《數(shù)學(xué)通報》2010年第7期問題1863如下:
設(shè)x,y∈R+,x+2y=3,求1[]x3+λ[]y3的最小值.
原題解答:
解 設(shè)1[]x3+2[]y3=k,1=1[]k1[]x3+2[]y3.
又 1=x+2y[]3,
構(gòu)造“數(shù)學(xué)式”:4=3+1=3·x+2y[]3+1[]k1[]x3+2[]y3
=1[]kx3+x[]3+x[]3+x[]3+2[]ky3+2y[]3+2y[]3+2y[]3
≥4x[]4[]27k+8y[]4[]27k=4(x+2y)[]4[]27k=4·3[]4[]27k .
依4≥4·3[]4[]27k,解得k≥3.
當(dāng)3[]kx3=x[]3,2[]ky3=2y[]3,x+2y=3,
即x=y=1時,1[]x3+2[]y3min=3.
本文給出上述問題的一個推廣,并分別利用均值不等式和赫爾德不等式給出兩種解答方法.
推廣 設(shè)x,y∈R+,x+λy=n,求1[]xn+λ[]yn的最小值.
解 (方法一)設(shè)1[]xn+λ[]yn=k,則1=1[]k1[]xn+λ[]yn.又 x+λy=n,
構(gòu)造“數(shù)學(xué)式”:n+1=n·x+λy[]n+1[]k1[]xn+λ[]yn=1[]kxn+x[]n+x[]n+…+x[]n+λ[]kyn+λy[]n+λy[]n+…+λy[]n(第一個括號里有n個x[]n相加,第二個括號里有n個λy[]n相加)≥n+1[]n+1[]knn+(n+1)λ[]n+1[]knn=(n+1)(1+λ)[]n+1[]knn,
∴1+λ[]n+1[]knn≤1,∴k≥(1+λ)n+1[]nn.
當(dāng)1[]kxn=x[]n,λ[]kyn=λy[]n,即x=y=n[]1+λ時,1[]xn+λ[]ynmin=(1+λ)n+1[]nn.
(方法二)根據(jù)赫爾德不等式,有
1[]xn+λ[]yn1[]n+1·(x+λy)n[]n+1≥1[]xn[]n+1·xn[]n+1+λ1[]n+1[]yn[]n+1·λn[]n+1·yn[]n+1=1+λ,
∴1[]xn+λ[]yn1[]n+1≥1+λ[]nn[]n+1.∴1[]xn+λ[]yn≥(1+λ)n+1[]nn.
故1[]xn+λ[]ynmin=(1+λ)n+1[]nn.
【參考文獻(xiàn)】
數(shù)學(xué)問題解答[J].數(shù)學(xué)通報,2010(07).