摘 要: 參考國內外有關文獻,綜述了應用熒光原位雜交技術對45S和5S rDNA在果樹染色體上的比較定位以及rDNA特異序列在果樹系統進化研究中的應用現狀,并指出其在果樹應用中存在的問題和未來的發展現狀。研究表明,果樹的45S rDNA位點一般為1~4對,在染色體上多定位于隨體處(即核仁組織區, NORs),也常分布于短臂和著絲粒區;5S rDNA為1~3對,在染色體上沒有固定的分布模式,且與45S rDNA獨立分布。rDNA定位已經用于識別果樹染色體,校正傳統核型以及研究基因組的進化模式。ITS序列是目前果樹系統研究中應用最廣泛的序列之一,但應用時需要檢驗是否存在假基因,未來的關注點應是綜合運用多種DNA序列。
關鍵詞: 果樹; rDNA; 熒光原位雜交; 比較定位; 系統進化
中圖分類號:S66 文獻標志碼:A 文章編號:1009-9980(2012)02-0253-09
Research progress on physical mapping to chromosome and phylogenetic inference of 45S and 5S rDNA in fruit trees
WANG Yan1,2, NAN Hong1,2, WANG Xiao-rong1,2*, ZHANG Li1,2, LIU Yuan1,2, CHEN Qing1,2, TANG Hao-ru1,2
(1College of Horticulture, Sichuan Agricultural University, Ya’an, Sichuan 625014 China; 2Fruits and Vegetables Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130 China)
Abstract: The research progress on physical mapping to chromosome and phylogenetic inference of 45S and 5S rDNA in fruit trees were reviewed in the paper, and their limitation and promising application prospect were also summarized at the end. Studies have shown that the loci of 45S and 5S rDNA on chromosome were independent from each other. By fluorescence in situ hybridization (FISH), 45S rDNA repeats, ranging from 1 to 4 pairs in fruit trees, were found to usually locate on distal satellites, short arm as well as centromere of chromosome. While the 5S repeats, ranging from 1 to 3 pairs, had no fixed loci on chromosomes. The number and location of rDNA loci have been used widely in identifying chromosomes, revising traditional karyotype and genome revolution in tree fruits. At the same time, internal transcribed spacer (ITS), one of specific rDNA sequences, had been applied widely in phylogenetic restruction in fruit trees. However, duing to ITS polymorphism among individuals, it was necessary to detect putative pseudogenes. Additionally, utilization of multi-specific rDNA sequences to analyze phylogenetic implications probably has one bright future.
Key words: Fruit tree; Ribosomal DNA (rDNA); Fluorescence in situ hybridization (FISH); Physical mapping; Phylogenetic evolution
在高等真核生物中,45S rDNA和5S rDNA是2種具有重要功能的編碼核糖體RNA(Ribosomal RNA, rRNA)的重復序列,其編碼區的保守性和非編碼區的多態性是研究動植物系統發育與進化的一個有用標記。如在細胞遺傳學研究中,rDNA的數目以及分布的位置為核型分析提供了穩定識別個別染色體的有效標記。尤其對于染色體較小且形態特征不明顯的物種,能提高同源染色體配對準確性,為進一步闡明染色體結構變異等重要的遺傳學問題提供依據[1]。此外,也常利用rDNA特定序列如ITS來研究植物種屬間的進化關系[2-4],探討多倍體物種的起源進化過程[5]。正是基于上述rDNA的重要作用,我們參考國內外有關文獻,擬對近幾年45S和5S rDNA在果樹染色體上的比較定位以及ITS序列在果樹特定類群系統進化中的應用研究進展進行綜述,并指出其中存在的問題和未來的應用發展方向。
1 rDNA在果樹染色體上的定位研究及其應用
rDNA的物理定位常采用熒光原位雜交(Fluorescence in situ hybridization, FISH)技術。目前,rDNA已在重要的模式植物和經濟作物的基因組中進行了廣泛的物理定位。
1.1 rDNA在染色體上的定位
在植物中,45S rDNA為中度重復序列,是編碼5.8S,18S,26S這3種rRNA的前體[6](圖1),它主要定位于核仁組織區(Nucleolus Organizer Regions, NORs),參與核仁形成,一般在染色體的次縊痕部位(secondary constriction),與隨體(satellite)相連。一般而言,核仁組織區的數目與隨體數目一致,因此45S rDNA的雜交位點數目即為隨體染色體的數目。5S rDNA也為重復序列,由編碼區和非編碼區組成[7](圖2),它在染色體上的位置不像45S rDNA那樣有與核仁相連的明顯特征,而是隨物種不同而不同[8]。
1.2 rDNA在果樹染色體上的定位及其位點多態性
近十年來,已經有較多的特別是屬于薔薇科、蕓香科果樹的45S和5S rDNA比較定位的研究報道(表1)。從表1可以看出,果樹的45S rDNA常定位于1~4對染色體上,除分布在次縊痕及隨體位置外,也常分布在染色體的短臂端部和著絲粒區,且位于隨體之外的45S rDNA位點通常不具有轉錄活性[9],甚至有的物種中45S rDNA位點數目為奇數[10]。以上這些定位特點表明,不同果樹中45S rDNA位點的數目和在染色體上的位置有很大差異,表現出豐富的多態性。這種多態性可能與染色體重排、不等交換、非同源重組、基因顛換以及由轉座子引起的隱蔽rDNA拷貝數的擴增、基因的休眠、轉錄失活和抑制等有關[11-13],也可能與45S rDNA分布在染色體端部有關,因為位于染色體端部的DNA更容易發生交換[14]。從表1還可以看出,45S rDNA多位于短臂,這可能是某種分子和物理上的制約或作用使染色體短臂可以和核仁相連[14];但也有部分果樹以及其他園藝植物的染色體由于臂間倒位或相繼的45S rDNA重復片段在染色體上重排使得45S rDNA存在“反常分布”,如檸檬、枸櫞、枳和日本早櫻等的45S rDNA位于染色體長臂中部或端部[10, 15-16]。
相對于45S rDNA的多態性主要集中在數量的改變,5S rDNA的多態性則主要傾向于分布位置的變化(表1)。果樹的5S rDNA一般為1~3對,在染色體上的分布位置不固定。如柑橘屬有2個5S rDNA位點,位于2條非同源染色體的長臂或短臂端部[10];扁核有2對位點,位于短臂近著絲粒處[17];砂梨有3對位點,位于長臂近著絲粒處[18];在番木瓜的粗線期染色體上竟檢測到了13個5S rDNA位點,單條染色體具2~4個位點,信號強度各異[19]。以上這些研究結果表明5S rDNA在染色體上的分布位置隨物種不同而有較大差異,即具有較高的分布位置多態性。盡管如此,目前在果樹中尚未發現5S rDNA定位于染色體隨體或端粒的報道。
由于與45S rDNA位點有關的染色體發生易位,導致柑橘屬、枳、日本早櫻和西番蓮等的45S和5S rDNA位于同一條染色體上[10,15-16,20]。但一般地,可能由于功能上的分化導致它們之間需要存在一定的物理距離,使得45S和5S rDNA更加趨向于分布在不同的染色體上,并具有各自獨特的進化模式[14,21]。此外,還有一種現象是:除芭蕉屬植物[22],45S rDNA位點數目通常多于或等于5S rDNA位點數目,出現這一現象的原因目前尚不清楚。
由于上述45S和5S rDNA在染色體上的定位特點,其在果樹中的應用已不僅僅局限于識別染色體,也用于校正核型;此外,也對相同DNA序列進行比較定位,探討基因組的進化。楊光緒等[18]利用45S rDNA-FISH確定了砂梨有3對隨體染色體,而不是傳統核型分析的2對。Choi等[23-24]應用rDNA-FISH發現部分柿屬植物包括非洲4個種與亞洲7個種顯著不同,推測它們具有不同的遺傳基礎。檸檬、來檬和黎檬等的2個5S rDNA位點位于2條非同源染色體上,其中1個與45S rDNA偶聯分布,而枸櫞的2個5S rDNA位于一對同源染色體上,這表明枸櫞應是一個真正的生物學種[10]。此外,5S rDNA位點分布差異也用于果樹性染色體的鑒別[19],直接觀察細胞間期核45S rDNA-FISH信號則可研究rRNA基因在細胞核中的組織和表達模式[25-26]。
2 rDNA與果樹的系統進化
2.1 rDNA位點與果樹多倍體進化
多倍化(polyploidization)是植物進化過程中的自然現象,大部分植物種類都具有多倍體[46],隨著染色體組加倍,rDNA位點數目常常相應增加。藉此與傳統核型特征相結合,rDNA位點數目與位置成為判斷多倍體來源的參考依據之一。汪衛星等[27]發現四倍體的番木瓜45S rDNA位點數目為其二倍體的2倍,分布位置完全一致,參考它們染色體核型的相似性,認為該四倍體番木瓜為其二倍體直接加倍形成,是同源四倍體。后來在紅江橙和日本早櫻的研究中也得出了相似的結論[15, 33]。Choi等[23]對柿屬研究表明,六倍體柿有8個45S rDNA位點,亞洲地區二倍體種如君遷子有4個位點,而非洲地區二倍體種有6個或8個位點,據此推測亞洲地區二倍體種是六倍體的祖先。雖然45S rDNA位點數目有隨染色體倍性增加而增加的趨勢,但未見單條染色體上具多個45S rDNA位點的報道[34]。此外,也有一些多倍體植物的rDNA位點數并未隨其親本染色體倍性增加而增加,而是位點數丟失[43]。如薔薇科地榆屬植物在多倍化進程中,5S rDNA位點傾向于被消除,而45S rDNA位點則傾向于被保留[43],這種變化模式在薔薇科多倍體物種中普遍存在,如蘋果和櫻桃等[15, 37],但芭蕉屬植物則表現出與之相反的變化模式[22]。上述這種rDNA位點丟失可能與多倍體在進化過程中rDNA位點發生不等交換或與其他DNA序列融合有關,此外,引起異源多倍體中45S rDNA位點丟失的原因可能還與核仁顯性有關[47]。
2.2 rDNA特異序列在果樹系統進化研究中的應用
在rDNA非編碼區中,ITS特異序列是目前果樹類群系統發育研究中應用最為廣泛的序列之一(表2)。Campbell等[48]利用ITS區以及一小部分5.8S基因序列研究蘋果亞科內系統發育關系,證實該亞科并非單系;Alice等[49]利用ITS構建了懸鉤子屬系統樹,認為Rubus ursinus為亞屬間雜種;劉艷玲等[50]和王化坤等[4]則依據ITS序列對核果類果樹進化順序進行了重建等。ITS序列被廣泛應用,主要由于ITS序列變異適度,可提供較豐富的變異位點和信息位點。例如研究表明,柑橘亞科內ITS序列具有3%~35%的分化度,顯著高于3個葉綠體基因非編碼區(atpB-rbcL, rps16和trnL-trnF),能夠提供比葉綠體基因相對更多的信息位點[3]。
值得注意的是,有的類群ITS序列個體間存在多態性,應進行假基因的檢測。如在蘋果屬、梨屬、懸鉤子屬、芭蕉屬和無花果等果樹類群中,由于ITS拷貝間未完全協同進化,個體內存在ITS序列的多態性(表2),即同一基因組內存在著多種差異ITS拷貝,其中可能包含退化的假基因拷貝(pseudogene)。由于假基因脫離了功能約束以較高的核酸替代速率進行獨立的中性進化,有可能為單個類群的進化提供獨立的數據資源;另一方面因其起源時間的不同會影響系統樹結構,如果無意地將其加入到系統分析中可能對相關類群的系統發育分析造成困擾,甚至導致錯誤的推斷[51]。因此,當發現個體內存在ITS序列多態性時,應檢驗是否存在假基因拷貝。目前,僅在梨屬中發現了不同類型、起源較早的ITS假基因[52],其他果樹中雖然發現了ITS的多態性,但并沒有進行假基因的檢測。即使進行了假基因的檢測,我們對ITS假基因的利用也要慎重,它能否應用于系統發育分析取決于其起源和在系統樹上的位置[53-54],一般而言,起源較早且在系統樹上為單系群的假基因拷貝可用于系統發育研究。如在梨屬中發現的ITS假基因在系統樹上區別于所有功能拷貝而獨立成支,因此可以作為具有潛在的系統學價值的獨立數據資源重建梨屬系統關系[52]。
除rDNA中ITS序列較廣泛地應用于果樹的系統發育研究外,rDNA編碼區中18S和5.8S基因也有應用于果樹特定類群系統發育研究報道[3, 48, 55-56]。在已有的報道中,基因間區IGS是rDNA中進化最快的序列[6],盡管在栽培稻和紫菜等作物中有應用[57-58],但在果樹類群中還未見研究報道。至于非編碼區中ETS則因其兩端沒有保守序列,不易于被擴增和測序,其應用也受到限制,Calonje等[59]統計了包括薔薇科在內的19個科植物的ETS和ITS序列分化度,結果表明ETS的進化速率較ITS快。因此,當ITS不能有效解決系統關系時,可結合ETS使用[6]。
3 問題和展望
正如前述,45S rDNA與5S rDNA在果樹染色體上的定位研究已有較多報道,但由于rDNA等重復序列在物種的染色體上分布有限,只在部分染色體上存在且其位點具有不穩定性[72],因此,利用rDNA作為染色體的識別標記尚存在一些限度。特別地,對于多年生木本果樹,其染色體較小(常<3 μm)[45, 73-74],相鄰染色體之間形態大小差異不明顯,再加上染色體在有絲分裂中期濃縮程度的不同,容易造成干擾而定位錯誤,這種情況使得單個染色體的鑒別可能不準確。因此,為了能精確地鑒別果樹染色體,研究人員已嘗試采用類似rDNA的重復序列作為探針與rDNA相結合應用于定位中或進一步提高FISH分辨率。如采用BAC克隆或SSR標記做探針進行FISH檢測并參考相關植物類群的連鎖圖譜與物理圖譜進行個別染色體的鑒別[16, 75-76];也有研究采用CMA+/DAPI-熒光帶型將染色體劃分為幾種類型,再與rDNA和其他重復序列定位相結合,使用多色熒光原位雜交技術識別染色體[10]。如Hont等[77]利用rDNA-FISH和GISH準確區分出香蕉的4個基因組(A,B,S和T)以及‘Pelipita’中A與B基因組的染色體;Zhang等[19]利用減數分裂粗線期染色體的長度大于有絲分裂中期染色體的原理,在普通光學顯微鏡下將番木瓜的FISH分辨率水平相應提高。這些技術的綜合應用不僅有利于果樹單條染色體的識別,也有助于一些果樹類群精確核型的構建。
有關rDNA特異序列在果樹特定類群系統發育中的應用,前已詳述,未來關注點應該是盡可能全面認識ITS序列,在利用它進行相關類群系統發育研究時,應注意其在個體內的多態性,能夠適時地認識和評價,以此把握其適用范圍。此外,為了使構建的系統樹盡可能接近真實,越來越多的研究綜合利用多種DNA特異序列,包括選用葉綠體DNA片段和其他核DNA片段與rDNA相結合的方式進行果樹的系統發育關系研究[3],這也是未來利用rDNA特異序列的一個趨勢。特別地,由于草莓、蘋果、葡萄、香蕉等果樹全基因組序列的測定,以及基因組重復序列的測定和分離克隆已經取得一定進展[36, 78-81],今后可使用公布的基因組信息來分析rDNA的分布及序列變化,這不僅為更全面深入探討果樹類植物的系統發育提供可能,也為尋找染色體的特異性標記,獲得特定染色體的DNA探針打下了基礎。總之,45S和5S rDNA在果樹染色體上的比較定位及在系統進化中的應用研究將以rDNA在特定類群中的全基因組中分布以及序列變化特征探索或與其他特異序列相結合的方式而成為未來果樹染色體識別與系統發育研究應用的一個重要方向。
參考文獻 References:
[1] THOMAS H M, HARPER J A, MORGAN W G. Gross chromosome rearrangements are occurring in an accession of the grass Lolium rigidum[J]. Chromosome Research, 2001, 9 (7): 585-590.
[2] YONEMORI K, HONSHO C, KANZAKI S, INO H, IKEGAMI A, KITAJIMA A, SUGIURA A, PARFITT D. Sequence analyses of the ITS regions and the matK gene for determining phylogenetic relationships of Diospyros kaki (persimmon) with other wild Diospyros (Ebenaceae) species[J]. Tree Genetics and Genomes, 2008, 4 (2): 149-158.
[3] MORTON C M. Phylogenetic relationships of the Aurantioideae (Rutaceae) based on the nuclear ribosomal DNA ITS region and three noncoding chloroplast DNA regions, atpB-rbcL spacer, rps16, and trnL-trnF[J]. Organisms Diversity and Evolution, 2009, 9(1): 52-68.
[4] WANG Hua-kun, TAO Jian-min, QU Shen-chun, FANG Jing-gui, MA Rui-juan, ZHANG Zhen, LOU Xiao-ming. Molecular evolution and phylogeny of stone fruit trees based on sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA[J]. Acta Horticulturae Sinica, 2010, 37 (3): 363-374.
王化坤, 陶建敏, 渠慎春, 房經貴, 馬瑞娟, 章鎮, 婁曉鳴. 核果類果樹ITS序列分子進化及系統發育關系研究[J]. 園藝學報, 2010, 37 (3): 363-374.
[5] JIANG J, GILL B S. New 18S-26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats[J]. Chromosoma, 1994, 103 (3): 179-185.
[6] POCZAI P, HYVONEN J. Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects[J]. Molecular Biology Reports, 2010, 37 (4): 1897-1912.
[7] FALISTOCCO E, PASSERI V, MARCONI G. Investigations of 5S rDNA of Vitis vinifera L.: sequence analysis and physical mapping[J]. Genome, 2007, 50 (10): 927-938.
[8] LAN Tian-ying, LIU Bo, DONG Feng-ping, CHEN Rui-yang, LI Xiu-lan, CHEN Cheng-bin. Multicolor FISH analysis of rDNA and telomere on spinach[J]. Hereditas, 2007, 29(11): 1405-1408.
蘭添穎, 劉博, 董鳳平, 陳瑞陽, 李秀蘭, 陳成彬. 菠菜rDNA及端粒多色熒光原位雜交分析[J]. 遺傳, 2007, 29(11): 1405-1408.
[9] SILVIA C M, LUCIA M C, MONDIN V M, AGUIAR-PERECIN M L R. Comparative karyotype analysis of three Passiflora L. species and cytogenetic characterization of somatic hybrids[J]. Caryologia, 2005, 58 (3): 220-228.
[10] CARVALHO R, SOARES FILHO W S, BRASILEIRO-VIDAL A C, GUERRA M. The relationships among lemons, limes and citron: a chromosomal comparison[J]. Cytogenetic and Genome Research, 2005, 109: 276-282.
[11] HARRISON G E, HESLOP-HARRISON J S. Centromeric repetitive DNA sequences in the genus Brassica[J]. Theoretical and Applied Genetics, 1995, 90 (2): 157-165.
[12] HALL M J, PARKER J S. Stable chromosome fission associateds with rDNA mobility[J]. Chromosome Research, 1995, 3: 417-422.
[13] LIU Z L, ZHANG D, HONG D Y, WANG X R. Chromosomal localization of 5S and 18S-5.8S-25S ribosomal DNA sites in five Asian Pinus using fluorescence in situ hybridization[J]. Theoretical and Applied Genetics, 2003, 106: 198-204.
[14] MANTOVANI M, ABEL L D, MOREIRA-FILHO O. Conserved 5S and variable 45S rDNA chromosomal localization revealed by FISH in Astyanax scabripinnis (Pisces, Characidae)[J]. Genetica, 2005, 123 (3): 211-216.
[15] MAGHULY F, SCHMOELLERL B, TEMSCH E M, LAIMER M. Genome size, karyotyping and FISH physical mapping of 45S and 5S genes in two cherry rootstocks: Prunus subhirtella and Prunus incisa × serrula[J]. Journal of Biotechnology, 2010, 149: 88-94.
[16] DA COSTA SILVA S, MARQUES A, DOS SANTOS SOARES FILHO W, MIRKOV T, PEDROSA-HARAND A, GUERRA M. The cytogenetic map of the Poncirus trifoliata (L.) - A nomenclature system for chromosomes of all Citric species[J]. Tropical Plant Biology, 2011, 4 (2): 99-105.
[17] CORREDOR E, ROMAN M, GARCIA E, PERERA E, ARUS P, NARANJO T. Physical mapping of rDNA genes establishes the karyotype of Almond[J]. Annals of Applied Biology, 2004, 144 (2): 219 -222.
[18] YANG Guang-xu, DIAO Ying. Physical mapping of the 45S rDNA and 5S rDNA to Pear metaphase chromosome[J]. Journal of Southwest University: Natural Science Edition, 2007, 29 (7): 135-138.
楊光緒, 刁英. 砂梨45 S rDNA和5 S rDNA的染色體定位研究[J]. 西南大學學報: 自然科學版, 2007, 29 (7): 135-138.
[19] ZHANG W, WAI C, MING R, YU Q, JIANG J. Integration of genetic and cytological maps and development of a pachytene chromosome-based karyotype in Papaya[J]. Tropical Plant Biology, 2010, 3 (3): 166-170.
[20] DE MELO N F, GUERRA M. Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers[J]. Annals of Botany, 2003, 92 (2): 309-316.
[21] MARTINS C, GALETTI P M J R. Conservative distribution of 5S rDNA loci in Schizodon (Pisces, Anostomidae) chromosomes[J]. Chromosome Research, 2000, 8 (4): 353-355.
[22] OSUJI J O, CROUCH J, HARRISON G, HESLOP-HARRISON J S. Molecular cytogenetics of Musa species, cultivars and hybrids: location of 18S-5.8S-25S and 5S rDNA and telomere-like sequences[J]. Annals of Botany, 1998, 82 (2): 243-248.
[23] CHOI Y A, TAO R, YONEMORI K, SUGIURA A. Physical mapping of 45S rDNA by fluorescent in situ hybridization in persimmon (Diospyros kaki) and its wild relatives[J]. Journal of Horticultural Science and Biotechnology, 2003b, 78 (2): 265-271.
[24] CHOI Y A, TAO R, YONEMORI K, SUGIURA A. Simultaneous visualization of 5S and 45S rDNAs in persimmon (Diospyros kaki) and several wild relatives (Diospyros spp.) by fluorescent in situ hybridization (FISH) and multicolor FISH (MCFISH)[J]. Journal of the American Society for Horticultural Science,2003c,128(5): 736 -740.
[25] GONZALEZ-MELENDI P, WELLS B, BEVEN A F, SHAW P J. Single ribosomal transcription units are linear, compacted Christmas trees in plant nucleoli[J]. Plant Journal, 2001, 27 (3): 223-233.
[26] SHE Chao-wen, JIANG Xiang-hui, SONG Yun-chun. Analysis of organization and expression pattern of rRNA gene in Maize[J]. Chinese Bulletin of Botany, 2010, 45: 345-353.
佘朝文, 蔣向輝, 宋運淳. 玉米rRNA基因的組織和表達模式[J]. 植物學報, 2010, 45 (3): 345-353.
[27] WANG Wei-xing, LI Chun-yan, XIANG Su-qiong, LIANG Guo-lu. Karyotypes analysis and 45S rDNA-FISH of the tetraploid and diploid in Carica papaya L.[J]. Acta Horticlturae Sinica, 2007, 34 (2): 345-348.
汪衛星, 李春艷, 向素瓊, 梁國魯. 番木瓜四倍體與二倍體的核型分析及45S rDNA-FISH研究[J]. 園藝學報, 2007, 34 (2): 345 -348.
[28] FABIANE C R, PEREIRA T N S, HODNETT G L, PEREIRA M G, STELLY D. Fluorescent in situ hybridization of 18S and 5S rDNA in papaya (Carica papaya L.) and wild relatives[J]. Caryologia, 2008, 61 (4): 411-416.
[29] MENDES S, MORAES A P, MIRKOV T E, PEDROSA-HARAND A. Chromosome homeologies and high variation in heterochromatin distribution between Citrus L. and Poncirus Raf. as evidenced by comparative cytogenetic mapping[J]. Chromosome Research, 2011, 19 (4): 521-530.
[30] PEDROSA A, SCHWEIZER D, GUERRA M. Cytological heterozygosity and the hybrid origin of sweet orange [Citrus sinensis (L.) Osbeck][J]. Theoretical and Applied Genetics,2000,100(3): 361-367.
[31] ROOSE M L, SCHWARZACHER T, HESLOP-HARRISON J S. The chromosomes of Citrus and Poncirus species and hybrids: identification of characteristic chromosomes and physical mapping of rDNA loci using in situ hybridization and fluorochrome banding[J]. The Journal of Heredity, 1998, 89 (1): 83-86.
[32] XIANG Su-qiong, LIANG Guo-lu, HONG Qi-bin, LIU Chao-ji. Studies on karyotype of the Citrus sinensis Osb. cv. Hongjiang (2x, 4x)[J]. Advances in Horticulture, 2002(5): 155-157.
向素瓊, 梁國魯, 洪棋斌, 劉朝吉. 紅江橙天然四倍體與二倍體的核型比較[J]. 園藝學進展, 2002(5): 155-157.
[33] WANG Wei-xing, XIANG Su-qiong, CHEN Yao, GUO Qi-gao, LI Xiao-lin, LIANG Guo-lu. Studies on 45S rDNA-FISH of natural polyploids in Citrus sinensis Osbeck. Hongjiangcheng[J]. Acta Horticulturae Sinica, 2008, 35(1): 103-106.
汪衛星, 向素瓊, 陳瑤, 郭啟高, 李曉林, 梁國魯. 紅江橙天然多倍體的45S rDNA熒光原位雜交分析[J]. 園藝學報, 2008, 35 (1): 103-106.
[34] XIANG Su-qiong, WANG Wei-xing, LIANG Guo-lu. Chromosome localization of 45S rDNA in different ploidy Citrus grandis by Fluorescence in situ Hybridzation[J]. Acta Horticlturae Sinica, 2007, 34 (1): 75-80.
向素瓊, 汪衛星, 梁國魯. 45S rDNA在不同倍性沙田柚染色體上的熒光原位雜交分析[J]. 園藝學報, 2007, 34 (1): 75-80.
[35] LIU B, CHEN C B, LI X L, CHEN R Y, SONG W Q. Physical mapping of 45S rDNA to metaphase chromosomes in 30 taxonomically diverse plant species[J]. Journal of Horticultural Science and Biotechnology, 2005, 80 (3): 287-290.
[36] SHULAEV V, SARGENT D J, CROWHURST R N, MOCKLER T C, FOLKERTS O, DELCHER A L, JAISWAL P, MOCKAITIS K, LISTON A, MANE S P, BURNS P, DAVIS T M, SLOVIN J P, BASSIL N, HELLENS R P, EVANS C, HARKINS T, KODIRA C, DESANY B, CRASTA O R, JENSEN R V, ALLAN A C, MICHAEL T P, SETUBAL J C, CELTON J M, REES D J, WILLIAMS K P, HOLT S H, RUIZ ROJAS J J, CHATTERJEE M, LIU B, SILVA H, MEISEL L, ADATO A, FILICHKIN S A, TROGGIO M, VIOLA R, ASHMAN T L, WANG H, DHARMAWARDHANA P, ELSER J, RAJA R, PRIEST H D, BRYANT D W, JR., FOX S E, GIVAN S A, WILHELM L J, NAITHANI S, CHRISTOFFELS A, SALAMA D Y, CARTER J, LOPEZ GIRONA E, ZDEPSKI A, WANG W, KERSTETTER R A, SCHWAB W, KORBAN S S, DAVIK J, MONFORT A, DENOYES-ROTHAN B, ARUS P, MITTLER R, FLINN B, AHARONI A, BENNETZEN J L,SALZBERG S L,DICKERMAN A W,VELASCO R, BORODOVSKY M, VEILLEUX R E, FOLTA K M. The genome of woodland strawberry (Fragaria vesca)[J]. Nature Genetics, 2011, 43(2): 109-116.
[37] SCHUSTER, M, FUCHS J, SCHUBERT I. Cytogenetics in fruit breeding-localization of ribosomal RNA genes on chromosomes of apple (Malus × domestica Borkh.)[J]. Theoretical and Applied Genetics, 1997, 94(3): 322-324.
[38] YONEMORI K, NISHIYAMA K, CHOI Y A. Physical mapping of 5S and 45S rDNAs by fluorescence in situ hybridization in Mango (Mangifera indica L.)[J]. Acta Horticulturae, 2010, 864: 133-139.
[39] DOLE?譕ELOV M, VAL RIK M, SWENNEN R, HORRY J P, DOLE?譕EL J. Physical mapping of the 18S-25S and 5S ribosomal RNA genes in diploid bananas[J]. Biologia Plantarum,1998,41 (4): 497-505.
[40] WENG Tian-jun, WANG Wei-xing, XIANG Su-qiong, GUO Qi-gao, LI Xiao-lin, HE Qiao, LIANG Guo-lu. Physical mapping of 45S rDNA on metaphase chromosome in six Poncirus trifoliata species[J]. Journal of Fruit Science, 2011,28(5): 924-927.
翁天均, 汪衛星, 向素瓊, 郭啟高, 李曉林, 何橋, 梁國魯. 45S rDNA在6個枳屬植物中期染色體上的定位[J]. 果樹學報, 2011, 28(5): 924-927.
[41] YAMAMOTO M, TERAKAMI S, YAMAMOTO T, TAKADA N, TOMINAGA S. Detection of the ribosomal RNA gene in Pear (Pyrus spp.) using Fluorescence in situ Hybridization[J]. Journal of the Japanese Society for Horticultural Science, 2010, 79 (4): 335-339.
[42] YAMAMOTO M, SHIMADA T, HAJI T, MASE N, SATO Y. Physical mapping of the 18S ribosomal RNA gene of Peach [Prunus persica (L.) Batsch] Chromosomes by fluorescence in situ hybridization[J]. Breeding Science, 1999, 49(1): 49-51.
[43] MISHIMA M, OHMIDO N, FUKUI K, YAHARA T. Trends in site-number change of rDNA loci during polyploid evolution in Sanguisorba (Rosaceae)[J]. Chromosoma, 2002, 110(8): 550-558.
[44] LIM K Y, LEITCH I J, LEITCH A R. Genomic characterisation and the detection of raspberry chromatin in polyploid Rubus[J]. Theoretical and Applied Genetics, 1998, 97(7): 1027-1033.
[45] CHEN Rui-yang, LIN Sheng-hua, SONG Wen-qin, LI Xiu-lan,LIANG Guo-lu, AN Zhu-ping. Chromosome atlas of Chinese principal economic plants[M].1//Chromosome atlas of Chinese fruit trees and their close wild relatives,Beijing: International Academic Publishers,1993.
陳瑞陽, 林盛華, 宋文芹, 李秀蘭, 梁國魯, 安祝平. 中國主要經濟植物染色體圖譜[M]. 第一卷. //中國果樹及其野生近緣植物染色體圖譜,北京: 萬國學術出版社,1993.
[46] RAVEN P H. The bases of Angiosperm phylogeny: cytology. Annals of the Missouri Botanical Garden[J]. 1975, 62 (3): 724-764.
[47] TUCKER S, VITINS A, PIKAARD C S. Nucleolar dominance and ribosomal RNA gene silencing[J]. Current Opinion in Cell Biology, 2010, 22 (3): 351-356.
[48] CAMPBELL C S,DONOGHUE M J,BALDWIN B G,WOJCIECHOWSKI F M. Phylogenetic relationships in Maloideae (Rosaceae): evidence from sequences of the internal transcribed spacers of nuclear ribosomal DNA and its congruence with morphology[J]. American Journal of Botany, 1995, 82(7): 903-918.
[49] ALICE L A, CAMPBELL C S. Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences[J]. American Journal of Botany, 1999, 86(1): 81-97.
[50] LIU Yan-ling, XU Li-ming, CHENG Zhong-ping. Phylogenetic analysis of stone fruits such as Peach, Plum, Apricot, Mume and Cherry based on ITS sequences[J]. Acta Horticulturae Sinica, 2007, 34 (1): 23-28.
劉艷玲, 徐立銘, 程中平. 基于ITS序列探討核果類果樹桃、李、杏、梅、櫻的系統發育關系[J]. 園藝學報, 2007, 34 (1): 23-28.
[51] ZHENG Xiao-yan, CAO Jia-shu, TENG Yuan-wen. Research progress of plant molecular phylogenetic analyses based on DNA sequence data-A case review in Rosaceae[J]. Acta Horticulturae Sinica, 2009, 36 (12): 1827-1836.
鄭小艷, 曹家樹, 滕元文. DNA序列分析在植物分子系統學研究中的應用現狀—以薔薇科為例[J]. 園藝學報, 2009, 36 (12): 1827-1836.
[52] ZHENG X, CAI D, YAO L, TENG Y. Non-concerted ITS evolution, early origin and phylogenetic utility of ITS pseudogenes in Pyrus[J]. Molecular Phylogenetics and Evolution,2008,48(3): 892 -903.
[53] HARPKE D, PETERSON A. Non-concerted ITS evolution in Mammillaria (Cactaceae)[J]. Molecular Phylogenetics and Evolution,2006,41 (3): 579-593.
[54] OCHIENG J W, HENRY R J, BAVERSTOCK P R, STEANE D A, SHEPHERD M. Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs[J]. Molecular Phylogenetics and Evolution, 2007, 44 (2): 752-764.
[55] POTTER D, ERIKSSON T, EVANS C, OH S, SMEDMARK J E E, MORGAN D R, KERR M, ROBERTSON K R, ARSENAULT M, DICKINSON T A, CAMPBELL C S. Phylogeny and classification of Rosaceae[J]. Plant Systematics and Evolution, 2007a, 266: 5-43.
[56] KIM C S, LEE C H, PARK K W, KANG S J, SHIN I S, LEE G P. Phylogenetic relationships among Pyrus pyrifolia and P. communis detected by randomly amplified polymorphic DNA (RAPD) and conserved rDNA sequences[J]. Scientia Horticulturae,2005,106(4): 491-501.
[57] DAI Xiao-jun,OU Li-jun, LI Wen-jia, LIANG Man-zhong, CHEN Liang-bi. Analysis of rDNA intergenic spacer (IGS) sequences in Oryza sativa L and their phylogenetic implications[J]. Acta Agronomica Sinica, 2008, 34 (9): 1569-1573.
戴小軍, 歐立軍, 李文嘉, 梁滿中, 陳良碧. 栽培稻種內rDNA基因IGS序列分析及系統學意義[J]. 作物學報, 2008, 34(9): 1569 -1573.
[58] LI Yan-yan, SHEN Song-dong, HE Li-hong, XU Pu, LU Shan. Sequence analysis of rDNA intergenic spacer (IGS) of Porphyra haitanensis[J]. Journal of Applied Phycol, 2010, 22: 187-193.
[59] CALONJE M, MARTIN-BRAVO S, DOBES C, GONG W, JORDON-THADEN I, KIEFER C, KIEFER M, PAULE J, SCHMICKL R, KOCH M A. Non-coding nuclear DNA markers in phylogenetic reconstruction[J]. Plant Systematics amd Evolution, 2009, 282: 257 -280.
[60] CAMPBELL C S, WOJCIECHOWSKI M F, BALDWIN B G, ALICE L A, DONOGHUE M J. Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae)[J]. Molecular Biology and Evolution, 1997, 14(1): 81-90.
[61] ROBINSON J P, HARRIS S A, JUNIPER B E. Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple Malus×domestica Borkh[J]. Plant Systematics and Evolution, 2001, 226(1): 35-58.
[62] LI P, LIN S Q, YANG X H, HU G B, JIANG Y M. Molecular phylogeny of Eriobotrya Lindl. (loquat) inferred from internal transcribed spacer sequences of nuclear ribosome[J]. Pakistan Journal of Botany, 2009, 41(1): 185-193.
[63] LO E Y, STEFANOVIC S, CHRISTENSEN K I, DICKINSON T A. Evidence for genetic association between East Asian and western North American Crataegus L. (Rosaceae) and rapid divergence of the eastern North American lineages based on multiple DNA sequences[J]. Molecular Phylogenetics and Evolution, 2009, 51(2): 157-168.
[64] LEE S, WEN J. A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA[J]. American Journal of Botany, 2001, 88(1): 150-160.
[65] ERIKSSON T, HIBBS M S, YODER A D, DELWICHE C F, DONOGHUE M J. The phylogeny of Rosoideae (Rosaceae) based on sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the trnL/F region of chloroplast DNA[J]. International Journal of Plant Sciences, 2003, 164 (2): 197-211.
[66] HRIBOVA E, CIZKOVA J, CHRISTELOVA P, TAUDIEN S, DE LANGHE E, DOLEZEL J. The ITS1-5.8S-ITS2 sequence region in the Musaceae: structure, diversity and use in molecular phylogeny[J]. PLoS One, 2011, 6(3): e17863.
[67] OTHMAN R, JORDAN G, WORTH J, STEANE D, DURETTO M. Phylogeny and infrageneric classification of Correa Andrews (Rutaceae) on the basis of nuclear and chloroplast DNA[J]. Plant Systematics and Evolution, 2010, 288(3): 127-138.
[68] KYNDT T, DUNG T, GOETGHEBEUR P, TOAN H, GHEYSEN G. Analysis of ITS of the rDNA to infer phylogenetic relationships among Vietnamese Citrus accessions[J]. Genetic Resources and Crop Evolution, 2010, 57(2): 183-192.
[69] MADER G, ZAMBERLAN P M, FAGUNDES N J, MAGNUS T, SALZANO F M, BONATTO S L, FREITAS L B. The use and limits of ITS data in the analysis of intraspecific variation in Passiflora L. (Passifloraceae)[J]. Genetics and Moleclar Biology, 2010, 33(1): 99-108.
[70] CIARMIELLO L F, PICCIRILLO P, PONTECORVO G, DE LUCA A, KAFANTARIS I, WOODROW P. A PCR based SNPs marker for specific characterization of English walnut (Juglans regia L.) cultivars[J]. Molecular Biology Reports, 2011, 38(2): 1237-1249.
[71] BARAKET G, SADDOUD O, CHATTI K, MARS M, MARRAKCHI M, TRIFI M, SALHI-HANNACHI A. Sequence analysis of the internal transcribed spacers (ITSs) region of the nuclear ribosomal DNA (nrDNA) in fig cultivars (Ficus carica L.)[J]. Scientia Horticulturae, 2009, 120(1): 34-40.
[72] KULAK S, HASTEROK R, MALUSZYNSKA J. Karyotyping of Brassica amphidiploids using 5S and 25S rDNA as chromosome markers[J]. Hereditas, 2002, 136(2): 144-150.
[73] LIANG Guo-lu, REN Zheng-chuan, YAN Yong, HUANG Hong, WU Chun-qing. Chromosome variation in 8 Loquat varieties in Sichuan province[J]. Acta Horticulturae Sinica, 1999, 26(2): 71-76.
梁國魯, 任振川, 閻勇, 黃宏, 吳純清. 四川8個枇杷品種染色體變異研究[J]. 園藝學報, 1999, 26(2): 71-76.
[74] WANG Xiao-rong, TANG Hao-ru, DUAN Juan, LI Ling. A comparative study on karyotypes of 28 taxa in Rubus sect. Idaeobatus and sect. Malachobatus (Rosaceae) from China[J]. Journal of Systematics and Evolution, 2008, 46(4): 505-515.
王小蓉, 湯浩茹, 段娟, 李玲. 中國懸鉤子屬空心莓組與木莓組28種和變種的核型比較研究[J]. 植物分類學報, 2008, 46(4): 505-515.
[75] MORAES A P, MIRKOV T E, GUERRA M. Mapping the chromosomes of Poncirus trifoliata Raf. by BAC-FISH[J]. Cytogenetic and Genome Research, 2008, 121: 277-281.
[76] WAI C, MING R, MOORE P, PAULL R, YU Q. Development of chromosome-specific cytogenetic markers and merging of linkage fragments in Papaya[J]. Tropical Plant Biology, 2010, 3(3): 171-181.
[77] D’HONT A, PAGET-GOY A, ESCOUTE J, CARREEL F. The interspecific genome structure of cultivated banana, Musa spp. revealed by genomic DNA in situ hybridization[J]. Theoretical and Applied Genetics, 2000, 100: 177-183.
[78] VELASCO R, ZHARKIKH A, AFFOURTIT J, DHINGRA A, CESTARO A, KALYANARAMAN A, FONTANA P, BHATNAGAR S K, TROGGIO M, PRUSS D, SALVI S, PINDO M, BALDI P, CASTELLETTI S, CAVAIUOLO M, COPPOLA G, COSTA F, COVA V, DAL RI A, GOREMYKIN V, KOMJANC M, LONGHI S, MAGNAGO P, MALACARNE G, MALNOY M, MICHELETTI D, MORETTO M, PERAZZOLLI M, SI-AMMOUR A, VEZZULLI S, ZINI E, ELDREDGE G, FITZGERALD L M, GUTIN N, LANCHBURY J, MACALMA T, MITCHELL J T, REID J, WARDELL B, KODIRA C, CHEN Z, DESANY B, NIAZI F, PALMER M, KOEPKE T, JIWAN D, SCHAEFFER S, KRISHNAN V, WU C, CHU V T, KING S T, VICK J, TAO Q, MRAZ A, STORMO A, STORMO K, BOGDEN R, EDERLE D, STELLA A, VECCHIETTI A, KATER M M, MASIERO S, LASSERRE P, LESPINASSE Y, ALLAN A C, BUS V, CHAGNE D, CROWHURS R N, GLEAVE A P, LAVEZZO E, FAWCETT J A, PROOST S, ROUZE P, STERCK L, TOPPO S, LAZZARI B, HELLENS R P, DUREL C E, GUTIN A, BUMGARNER R E, GARDINER S E, SKOLNICK M, EGHOLM M, VAN DE PEER Y, SALAMINI F, VIOLA R. The genome of the domesticated apple (Malus × domestica Borkh.)[J]. Nature Genetics, 2010, 42 (10): 833-839.
[79] JAILLON O, AURY J M, NOEL B, POLICRITI A, CLEPET C, CASAGRANDE A, CHOISNE N, AUBOURG S, VITULO N, JUBIN C, VEZZI A, LEGEAI F, HUGUENEY P, DASILVA C, HORNER D, MICA E, JUBLOT D, POULAIN J, BRUYERE C, BILLAULT A, SEGURENS B, GOUYVENOUX M, UGARTE E, CATTONARO F, ANTHOUARD V, VICO V, DEL FABBRO C, ALAUX M, DI GASPERO G, DUMAS V, FELICE N, PAILLARD S, JUMAN I, MOROLDO M, SCALABRIN S, CANAGUIER A, LE CLAINCHE I, MALACRIDA G, DURAND E, PESOLE G, LAUCOU V, CHATELET P, MERDINOGLU D, DELLEDONNE M, PEZZOTTI M, LECHARNY A, SCARPELLI C, ARTIGUENAVE F, PE M E, VALLE G, MORGANTE M, CABOCHE M, ADAM-BLONDON A F, WEISSENBACH J, QUETIER F, WINCKER P. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature, 2007, 449 (27): 463-468.
[80] HRIBOVA E, NEUMANN P, MATSUMOTO T, ROUX N, MACAS J, DOLEZEL J. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing[J]. BMC Plant Biology, 2010, 10: 204.
[81] HRIBOVA E,DOLEZELOVA M,TOWN C D,MACAS J, DOLEZEL J. Isolation and characterization of the highly repeated fraction of the banana genome[J]. Cytogenetic and Genome Research, 2007, 119: 268-274.