王 正
(中國(guó)北方發(fā)動(dòng)機(jī)研究所柴油機(jī)高增壓技術(shù)國(guó)防重點(diǎn)實(shí)驗(yàn)室,大同 037036)
旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件時(shí)變可靠性模型
王 正
(中國(guó)北方發(fā)動(dòng)機(jī)研究所柴油機(jī)高增壓技術(shù)國(guó)防重點(diǎn)實(shí)驗(yàn)室,大同 037036)
分析了旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件的失效特點(diǎn)以及對(duì)稱單元數(shù)對(duì)零部件可靠性的影響,建立了能體現(xiàn)對(duì)稱單元數(shù)的旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件強(qiáng)度概率密度函數(shù)和累積分布函數(shù).分別以隨機(jī)載荷作用次數(shù)和時(shí)間為壽命度量指標(biāo),建立了隨機(jī)載荷作用下能夠全面體現(xiàn)載荷、強(qiáng)度、對(duì)稱單元數(shù)、壽命指標(biāo)等參數(shù)影響的旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件時(shí)變可靠性模型與失效率計(jì)算模型.研究表明:在強(qiáng)度不退化的情況下,旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件的可靠度也會(huì)隨著壽命指標(biāo)(載荷作用次數(shù)或時(shí)間)逐漸降低,失效率隨壽命指標(biāo)逐漸減小.對(duì)于具有相同對(duì)稱單元的旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件,隨著對(duì)稱單元數(shù)的增加,零部件可靠度會(huì)降低且失效率會(huì)增大.
旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件;時(shí)變可靠度;失效率;載荷作用次數(shù);強(qiáng)度分布
旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件廣泛地存在于各類機(jī)械設(shè)備和系統(tǒng)中,并在其中發(fā)揮著十分重要的作用.例如,在減速機(jī)、汽車等幾乎所有機(jī)械設(shè)備和系統(tǒng)中普遍用于傳遞力和運(yùn)動(dòng)的齒輪,就是典型的旋轉(zhuǎn)對(duì)稱結(jié)構(gòu);再如,在壓縮機(jī)、汽輪機(jī)等流體機(jī)械中常用的葉輪也同樣是旋轉(zhuǎn)對(duì)稱結(jié)構(gòu).無(wú)論是作為傳遞力和運(yùn)動(dòng)的齒輪還是作為能量形式轉(zhuǎn)換的葉輪,都在整個(gè)機(jī)械系統(tǒng)中起著關(guān)鍵的作用.因此,準(zhǔn)確評(píng)估這類零部件的可靠性對(duì)于整個(gè)系統(tǒng)安全運(yùn)行和維修管理都具有重要意義.
對(duì)于這類具有旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)的零部件,如何科學(xué)地體現(xiàn)結(jié)構(gòu)差異性(如對(duì)稱單元數(shù))對(duì)零部件可靠性的影響,是決定其可靠性分析與建模準(zhǔn)確性的關(guān)鍵.現(xiàn)有的齒輪和葉輪等旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件可靠性模型,大多針對(duì)零部件上某一危險(xiǎn)部位的一種失效模式或多種失效模式進(jìn)行可靠性分析與計(jì)算,并以此作為零部件的可靠度[1-2].顯然,這類可靠性模型并不能科學(xué)地反映結(jié)構(gòu)特征對(duì)其可靠性的影響,如無(wú)法反映齒數(shù)對(duì)齒輪可靠性的影響,以及葉片數(shù)對(duì)葉輪可靠性的影響等.此外,這類可靠性模型大多直接運(yùn)用傳統(tǒng)的載荷-強(qiáng)度干涉模型進(jìn)行零部件可靠性分析與計(jì)算,并不能體現(xiàn)其可靠性隨壽命指標(biāo)的變化[3-6].同時(shí),由于其計(jì)算的可靠度為“靜態(tài)”值,也無(wú)法在此基礎(chǔ)上得到零部件的失效率.
本文將針對(duì)旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件的特點(diǎn),在分析其失效特點(diǎn)的基礎(chǔ)上,建立能夠體現(xiàn)對(duì)稱單元數(shù)影響的零部件強(qiáng)度概率分布函數(shù)與概率密度函數(shù),分別建立以載荷作用次數(shù)和時(shí)間為壽命指標(biāo)的旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件可靠性模型與失效率計(jì)算模型,并研究其可靠度與失效率的變化規(guī)律.
旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件廣泛地應(yīng)用于各類機(jī)械設(shè)備和系統(tǒng),例如,齒輪和葉輪就是典型的旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件.旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件在結(jié)構(gòu)上具有明顯的對(duì)稱性,各對(duì)稱單元具有相同的強(qiáng)度概率分布,并且承受相同的載荷.
在現(xiàn)有旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件可靠性分析與計(jì)算中,通常將某一對(duì)稱單元的危險(xiǎn)部位作為研究對(duì)象,將該部位的強(qiáng)度分布作為整個(gè)零部件的強(qiáng)度分布,并在此基礎(chǔ)上進(jìn)行相關(guān)的計(jì)算與分析.然而,這樣的處理并沒(méi)有體現(xiàn)零部件中對(duì)稱單元數(shù)的不同對(duì)零部件強(qiáng)度分布及可靠性的影響[1-2].
事實(shí)上,對(duì)于旋轉(zhuǎn)對(duì)稱結(jié)構(gòu),每個(gè)對(duì)稱單元的危險(xiǎn)部位都有可能成為實(shí)際的失效部位.從統(tǒng)計(jì)的角度來(lái)看,每一個(gè)對(duì)稱單元均可以視為從服從其強(qiáng)度概率分布的母體中抽取的一個(gè)隨機(jī)樣本,而包含這些對(duì)稱單元的零部件可視為由這些對(duì)稱單元樣本所組成的一個(gè)樣本集,樣本數(shù)即為對(duì)稱單元數(shù).顯然,對(duì)于同一載荷,只要樣本集中的最小值樣本大于該載荷,則其他樣本也均大于該載荷.也就是說(shuō),只要樣本集中強(qiáng)度最小的對(duì)稱單元在某一載荷作用下不失效,則該旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件對(duì)于這一載荷就不會(huì)發(fā)生失效.因此,可以將這些對(duì)稱單元中的最小強(qiáng)度作為旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件的強(qiáng)度.
設(shè)旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件包含n個(gè)對(duì)稱單元,對(duì)稱單元的強(qiáng)度概率密度函數(shù)和累積分布函數(shù)分別為fi(δ)和 Fi(δ).由上述分析可知,零部件的強(qiáng)度即為由這個(gè)n對(duì)稱單元強(qiáng)度組成的樣本集所確定的最小順序統(tǒng)計(jì)量.由最小順序統(tǒng)計(jì)量理論可知[7],旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件強(qiáng)度的累積分布函數(shù)可表示為

其概率密度函數(shù)可表示為

式(1)和式(2)所示的零部件強(qiáng)度概率分布函數(shù)包含了對(duì)稱單元數(shù),能夠科學(xué)地體現(xiàn)出對(duì)稱單元數(shù)對(duì)零部件強(qiáng)度概率分布的影響.
對(duì)于由強(qiáng)度服從正態(tài)分布(均值為400,標(biāo)準(zhǔn)差為60)的對(duì)稱單元組成的旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件,其強(qiáng)度的概率密度函數(shù)和累積分布函數(shù)隨對(duì)稱單元數(shù)的變化分別如圖1和圖2所示.

圖1 零部件強(qiáng)度的概率密度函數(shù)隨對(duì)稱單元數(shù)的變化

圖2 零部件強(qiáng)度的累積分布函數(shù)隨對(duì)稱單元數(shù)的變化
從圖1、圖2中可以看出,對(duì)于具有相同對(duì)稱單元的旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件,零部件強(qiáng)度概率分布的均值隨著對(duì)稱單元數(shù)的增加逐漸降低,分散性隨對(duì)稱單元數(shù)的增加而逐漸減小.
旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件在工作中普遍承受著隨機(jī)載荷.如壓氣機(jī)葉輪會(huì)隨著流量和轉(zhuǎn)速的波動(dòng),其載荷表現(xiàn)出較大的隨機(jī)性.因此,在對(duì)旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件進(jìn)行可靠性分析與建模時(shí)必須充分考慮載荷的不確定性影響.
下面,分別在以載荷作用次數(shù)和時(shí)間為壽命度量指標(biāo)框架下,不考慮強(qiáng)度退化的影響,建立具有單一失效模式的旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件時(shí)變可靠性模型與失效率計(jì)算模型.
旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件在全壽命周期中往往受到隨機(jī)載荷反復(fù)多次的作用.傳統(tǒng)直接運(yùn)用載荷-強(qiáng)度干涉模型計(jì)算的零部件可靠度實(shí)際上是隨機(jī)載荷作用一次或特定次數(shù)時(shí)的可靠度,沒(méi)有體現(xiàn)零部件可靠度隨載荷作用次數(shù)的變化,并不能計(jì)算隨機(jī)載荷作用任意次數(shù)時(shí)零部件的可靠性.同時(shí),也無(wú)法計(jì)算出零部件的失效率.
設(shè)載荷的累積分布函數(shù)為Fs(s),概率密度函數(shù)為fs(s).當(dāng)隨機(jī)載荷多次作用于零部件時(shí),在強(qiáng)度不退化的情況下載荷作用w次時(shí)等效載荷的累積分布函數(shù)可表示為[3,5]

概率密度函數(shù)可表示為[3,5]

結(jié)合式(1)和式(2),運(yùn)用載荷-強(qiáng)度干涉理論可得載荷作用w次時(shí)旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件的可靠度

進(jìn)一步,當(dāng)零部件承受的總載荷作用次數(shù)相對(duì)較大時(shí),旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件的失效率為[5]

式(5)和式(6)所示的可靠性模型與失效率計(jì)算模型能夠體現(xiàn)載荷作用次數(shù)和對(duì)稱單元數(shù)對(duì)旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件可靠度與失效率的影響.
在實(shí)際中,旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件通常以工作時(shí)間作為其壽命度量指標(biāo).為更好地進(jìn)行零部件的可靠性分析與維修管理,有必要建立能夠體現(xiàn)隨時(shí)間變化的可靠度計(jì)算模型.然而,運(yùn)用現(xiàn)有的可靠性模型計(jì)算得到的數(shù)值實(shí)際上是一個(gè)“靜態(tài)”或“準(zhǔn)靜態(tài)”的可靠度[8-10],同時(shí),零部件的失效率計(jì)算需依賴于大量的產(chǎn)品試驗(yàn)數(shù)據(jù)和使用數(shù)據(jù),無(wú)法在設(shè)計(jì)階段就直接指導(dǎo)零部件的可靠性設(shè)計(jì)[10-14].
在傳統(tǒng)的零部件可靠性分析與建模中,通常采用單一的概率密度函數(shù)來(lái)描述載荷的不確定性,并不能全面地反映載荷作用過(guò)程的不確定特征.當(dāng)零部件以時(shí)間作為其壽命度量指標(biāo)時(shí),載荷一般都同時(shí)具有時(shí)間維和幅度維的不確定特征,即載荷出現(xiàn)時(shí)間的不確定性和載荷出現(xiàn)時(shí)幅值大小的不確定性.在這里,采用載荷作用過(guò)程的二維描述法來(lái)刻畫(huà)載荷的不確定性特征.具體為,用隨機(jī)過(guò)程來(lái)描述載荷在時(shí)間維的不確定性特征,用概率密度函數(shù)來(lái)描述載荷在幅度維的不確定性特征[3,5].
下面,用參數(shù)為λ(t)的泊松隨機(jī)過(guò)程描述隨機(jī)載荷作用次數(shù)隨時(shí)間變化的不確定性特征,用累積分布函數(shù)為Fs(s),概率密度函數(shù)為fs(s)的隨機(jī)變量描述載荷幅值大小的不確定性特征.因此有,在時(shí)刻t載荷出現(xiàn)w次的概率P(w)為

在強(qiáng)度不退化或退化不明顯的情況下,結(jié)合式(5)和式(7)可得旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件在時(shí)刻t時(shí)的可靠度

式(8)可簡(jiǎn)化為

進(jìn)一步,可以得到強(qiáng)度不退化時(shí)旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件失效率的表達(dá)式

同時(shí),可以得到強(qiáng)度不退化時(shí)旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件的平均壽命θ為

式(9)~式(11)體現(xiàn)了對(duì)稱單元數(shù)對(duì)旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件可靠度、失效率與平均壽命的影響.
下面,在不考慮強(qiáng)度退化的情況下,分別在以載荷作用次數(shù)和時(shí)間為壽命度量指標(biāo)框架下研究旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件可靠度與失效率隨壽命指標(biāo)和對(duì)稱單元數(shù)的變化規(guī)律.
設(shè)旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件對(duì)稱單元的強(qiáng)度服從均值為900MPa,標(biāo)準(zhǔn)差為80MPa的正態(tài)分布,載荷服從均值為500MPa,標(biāo)準(zhǔn)差為40MPa的正態(tài)分布.具有不同對(duì)稱單元數(shù)(15,20,25)的旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件可靠度與失效率隨載荷作用次數(shù)的變化分別如圖3和圖4所示.

圖3 旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件可靠度隨載荷作用次數(shù)的變化
從圖3和圖4可以看出,即使在強(qiáng)度不退化的情況下,旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件可靠度也會(huì)隨著載荷作用次數(shù)的增加在逐漸降低,失效率逐漸減小.對(duì)于由相同對(duì)稱單元構(gòu)成的旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件,其可靠度隨著對(duì)稱單元數(shù)的增加在降低,其失效率隨著對(duì)稱單元數(shù)的增加而增大.

圖4 旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件失效率隨載荷作用次數(shù)的變化
設(shè)旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件對(duì)稱單元的強(qiáng)度服從均值為600MPa,標(biāo)準(zhǔn)差為50MPa的正態(tài)分布,載荷幅值服從均值為350MPa,標(biāo)準(zhǔn)差為35MPa的正態(tài)分布,載荷作用次數(shù)與時(shí)間服從參數(shù)為0.5/h的泊松隨機(jī)過(guò)程.具有不同對(duì)稱單元數(shù)(15,20,25)的旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件可靠度與失效率隨時(shí)間的變化分別如圖5和圖6所示.

圖5 旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件可靠度隨時(shí)間的變化

圖6 旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件失效率隨時(shí)間的變化
從圖5和圖6可以看出,即使在強(qiáng)度不退化的情況下,旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件可靠度也會(huì)隨著時(shí)間在逐漸降低,失效率逐漸減小.對(duì)于由相同對(duì)稱單元構(gòu)成的旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件,其可靠度同樣會(huì)隨著對(duì)稱單元數(shù)的增加在降低,失效率隨著對(duì)稱單元數(shù)的增加而增大.
針對(duì)旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件的結(jié)構(gòu)特點(diǎn),指出了運(yùn)用傳統(tǒng)可靠性建模方法在分析這類零部件的可靠性時(shí)并不能較好地反映對(duì)稱單元數(shù)的不同對(duì)其可靠性的影響.分析了對(duì)稱單元數(shù)對(duì)旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件可靠性的影響,建立了能體現(xiàn)對(duì)稱單元數(shù)的旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件強(qiáng)度概率密度函數(shù)和累積分布函數(shù).在此基礎(chǔ)上,分別在以載荷作用次數(shù)和時(shí)間為壽命度量指標(biāo)框架下建立了強(qiáng)度不退化時(shí)旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件的可靠性模型與失效率模型.研究了具有不同對(duì)稱單元數(shù)的旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件可靠度與失效率隨壽命指標(biāo)(載荷作用次數(shù)和時(shí)間)的變化規(guī)律.研究表明:即使在強(qiáng)度不退化的情況下,旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件的可靠度也會(huì)隨著載荷作用次數(shù)或時(shí)間逐漸降低,失效率隨著載荷作用次數(shù)或時(shí)間逐漸減小.對(duì)于由相同對(duì)稱單元構(gòu)成的旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件,其可靠度隨著對(duì)稱單元數(shù)的增加在降低,其失效率隨著對(duì)稱單元數(shù)的增加而增大.
本文所建立的模型能夠體現(xiàn)旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件可靠度與其對(duì)稱單元數(shù)、載荷、強(qiáng)度以及壽命指標(biāo)(載荷作用次數(shù)或時(shí)間)之間的關(guān)系,可以更好地指導(dǎo)旋轉(zhuǎn)對(duì)稱結(jié)構(gòu)零部件的可靠性設(shè)計(jì)與分析.
References)
[1] Shen M-H Herman.Reliability assessment of high cycle fatigue design of gas turbine blades using the probabilistic Goodman diagram[J].International Journal of Fatigue,1999,21(7):699 -708
[2] Kumar P,Narayanan S.Nonlinear stochastic dynamics,chaos,and reliability analysis for a single degree of freedom model of a rotor blade[J].Journal of Engineering for Gas Turbines and Power,2009,131:1 - 8
[3] Wang Zheng,Xie Liyang.Dynamic reliability model of components under random load[J].IEEE Transactions on Reliability,2008,57(3):474 -479
[4] An Zongwen,Huang Hongzhong,Liu Yu.A discrete stress strength interference model based on universal generating function[J].Reliability Engineering and System Safety,2008,93(10):1485-1490
[5]王正.零部件與系統(tǒng)動(dòng)態(tài)可靠性建模理論與方法[D].沈陽(yáng):東北大學(xué)機(jī)械工程學(xué)院,2008 Wang Zheng.Theory and method for time-dependent reliability models of components and systems[D].Shenyang:Department of Mechanical Engineering,Northeastern University,2008(in Chinese)
[6]張義民.任意分布參數(shù)的機(jī)械零件的可靠性靈敏度設(shè)計(jì)[J].機(jī)械工程學(xué)報(bào),2004,40(8):100 -105 Zhang Yimin.Reliability sensitivity design for mechanical elements with arbitrary distribution parameters[J].Chinese Journal of Mechanical Engineering,2004,40(8):100 - 105(in Chinese)
[7]茆詩(shī)松,王靜龍,濮曉龍.高等數(shù)理統(tǒng)計(jì)[M].北京:高等教育出版社,1998 Mao Shisong,Wang Jinglong,Pu Xiaolong.Advanced mathematical statistics[M].Beijing:China Higher Education Press,1998(in Chinese)
[8]左勇志,劉西拉.結(jié)構(gòu)動(dòng)態(tài)可靠性的全隨機(jī)過(guò)程模型[J].清華大學(xué)學(xué)報(bào):自然科學(xué)版,2004,44(3):395 -397,405 Zuo Yongzhi,Liu Xila.Fully stochastic analysis method for structural dynamic reliability[J].Journal of Tsinghua University:Science and Technology,2004,44(3):395 -397,405(in Chinese)
[9]姚衛(wèi)星.結(jié)構(gòu)疲勞壽命分析[M].北京:國(guó)防工業(yè)出版社,2003 YaoWeixing.Fatigue life prediction of structures[M].Beijing:National Defense Industrial Press,2003(in Chinese)
[10] Cazuguel M,Renaud C,Cognard JY.Time-variant reliability of nonlinear structures:application to a representative part of a plate floor[J].Quality and Reliability Engineering International,2006,22(1):101 -108
[11] Xue Xiaoling,F(xiàn)ei Heliang.Parameter estimation of the Weibull distribution tampered failure rate model under a normal stress[J].Chinese Journal of Applied Probability and Statistics,2004,20(2):126 -132
[12] Xie M,Tang Y,Goh T N.A modified Weibull extension with bathtub-shaped failure rate function[J].Reliability Engineering and System Safety,2002,76(3):279 -285
[13] Zafiropoulos E P,Dialynas E N.Reliability and cost optimization of electronic devices considering the component failure rate uncertainty[J].Reliability Engineering and System Safety,2004,84(3):271 -284
[14] Rosario Toscano,Patrick Lyonnet.On-line reliability prediction via dynamic failure ratemodel[J].IEEE Transactions on Reliability,2008,57(3):452 -457
(編 輯:婁 嘉)
Time-dependent reliability models of components with rotatory-symmetrical structure
Wang Zheng
(National Key Laboratory of Diesel Engine Turbocharging Technology,China North Engine Research Institute,Datong 037036,China)
The failure characteristic of components with rotatory-symmetrical structure and the effect of the number of symmetrical parts on their reliability were analyzed.The probability density function and cumulative distribution function of strength of components with rotatory-symmetrical structure were developed.Then,taking the number of load application and time as its life parameter,respectively,the time-dependent reliability models and failure rate models of components with rotatory-symmetrical structure were derived,which consist of load,strength,the number of symmetrical parts and life parameters.The results show that when strength doesn't degenerate,the reliability of components with rotatory-symmetrical structure still decreases as the life parameter(namely,the number of load application and time),and the failure rate also decreases as the life parameter.For the components consisted of the identical symmetrical part,its reliability decreases as the number of symmetrical part increases,and its failure rate increases as the number of symmetrical part increases.
components with rotatory-symmetrical structure;time-dependent reliability;failure rate;number of load application;probability distribution of strength
TB 114.3;TH 122
A
1001-5965(2012)06-0778-05
2011-03-17;網(wǎng)絡(luò)出版時(shí)間:2012-06-15 15:43
www.cnki.net/kcms/detail/11.2625.V.20120615.1543.023.htm l
國(guó)家自然科學(xué)基金資助項(xiàng)目(50905007);國(guó)防科技重點(diǎn)實(shí)驗(yàn)室基金資助項(xiàng)目(9140C3306131001)
王 正(1981-),男,山西靜樂(lè)人,副研究員,wzneu@126.com.