摘要:多胺(腐胺、精胺、亞精胺)廣泛存在于原核和真核細胞中,在細胞的生長和增殖過程中起著重要作用。介紹了昆蟲體內多胺的種類、生物合成及與昆蟲卵黃發(fā)生、胚胎發(fā)育、生長變態(tài)、行為、激素調節(jié)等相互作用的研究結果,并展望了其研究前景。
關鍵詞:多胺;生物合成;生理功能
中圖分類號:Q965文獻標識碼:A文章編號:0439-8114(2011)12-2388-03
Advances in Polyamines of Insects
WANG Xun-jian1,WANG Man-qun2
(1. Hubei Radio & TV University,Wuhan 430074,China;
2.College of plant Science and Technology Academy of Huazhong Agricultural University, Wuhan 430070,China)
Abstract: Polyamines(putrescine, spermidine and spermine) which are ubiquitous polycations in prokaryotic and eukaryotic cells play fundamental roles in cell growth and cell differentiation. The kinds and biosynthesis of polyamines in insects were introduced, the research advances in mutual relationships between polyamines and the vitellogenesis, embryonic development, metamorphosis, behavior, and hormones of insects were generdized. The expectation was described.
Key words: polyamines; biosynthesis; physiological functions
多胺(Polyamines)是生物體內普遍存在的具有生物活性的一類低分子量的含氮堿類,是精氨酸(Arg)代謝過程中產(chǎn)生的一類低分子胺,主要有腐胺(Putrescine,Put)、精胺(Spermine,Spm)與亞精胺(Spermidine,Spd)等[1]。1948年Herbs首先在細菌中發(fā)現(xiàn)多胺的存在,其后Ham和Berrossi分別發(fā)現(xiàn)多胺在動植物細胞增殖中有重要作用[2,3]。研究表明,快速增長細胞的多胺濃度比靜止細胞顯著增高;多胺影響DNA、RNA以及蛋白質的生物合成[3-7],直接或間接參與細胞的分化[8,9],并能特異抑制多胺的生物合成及組織的生長[10,11]。多胺及其合成酶存在于昆蟲體內,可參與昆蟲各種生理調節(jié)過程。本文就多胺及其昆蟲生理功能的一些研究作一評述。
1多胺的種類及分布
目前昆蟲中已知多胺的種類有:丙二胺(Diaminopropane)、腐胺、尸胺(Cadverine)、Aminopropylcadverine、bis-(Aminopropyl)cadverine、降亞精胺(Norspermidine)、亞精胺、高亞精胺(Homospermidine)、Aminopropylnorspermid、氨丙基高亞精胺(Aminopropylhomospermimide)、降精胺(Norspermine)、Thermospermine、精胺、高精胺(Homospermine)、Aminobutylhomospermine、Caldopentamine、組胺(Histamme)、Caldohexamine、胍丁胺(Agmatine)等,其中腐胺、精胺、亞精胺、尸胺是普遍存在的多胺,也是生物及昆蟲中主要研究的多胺[12-15]。
對昆蟲機體多胺測定的結果表明,不同組織器官中多胺種類和含量是不同的。如腐胺、降亞精胺、亞精胺、降精胺、精胺是家蠶(Bombyx mori)、半目大蠶(Antheraea yamamai)、大螟蛾(Galleria mellonella)3種昆蟲中主要多胺,二氨丙烷和高亞精胺是次要多胺[14]。腐胺、精胺、亞精胺是蟋蟀生長發(fā)育過程中主要的多胺,但在其神經(jīng)組織中檢測不到腐胺[16]。鞭角華扁葉蜂(Chinolyda flagellicornis)血淋巴中含有8種多胺,其中腐胺、精胺、亞精胺、尸胺為普遍存在的多胺,其發(fā)育的不同階段,多胺的種類和含量均發(fā)生變化,這表明多胺可能參與鞭角華扁葉蜂預蛹滯育過程[17]。對家蠶不同組織中多胺測定的結果表明,腐胺和亞精胺在其絲腺、生殖腺、黏液腺、吸胃中含量特別高,但精胺含量較低;含有滯育卵個體生殖腺和吸胃中多胺的含量尤其高;滯育卵中尸胺的含量明顯高于非滯育卵;絲腺中多胺的含量在幼蟲不同的發(fā)育階段基本不變,但在成蟲階段顯著降低;而生殖腺中多胺含量則不降低,相反,腐胺、二氨丙烷、降亞精胺的含量在成蟲階段有所升高[12]。昆蟲錐形體中的亞精胺含量隨著昆蟲生長發(fā)育而提高,而且隨著昆蟲生活環(huán)境的改善而提高[18]。
2多胺昆蟲生理學功能
2.1多胺與卵黃發(fā)生
多胺對昆蟲卵黃發(fā)生起著重要作用。在埃及伊蚊(Aedees aegypti)卵黃發(fā)生期間,多胺合成限速酶ODC酶活性呈上升趨勢,即多胺濃度升高;而當多胺合成受到抑制時,卵黃發(fā)生受到抑制[19];ODC酶活性在果蠅卵黃發(fā)生期間也表現(xiàn)為類似的上升趨勢[20]。蟋蟀(Acheta domesticus)雌性成蟲脂肪體中多胺合成限速酶ODC和AdoMetDC活性在發(fā)育初期即卵黃發(fā)生期間最高,多胺濃度也呈上升趨勢[16,21]。
2.2多胺與昆蟲胚胎發(fā)育
正常的多胺濃度對昆蟲胚胎發(fā)育非常必要。果蠅(Drosophila melanogaster)卵產(chǎn)后0.5~2.5 h期間,卵內多胺(腐胺、精胺和亞精胺)濃度較高,此時處于卵黃內核子迅速分裂和核子轉移及細胞形成時期;卵產(chǎn)后發(fā)育4~6 h后,卵內多胺濃度呈升高趨勢,此刻伴隨著神經(jīng)系統(tǒng)和機體不同組織的發(fā)育;而注射多胺合成抑制劑可減少胚胎皮層處核子數(shù),抑制核子延伸[22]。對動物胚胎發(fā)育與多胺的關系研究結果也表明,多胺是正常的卵發(fā)生卵裂和原腸胚形成的必要物質[23,24]。
2.3多胺與昆蟲生長和變態(tài)
多胺濃度變化與昆蟲生長發(fā)育階段密切相關,昆蟲快速生長階段多胺的濃度較高。如麗蠅(Calliphora erythrocephala)發(fā)育過程中主要多胺亞精胺濃度峰值出現(xiàn)在迅速生長的早期幼蟲階段,而在其他發(fā)育階段較低[25];在果蠅發(fā)育過程中,亞精胺濃度峰值與RNA和蛋白質合成速率的峰值在時間上相吻合[26];多胺合成酶ODC酶活性在家蠅[27](Musca domestica)、麗蠅[8]、果蠅[20]等昆蟲發(fā)育早期較低或無活性,但隨著昆蟲發(fā)育的開始,酶活性升高。
多胺濃度在黃粉甲(Tenebrio molitor)變態(tài)期間呈有規(guī)律的變化趨勢:其表皮中多胺濃度在細胞G2期開始升高,第一次峰值出現(xiàn)在細胞G2期抑制,即蛹表皮向成蟲表皮轉化有絲分裂關鍵期;第二次峰值出現(xiàn)在細胞G2期再次抑制,即有絲分裂之后,此時,細胞由分裂轉向不分裂G2期狀態(tài),開始分泌成蟲前蛻去表皮,作為分化過程的結束[28]。多胺及其合成限速酶ODC活性在Manduca sexta幼蟲——蛹變態(tài)發(fā)育期間也呈現(xiàn)出有規(guī)律的變化趨勢[29]。表明多胺的作用可能與昆蟲的生長和變態(tài)有關。
2.4多胺與昆蟲行為
研究表明,多胺參與生物行為調節(jié),腦部多胺濃度的降低可導致幼鼠行動遲緩[30]。但多胺與昆蟲行為關系的研究,目前僅見于蟋蟀雌性成蟲[31]和美洲蜚蠊(Periplanena americana)中[1]。研究發(fā)現(xiàn),多胺合成抑制劑DFMO的施用導致機體多胺衰竭,延遲了羽化之后開始有產(chǎn)卵行為的時間,如成蟲羽化后在第五天對照組有70%的蟋蟀表現(xiàn)產(chǎn)卵行為,而處理組只有17%,這就說明同其他生物類似,ODC-多胺系統(tǒng)參與調節(jié)昆蟲行為技能的發(fā)育。近年來有研究表明,給美洲蜚蠊喂養(yǎng)多胺抑制劑二氟甲基鳥氨酸(DFMO)后,其雄蟲觸角對雌蟲性信息素的觸角電位敏感性加強,由此證明多胺對昆蟲的嗅覺具有調節(jié)作用[1]。通過田間試驗還研究發(fā)現(xiàn)腐胺對地中海果蠅(Meditemanean fruitfly)具有強烈的引誘作用[32]。對小菜蛾(Plutella xylostella)的試驗表明,小菜蛾在交配前和交配后對精胺、亞精胺和腐胺這3種多胺均有明顯的趨性反應,小菜蛾在交配前和交配后對精胺、亞精胺和腐胺這3種多胺均有明顯的觸角電位EAG反應[33];多胺處理影響了小菜蛾對氣味物質如植物氣味、性信息素和多胺的觸角電位反應,同時,多胺的這種效應還與小菜蛾的性別及交配與否相關[34]。
2.5多胺與昆蟲激素
目前對多胺與激素關系的研究,主要涉及保幼激素(JH)和蛻皮激素(MH)兩類激素。研究結果表明,JH和MH對昆蟲神經(jīng)組織和脂肪體中多胺代謝具有不同的調節(jié)功能。
咽側體摘除及JH缺乏可明顯抑制蟋蟀脂肪體中ODC酶的活性,提高AMDC酶的活性,導致多胺含量尤其是腐胺含量的降低;而對咽側體摘除個體注射JH后,可使ODC酶活性提高5倍,AMDC酶活性提高2.5倍,從而導致多胺含量的升高[35];而咽側體摘除可使蟋蟀神經(jīng)組織中ODC和AMDC的酶活性均降低,導致多胺尤其是亞精胺明顯損耗,注射JH可消除咽側體摘除對機體的影響,激活了AMDC酶活性,使其機體中多胺含量恢復到對照組的水平。對果蠅分離腹部施加JH類似物可促進ODC酶活性和多胺含量升高的研究結果也證實JH可促進多胺合成[20]。
與咽側體摘除類似,卵巢切除可抑制蟋蟀脂肪體中ODC酶活性,促進AMDC酶活性,導致多胺含量降低;ODC酶活性的大量降低可導致腐胺和亞精胺明顯衰竭,進而導致AMDC酶活性的升高。但與咽側體摘除不同的是,卵巢切除雖也可使個體神經(jīng)組織中亞精胺濃度的大量升高,但對神經(jīng)組織中ODC和AMDC酶活性影響不大,這可能是由于MH也可能作用于多胺降解,主要通過抑制亞精胺/精胺乙酰化過程合成酶或其他代謝有關酶的活性、或多胺氧化酶的活性,導致亞精胺含量上升[36,37]。
多胺與激素的關系還表現(xiàn)在多胺參與激素對昆蟲生理的調節(jié)。在缺乏JH的蟋蟀雌性成蟲中,蕈形體成神經(jīng)細胞表現(xiàn)為有絲分裂活動減少,咽側體摘除后有絲分裂明顯降低,只有對照的51.7%;注射JH可明顯促進激素缺乏蟲體的細胞繁殖,并使其神經(jīng)發(fā)生恢復至對照水平。但當給咽側體摘除個體注射JH的同時飼喂多胺抑制劑DFMO,則不能使有絲分裂指數(shù)明顯增加,也不能導致腐胺和亞精胺含量升高,而僅僅是精胺含量明顯升高,表明DFMO能夠抑制JH對機體內特別是神經(jīng)組織中多胺合成的促進作用;但通過升高腦部腐胺含量,就可模仿JH刺激經(jīng)DFMO處理的咽側體摘除個體成神經(jīng)細胞的分化,說明在JH缺乏個體中,DFMO能夠抑制注射JH對成神經(jīng)細胞分化的促進作用,JH調節(jié)神經(jīng)發(fā)生需多胺生物合成的參與[38]。但DFMO并不能抑制JH對卵黃發(fā)生的作用[20],注射JH可使咽側體摘除和DFMO處理個體的卵巢正常發(fā)育。
3展望
目前已證實,多胺普遍存在于昆蟲體內,多胺可與保幼激素(JH)和蛻皮激素(MH)相互作用,參與昆蟲卵黃發(fā)生、胚胎發(fā)育、變態(tài)、行為等生理調節(jié)過程,對昆蟲具有多效性的生理功能。由于昆蟲生理過程及多胺代謝的復雜性,多胺對昆蟲生理過程精確的調節(jié)機理還不清楚,今后還應該強調多胺與昆蟲神經(jīng)內分泌調節(jié)相互協(xié)調關系的研究。同時,多胺對于卵黃發(fā)生以及與激素之間相互調節(jié)的關系,能促使我們考慮通過施用多胺及其抑制劑,來改變或抑制昆蟲成蟲卵黃發(fā)生或卵發(fā)育過程,達到防治害蟲利用有益昆蟲的目的。這將為害蟲綜合治理帶來新的活力。
參考文獻:
[1] TIRARD A,RENUCCI M, PROVOST E, et al. Are polyamines involved in olfaction? An EAG and biochemical study in Periplaneta americana Antennae[J]. Chem Sens,2002,27(5):417-423.
[2] 潘瑞熾. 多胺是植物生長發(fā)育的調節(jié)物[J]. 植物生理學通訊,1985(6):63-67.
[3] TABOR C W,TABOR H. Polyamines[J]. Ann Rev Biochem,1984,53:749-790.
[4] PEGG A E,MCCANN P P. Polyamines metabolism and function[J]. Am J Physiol, 1982, 243(5):C212-C221.
[5] FRYDMAN L, ROSSOMANDO P C, FRYDMAN V, et al. Interactions between natural polyamines and tRNA: an 15N NMR analysis[J]. Proc Natl Acad Sci USA, 1992, 89(19):9186-9190.
[6] THOMAS T, THOMAS T J. Selectivity of polyamines in triplex DNA stabilization[J]. Biochem,1993,32(50):14068-14074.
[7] MATTHEWS H R.My favourite molecule: Polyamines, chromatin structure and trans cription[J]. Bioessays,1993,15(8):561-566.
[8] LUNDQUIST A,LOWKVIST B, LINDEN M, et al. Polyamines in early embryonic development: their relationship to nuclear multiplication rate, cell cycle traverse, and nucleolar formation in a dipteran egg[J]. Devl Biol,1983,95(2):253-259.
[9] SJOHOLM A. Role of polyamines in the regulation of proliferation and hormone production by insulin-secreting cells[J]. Am J Physiol,1993, 264(3):C501-C518.
[10] 馮立新,范慕貞. DFMO誘導HL-60細胞分化及凋亡[J]. 中日友好醫(yī)院學報,1996,10(2):121-123.
[11] 馮立新,范慕貞. 多胺生物合成抑制誘導HL-60細胞凋亡相關基因的克隆及表達[J]. 中華腫瘤雜志,1998,20(4):274-276.
[12] HAMANA K, MATZUZAKI S, INOUE K. Changes in polyamine levels in various organs of Bombyx mori during its life cycle[J]. J Biochem, 1984,95(6):1803-1809.
[13] HAMANA K, SUZUKI M, WAKABAYASHI T, et al. Polyamine levels in the gonads, sperm and salivary gland of cricket cockroach, fly and midge[J]. Comp Biochem Physiol Part B,1989,92(4):691-695.
[14] HAMANA K,NIITSU M,SAMEJIMA K,et al.Novel polyamines in insects and spiders[J]. Comp Biochem Physiol Part B, 1991,100(2):399-402.
[15] HAMANA K,UEMIYA H,NIITSU M. Polyamines of primitive apterygotan insects: springtails, silverfish and a bristletail[J]. Comp Biochem Physiol Part B,2004,137(1):75-79.
[16] STRAMBI C, FAURE P, RENUCCI M, et al. Tissue-specific changes in polyamine levels of neural tissue and fat body in adult crickets[J]. Archives of Insect Biochemistry and physiology, 1993,24(4):203-217.
[17] 王滿囷, 張志春, 李娟, 等. 鞭角華扁葉蜂體內多胺的動態(tài)[J]. 林業(yè)科學,2006,42(10): 80-84.
[18] SHIM H, FAIRLAMB A H. Levels of polyamines, glutathione and glutathione-spermidine conjugates during growth of the insect trypanusomatid Crithidia fasciculata[J]. J Gen Microbiol,1988,134(3):807-817.
[19] KOGAN P H, HANGEDORN H H. Control of polyamines synthesis and its requirement during vitellogenin production in the mosquito, Aedes aegypti[J]. Am Zool,1985,25:127.
[20] BIRNBAUM M J,GILBERT L I. Juvenile hormone stimulation of ornithine decarboxylase activity during vitellogenesis in Drosophila melanogaster[J]. J Comp Physiol B,1990,160(2): 145-151.
[21] CAYRE M, TIRARD A, CHARPIN P, et al. Age and tissue-dependent changes of ornithine decarboxylase and s-adenosylmethionine decarboxylase activities in neural tissue and fat body of adult crickets[J]. Arch Insect Biochem and Physiol ,1993, 24(4):219-228.
[22] CALLERTS P, GEUNS J, LOOF A D. Polyamine changes during early development of Drosophlia melanogaster[J]. J Insecet Physiol,1992,38(10):751-758.
[23] HEBY O, EMANUELSSON H. Role of polyamines in germ cell differenttiation and in early embryonic development[J]. Med Biol,1981, 59(5-6): 417-422.
[24] LOWKVIST B, OREDSSON S M, Holm I, et al. Inhibition of polyamines synthesis reduces the growth rate and delays the expression of differentiated phenotypes in primary cultures of embryonic mesoderm from chick[J]. Cell Tiss Res, 1987,249(1):151-160.
[25] HEBY O. Polyamine variations during postembryonic development of the blowfly Calliphora erythrocephala[J]. Insect Biochem,1972,2(5): 13-22.
[26] BYUS C V And HERBSt E J. The effect of polyamine biosynthesis on the synthesis of ribonucleic acid by Drosophila melanogaster larvae[J]. Biochem J,1976,154:23-29.
[27] SPARKS R B, VASKE D, LILLEBERG S, et al. Temporal expression of ornithine decarboxylase in developing embryos of Musca domestica L[J]. Archs Insect Biochem Physiol , 1991, 16(3):177-187.
[28] BESSON M T, DELBECQUE J P, MATHELIN J, et al. Epidermal polyamine levels related to cell cycle events during the metamorphosis of Tenebrio molitor[J]. Comp Biochem Physiol B,1986,83R:589-593.
[29] BIRNBAUM M J, WHELAN T M, GILBERT L I. Temporal alterations in polyamine content and ornothine decarbocylase activity during the larval-pupal development of Manduca sexta[J]. Insect Biochem, 1988, 18(8): 853-859.
[30] BELL J M, MADWED D S, SLOTKIN T A. Critical development periods for inhibition of ornithine decarboxylase by α-diffluoromethylornithine: Effects on ontogeny of sensorimotor behavior[J]. Neurosci,1986,19(2):457-464.
[31] CAYRE M, STRAMBI C, CHARPIN P, et al. Inhibition of polyamine biosynthesis alters oviposition behavior in female crickets[J]. Behavior Neuros,1996,110(5):1117-1125.
[32] HEATH R R, EPSKY N D, MIDGARDEN D, et al. Efficacy of 1,4-diaminobutane (putrescine) in a food-based synthetic attractant for capture of Mediterranean and Mexican fruit flies (Diptera: Tephritidae) [J]. Journal of Economic Entomology,2004,97(3):1126-1131.
[33] ZHANG Z C, WANG M Q,LI H ,et al. Behavioral and electrophysiological responses of the diamondback moth, Plutella xylostella L., to polyamines(Lepidoptera:Yponomeutidae)[J]. Entomologia Generalis,2009,32(2):85-92.
[34] ZHANG Z C,WANG M Q,LI H, et al. Effects of polyamines and polyamine synthesis inhibitor on antennal electrophysiological responses of diamondback moths, Plutella xylostella[J]. Entomologia Experimentalis et Applicata,2008,129(1):18-25.
[35] CAYRE M, STRAMBI C, TIRARD A, et al. Effects of juvenile hormone on polyamines of the fat and neural tissue of the cricket Acheta domesticus[J]. Comp Biochem Physiol Part A, 1995, 111(2): 241-250.
[36] STRAMBI C, TIRARD A, RENUCCI M, et al. Ecdysone deprivation affects polyamine metabolism in the house cricket Acheta domesticus[J]. Insect Biochem Mole Biol,1993,
23(1):165-170.
[37] CAYRE M, STRAMBI C, CHARPIN P, et al. Inhibitory role of ecdysone on neurogenesis and polyamine metabolism in the adult cricket brain[J]. Arch Insect Biochem Physiol,1997, 35(1-2):85-97.
[38] CAYRE M, STRAMBI C, CHARPIN P, et al. Specific requirement of putrescine for the mitogenic action of juvenile hormone on adult insect neuroblasts[J]. Proc Natl Acad Sci USA,1997,94(15):8238-8242.