesian consumption C(Y)=cY+C0,Samuelson considered a nonlinear consumption function[2]. Some years later, Hicks proposed a model in which consumption was linear, but investment and output were both piecewise linear[3]. For other similar nonlinear models, the reader can refer the work[4-5] and the references therein.

Few of the existing results in the literature seem directly applicable to equation (1) in setting basic questions such as boundedness and convergence. The objective of this paper is to investigate some of the mathematical properties ofequation(1). Specifically, we study the existence and boundedness of the positive solutions for the equation (1). To be convenient, wediscuss the existence of positive solution of the following corresponding boundary value problem

Δ2u(k-1)+g(k,u(k),Δu(k))=0,k∈Z+,

u(0)=0,u is bounded on N.(2)

The main result of this paper is the following theorem.

Theorem 1Let g: Z+×R+×R+→R+. Assume we have the following

(H1) For any constant H>0, there exists a nonnegative function ψH(k),k∈(0, and a constant o≤γ<1 with

g(k,u,v)≥ψH(k)vγ on Z+×0,H2R;

(H2) There exists functions p,q,r:R+→R+ such that

Q=∑k=1q(k)<,Q1=∑k=1kq(k)<

P1=∑k=1kp(k)<

R=∑ R1=∑

and

|g(k,u,v)|≤p(k)|u|+q(k)|v|+r(k), (k,u,v)∈R+3.

Then equation (2) has at least one solution provided P1+Q<1.

2 Proof of the main results

Lemma 1Let e∈Y[1,n] and x be a function such that

Δ2x(k-1)+e(k)=0,k∈[1,n]

and

x(0)=0,Δx(n)=0.

Then

‖Δx‖x[0,n]≤‖e‖L[1,n].

Proof Since -Δ2x(k-1)=e(k),k∈[1,n] can be extended to

 -Δx(k)+Δx(k-1)=e(k),k∈[1,n], 

summing from k to n for both sides results in

Δ x(k-1)=∑nt=k[-Δ2x(t-1)]=∑nt=ke(t).

that is,

‖Δx‖x[0,n]=‖Δx‖x[0,n-1]≤‖e‖L[1,n].

Lemma 2Let (H1) and (H2) hold. Let n be a positive integer and consider the boundary value problem

Δ2u(k-1)+g(k,u(k),Δu(k))=0,k∈[1,n],u(0)=0,Δu(n)=0.(3)

Then equation (3) has at least one positive solution yn∈X[0,n+1] and there is a constant M>0 independent ofn such that

∑kt=0[∑ns=t+1ψM(s)(b(s))γ]11-γ≤yn(k)≤M,

k∈[0,n],

經 濟 數 學第 28卷第1期馬慧莉等:一類宏觀經濟學中的二階離散方程的正解的有界性

where b is some function satisfies 0≤b(t)<1,t∈[1,n] which will be defined later.

Proof Define a linear operator

Ln:D(Ln)X[0,n+1]→Y[1,n]

by setting

D(Ln)={x∈X[0,n+1]:x(0)=Δx(n)=0},and for y∈D(Ln),Lny(k)=-Δ2y(k-1).

We also define a nonlinear mapping N:X[0,n+1]→Y[1,n]by setting

(Nu)(k)=g(k,u(k),Δu(k)).

We have from the fact N is bounded, mapping from X[0,n+1] to Y[1,n].

Next, it is easy to see that L:D(Ln)X[0,n+1]→Y[1,n] is one to one mapping. Moreover, it follows easily by using ArzélaAscoli theorem that

(Ln)-1N:X[0,n+1]→X[0,n+1] is a compact mapping.

We note y is a solution of equation (3) if and only if y is a fixed point of the equation

y=(Ln)-1Ny.

We apply the LeraySchauder continuation theorem[3][6] to obtain the existence of a solution for y=(Ln)-1Ny. To do this, it suffices to verify that the set of all possible solutions of the family of equations

Δ2u(k-1)+λg(k,u(k),Δu(k))=0,k∈[1,n],

u(0)=0,Δu(n)=0(4)

has a prior, bounded in X by a constant independent of λ∈(0,1).

Let y∈X[0,n+1] be any solution of equation (4), then

Δy(k)≥0, k∈[0,n],

y(k)≥0, k∈[0,n+1].

Moreover, we have from y(k+1)=∑kt=0Δy(t) that |y(k+1)|≤k‖Δy‖X[0,n].

Applying lemma 1 and using equation (4), we can get that

‖Δy‖X[0,n]≤‖g(k,y(k),Δy(k))‖L[1,n]≤

‖p(k)y(k)‖L[1,n]+‖q(k)Δy(k)‖L[1,n]+

‖r(k)‖L[1,n]≤(‖(k-1)p(k)‖L[1,n]+

‖q‖L[1,n])‖Δy‖X[0,n]+‖r‖L[1,n]≤

(P1+Q)‖Δy‖X[0,n]+R. 

So we have consequently

‖Δy‖X[0,n]≤R1-P1-Q:=M1.

From equation (4), we have that

y(n)=λ∑nk=1∑nt=kg(t,y(t),Δy(t))

=λ∑nt=1tg(t,y(t),Δy(t)).

Moreover,

y(n+1)≤∑n+1t=1tg(t,y(t),Δy(t))=

‖tg(t,y(t),Δy(t))‖L[1,n+1] ≤

‖tp(t)‖L[1,n+1]‖y‖X[0,n+1] +

‖tq(t)‖L[1,n+1]‖Δy‖X[0,n]+

‖tr(t)‖L[1,n+1]≤P1‖y‖X[0,n+1]+

Q1‖Δy‖X[0,n]+R1,

‖y‖X[0,n+1]≤Q1M1+R11-P1:=M2,

Thus equation (4) has a solution yn with ‖yn‖X[0,n+1]≤M2. In fact,

0≤yn(k)≤M2, k∈[0,n+1];

0≤Δyn(k)≤M1, k∈[0,n].(5)

Finally, it’s obvious that M1 and M2 are independent of n∈Z+. Now (H1) guarantees the existence of a function ψM(k), which is positive on (0,

SymboleB@ ),and a constant γ∈[0,1]with g(k,yn(k),Δyn(k))≥ψM(k)[Δyn(k)]γ for (k,yn(k),Δyn(k))∈[1,n]×[0,M]2R,where M=max{M1,M2}.

Of course, from equation(4) and the fact that Δyn(k)≥0 on [0,n], we have

-Δ2yn(k-1)≥ψM(k)[Δyn(k)]γ.

Sum from k+1 to n to obtain

-∑nt=k+1Δ2yn(t-1)≥∑nt=k+1ψM(t)[Δyn(t)]γ,

that is,

Δyn(k)≥∑nt=kψM(t)[Δyn(t)]γ. (6)

While Δ2yn(t-1)≤0 implies that there exists 0≤b(t)<1 such that

Δyn(t)≥b(t)Δyn(k), t∈{k+1,…,n},

which combined with equation (6) lead to

Δyn(k)≥∑nt=k+1ψM(t)(b(t))γ[Δyn(k)]γ,

Δyn(k)≥[∑nt=k+1ψM(t)(b(t))γ]11-γ.

Thus,

yn(k)≥∑kt=0[∑ns=t+1ψM(s)(b(s))γ]11-γ.

Proof of the main theorem. From equation (4) and (5), we know that

0≤-Δ2yn(k-1)≤φ(k),k∈[1,n],

where φ(k)=[p(k)+q(k)]M+r(k).

In addition, we have

Δyn(k-1)≤∑nt=kφ(t)≤∑

To show equation (2) has a solution, we will apply the diagonalization argument. Let

un(k)=yn(k),k∈[0,n+1],

yn(n),k∈[n+1,∞].

Note that

0≤un(k)≤M,k∈[0,n+1];

0≤Δun(k)≤M,k∈[0,n].

From the definition of un, we get

|Δun(k1)-Δun(k2)|≤∑k2t=k1|φ(t)|, k1,k2∈N.

References

[1] P A Samuelson. Interaction between the multiplier analysis and the principle of acceleration[J]. Review of Econ. Stat., 1939, 21(2): 75-78.

[2] P ASamuelson. A synthesis of the principle of acceleration and the multiplier[J]. JPolitical Ecno, 1939,47(6):786-797.

[3] J R Hicks. A contribution to the theory of the trade cycle[M]. Oxford:Oxford University Press,1950.

[4] P N V Tu. Dynamical systems: an introduction with applications in economics and biology, 2nd edn.[M]. New York:Springer,1994.

[5] Hassan Sedaghat. A class of nonlinear second order difference equations from macroeconomics[J]. Nonlinear Anal., 1997, 29(5): 593-603.

[6] D Guo.Nonlinear functional analysis[M].Jinan:Shandong Science and Technology Press,2002.(In Chinese)

注:本文中所涉及到的圖表、注解、公式等內容請以PDF格式閱讀原文

主站蜘蛛池模板: 午夜性爽视频男人的天堂| 亚洲精品你懂的| 久久综合伊人77777| 国产精品欧美在线观看| 19国产精品麻豆免费观看| 国产成人无码久久久久毛片| 91热爆在线| 伊人精品成人久久综合| 亚洲—日韩aV在线| 精品久久香蕉国产线看观看gif| 992Tv视频国产精品| 国产丝袜丝视频在线观看| 国产无码精品在线| 中文字幕 日韩 欧美| 国禁国产you女视频网站| 成人年鲁鲁在线观看视频| 久久久久国产一区二区| 国产精品三级av及在线观看| 9久久伊人精品综合| 精品国产网| 亚洲一区国色天香| 国产啪在线| 一本久道久久综合多人| 国产成年女人特黄特色大片免费| 国产好痛疼轻点好爽的视频| 人人看人人鲁狠狠高清| 日韩欧美中文字幕在线精品| 亚洲中文精品人人永久免费| 日韩黄色大片免费看| swag国产精品| 无码人妻热线精品视频| 日韩无码视频专区| 日韩欧美亚洲国产成人综合| 成人中文字幕在线| 特级做a爰片毛片免费69| 国产97公开成人免费视频| 四虎成人在线视频| 麻豆国产精品| 四虎精品黑人视频| 二级特黄绝大片免费视频大片| 欧美在线观看不卡| 亚洲男人的天堂久久香蕉网| 亚洲美女高潮久久久久久久| 久久久久国色AV免费观看性色| 久久99国产综合精品女同| 青青青国产视频手机| 日本欧美一二三区色视频| 成人无码一区二区三区视频在线观看 | 呦女精品网站| 精品成人免费自拍视频| 国产91无毒不卡在线观看| 99无码熟妇丰满人妻啪啪| 亚洲国产看片基地久久1024| av色爱 天堂网| 亚洲高清中文字幕在线看不卡| 亚洲第一黄片大全| 丁香六月激情综合| 欧美一区二区人人喊爽| 青草视频在线观看国产| 污网站免费在线观看| 九九久久精品国产av片囯产区| 伊人婷婷色香五月综合缴缴情| 色综合婷婷| 亚洲精品亚洲人成在线| 青青操视频在线| 71pao成人国产永久免费视频| 国产高颜值露脸在线观看| 色婷婷色丁香| 国产精品999在线| 天天干天天色综合网| 国产三级视频网站| www.99精品视频在线播放| 精品精品国产高清A毛片| 国产剧情一区二区| 又粗又硬又大又爽免费视频播放| 一区二区三区四区日韩| 99久久性生片| 91在线精品免费免费播放| 精品视频一区在线观看| 人妻丰满熟妇av五码区| 不卡午夜视频| 久久久久国色AV免费观看性色|