999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

關(guān)于遺傳可遮和遺傳σ-亞緊可數(shù)乘積的注記

2012-07-05 14:29:52趙斌李秀玲官春梅
關(guān)鍵詞:性質(zhì)

趙斌,李秀玲,官春梅

(喀什師范學(xué)院數(shù)學(xué)系,新疆喀什 844007)

關(guān)于遺傳可遮和遺傳σ-亞緊可數(shù)乘積的注記

趙斌,李秀玲,官春梅

(喀什師范學(xué)院數(shù)學(xué)系,新疆喀什 844007)

證明了在逆序列的情形下,可遮空間、強(qiáng)可遮空間在假設(shè)X是可數(shù)仿緊空間的條件下可被其極限空間保持,進(jìn)一步證明了遺傳可遮,遺傳強(qiáng)可遮及遺傳σ-亞緊性在無(wú)需對(duì)投射及極限空間X做任何假設(shè)的情況下即可被其逆極限空間保持.作為上述兩個(gè)結(jié)果的應(yīng)用,分別給出了兩個(gè)相關(guān)的可數(shù)Tychonoff乘積定理.

逆序列;可數(shù)仿緊;可遮;強(qiáng)可遮;遺傳可遮;遺傳σ-亞緊

1 引言及預(yù)備

正規(guī)性及覆蓋性的乘積性質(zhì)的研究是拓?fù)鋵W(xué)中重要的研究方向,通過(guò)逆系統(tǒng)的極限性質(zhì)研究正規(guī)性及覆蓋性的乘積性質(zhì)是一個(gè)有效的方法[1-4].在假設(shè)逆極限空間X是κ-仿緊的通常條件下,注意到關(guān)于可遮及強(qiáng)可遮性逆極限保持問題仍未得到完全解決[5-7].此外,文獻(xiàn)[8-9]利用散射分解,σ-點(diǎn)有限開膨脹分別給出了關(guān)于遺傳可遮及遺傳σ-亞緊的刻劃,并利用這些刻劃研究了遺傳可遮及遺傳σ-亞緊乘積性質(zhì),得到了如下的結(jié)論.

定理A[8-9]設(shè)是遺傳可遮的(遺傳σ-亞緊的),則X也是遺傳可遮的(遺傳σ-亞緊的).

針對(duì)可遮及強(qiáng)可遮性逆極限問題,本文將證明在逆序列的情況下,可遮及強(qiáng)可遮性在通常的可數(shù)仿緊條件下能夠被其逆序列的極限空間所保持.同時(shí)對(duì)遺傳可遮、遺傳強(qiáng)可遮及遺傳σ-亞緊的逆極限性質(zhì)也進(jìn)行了討論,可以看到甚至在無(wú)需對(duì)投射及極限空間X做任何假設(shè)的情況下,遺傳可遮、遺傳強(qiáng)可遮及遺傳σ-亞緊即可為其逆序列的極限空間所保持,作為這一結(jié)果的推論,可直接推導(dǎo)出定理A的結(jié)論.

本文所有的拓?fù)淇臻g簡(jiǎn)稱為空間,除非特別指出所有空間不附加任何分離條件,所有映射均為連續(xù)映射.若X為一拓?fù)淇臻g且A?X,|A|表示集合A的基數(shù).設(shè)A是空間X的子集族且x∈X,記

ω表示自然數(shù)集或最小無(wú)限基數(shù).文中未提及的概念及符號(hào)見文獻(xiàn)[10-11].以下的定義是大家熟知的,重述如下:

定義1.1設(shè)X為空間.

(1)設(shè)κ為無(wú)限基數(shù),稱X為κ-仿緊的,如果對(duì)X的每個(gè)勢(shì)不超過(guò)κ的開覆蓋有局部有限開加細(xì).

特別地,稱X為可數(shù)仿緊的,如果對(duì)X的每一可數(shù)開覆蓋有局部有限開加細(xì).

(2)稱空間X是可遮的(強(qiáng)可遮的),如果X的每個(gè)開覆蓋有σ-互不相交(σ-離散的)的開加細(xì).

(3)稱空間X是遺傳可遮的(遺傳強(qiáng)可遮的),如果X的每一個(gè)子空間是可遮的(強(qiáng)可遮的).

(4)稱空間X是σ-亞緊的,如果X的每個(gè)開覆蓋有σ-點(diǎn)有限的開加細(xì).

(5)稱空間X是遺傳σ-亞緊的,如果X的每一個(gè)子空間是σ-亞緊的.

設(shè)Λ為有向集,稱集族U={Uα|α∈Λ}是定向上升的,如果對(duì)任意的α,β∈Λ且α≤β,有Uα?Uβ.

設(shè)X,Y為拓?fù)淇臻g且f:X→Y為滿射.如果對(duì)滿足f-1(y)?U的任一y∈Y及X中的任一開集U,有y∈int(f(U)),則稱f是偽開映射.

易看出滿開映射及滿閉映射均為偽開映射.

以下引理是證明定理時(shí)需要的.

引理1.1[1]設(shè)X是κ-仿緊空間,Λ為有向集且|Λ|=κ,U={Uα|α∈Λ}為X的開覆蓋且是定向上升的,則存在X的定向上升的開覆蓋V={Vα|α∈Λ}使得對(duì)任意的α∈Λ,有

關(guān)于遺傳性質(zhì),易知

引理1.2(i)空間X是遺傳可遮的當(dāng)且僅當(dāng)X的每一個(gè)開子空間是可遮的;

(ii)空間X是遺傳強(qiáng)可遮的當(dāng)且僅當(dāng)如果X的每一個(gè)開子空間是強(qiáng)可遮的;

(iii)空間X是遺傳σ-亞緊的當(dāng)且僅當(dāng)X的每一個(gè)開子空間是σ-亞緊的.

引理1.3空間X是可遮的當(dāng)且僅當(dāng)對(duì)X的任意開覆蓋U={Uα|α∈Λ},存在σ-互不相交的開覆蓋

證明充分性是顯然的,下證必要性.

若X是可遮的,對(duì)X的任意開覆蓋U={Uα|α∈Λ}(不妨設(shè)Λ是良序的),存在U的σ-互不相交的開加細(xì)W=∪n∈ωWn,對(duì)任意的n∈ω及α∈Λ,令

2 可遮,強(qiáng)可遮逆序列的極限及其乘積

在κ-仿緊的通常假設(shè)條件下,可遮、強(qiáng)可遮的逆極限是否可被其極限空間保持這一問題尚未解決[5-7].下面的定理說(shuō)明在逆序列的情形下,假設(shè)極限空間是可數(shù)仿緊空間時(shí),可遮、強(qiáng)可遮性可被其逆序列的極限所保持.

因此,由引理1.5知,X是可遮空間.

仿照文獻(xiàn)[4]定理3的處理方法,利用定理2.1可得到關(guān)于可遮、強(qiáng)可遮性的一個(gè)具有可數(shù)無(wú)限因子的乘積定理.

(i)可遮;(ii)強(qiáng)可遮.

3 遺傳可遮,遺傳強(qiáng)可遮,遺傳σ-亞緊逆序列的極限及其乘積

本節(jié)將證明在逆序列的情形下,遺傳可遮、遺傳強(qiáng)可遮性和遺傳σ-亞緊性甚至在不需要對(duì)投射及極限空間X做任何假設(shè)的情況下即可為其逆序列的極限所保持.利用這一結(jié)果可以得到關(guān)于遺傳可遮、遺傳強(qiáng)可遮和遺傳σ-亞緊的一個(gè)關(guān)于具有可數(shù)無(wú)限因子的乘積定理.

定理3.1設(shè)X為逆序列{Xi,,ω}的極限空間.若每一Xi具有下列性質(zhì),則X也具有相應(yīng)的性質(zhì).

(i)遺傳可遮;(ii)遺傳強(qiáng)可遮;(iii)遺傳σ-亞緊.

因此,G是σ-亞緊的,X是遺傳σ-亞緊空間.

類似定理2.2的處理方法,利用定理3.1可以得到下列關(guān)于遺傳可遮,遺傳強(qiáng)可遮,遺傳σ-亞緊的可數(shù)Tychonoff乘積性質(zhì).

(i)遺傳可遮;(ii)遺傳強(qiáng)可遮;(iii)遺傳σ-亞緊.

注意到定理3.2事實(shí)上是文獻(xiàn)[8-9]的主要結(jié)論,是定理3.1的直接推論.

[1]Chiba K.Normality of inverse limits[J].Math.Japonica,1990,35(5):959-970.

[2]Chiba K.Covering properties of inverse limits[J].Question and Answer in General Topology,2002,20:101-114.

[3]Chiba K,Yajima Y.Covering properties of inverse limits II[J].Topology Proceedings,2003,27:79-100.

[4]Zhao Bin.Inverse limits of spaces with the weak B-property[J].Math.J.Okayama Univ.,2008,50:127-134.

[5]熊朝暉.σ-滿正規(guī)空間的逆極限[J].數(shù)學(xué)學(xué)報(bào),2004,47:819-824.

[6]熊朝暉.正規(guī)可遮空間的逆極限[J].數(shù)學(xué)進(jìn)展,1998,27:541-545.

[7]曹金文,賈永進(jìn).正規(guī)強(qiáng)可遮空間的逆極限性質(zhì)[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2008,24(1):186-189.

[8]Zhu Peiyong.Hereditarily screenableness and its Tychonoff products[J].Topology and its Applications. 1998,83:231-238.

[9]朱培勇.遺傳σ-亞緊空間及其乘積性質(zhì)[J].數(shù)學(xué)學(xué)報(bào),1998,41(3):531-538.

[10]Engelking R.General Topology,Revised and Completed Edition[M].Berlin:Heldermann Verlag,1989.

[11]Yasui Y.Generalized Paracompactness[M]//Topics in General Topology.New York:Elsevier Science Publishing Company,1989.

Note on countable products of hereditarily screenability and hereditarily σ-metacompactness

Zhao Bin,Li Xiuling,Guan Chunmei

(Department of Mathematics,Kashi Teacher′s College,Kashi844000,China)

In the case of inverse sequence,the screenability and strongly screenability can be preserved by the inverse limit spaces under the usually assumption of countable paracompactness of inverse limit spaces.Furthermore the hereditarily screenability,hereditarily strongly screenability and hereditarily σ-metacompactness can be preserved by the inverse limit spaces even without any assumption of the projections and the inverse limit spaces.As some applications,two theorems about countable Tychonoff product properties are given.

inverse sequence,countable paracompact,screenability,strongly screenability,hereditarily screenability,hereditarily σ-metacompact

O189.11

A

1008-5513(2012)04-0427-06

2012-02-08.

新疆維吾爾自治區(qū)高等學(xué)校科研計(jì)劃重點(diǎn)項(xiàng)目(XJEDU2008I31).

趙斌(1966-),教授,研究方向:一般拓?fù)鋵W(xué)及其應(yīng)用.

2010 MSC:54B10,54D20,54E18

猜你喜歡
性質(zhì)
含有絕對(duì)值的不等式的性質(zhì)及其應(yīng)用
MP弱Core逆的性質(zhì)和應(yīng)用
弱CM環(huán)的性質(zhì)
一類非線性隨機(jī)微分方程的統(tǒng)計(jì)性質(zhì)
隨機(jī)變量的分布列性質(zhì)的應(yīng)用
一類多重循環(huán)群的剩余有限性質(zhì)
完全平方數(shù)的性質(zhì)及其應(yīng)用
三角函數(shù)系性質(zhì)的推廣及其在定積分中的應(yīng)用
性質(zhì)(H)及其攝動(dòng)
九點(diǎn)圓的性質(zhì)和應(yīng)用
主站蜘蛛池模板: 亚洲成av人无码综合在线观看| 国产在线高清一级毛片| 亚洲国产成人在线| 国产精品亚洲va在线观看| 日韩不卡高清视频| 免费毛片网站在线观看| 青青草原国产精品啪啪视频| 色噜噜在线观看| 免费无遮挡AV| 国产成人免费视频精品一区二区| 欧美综合区自拍亚洲综合天堂| 九色91在线视频| 色窝窝免费一区二区三区| 欧美色伊人| 亚洲综合日韩精品| a毛片免费观看| a色毛片免费视频| 91麻豆国产视频| 日本午夜三级| 免费欧美一级| 欧美午夜网| 狂欢视频在线观看不卡| 91免费观看视频| 九九九精品成人免费视频7| 99久视频| 71pao成人国产永久免费视频| 真实国产乱子伦高清| 国产呦视频免费视频在线观看 | 91久久青青草原精品国产| 日韩高清成人| 青草精品视频| 免费在线国产一区二区三区精品| 免费国产无遮挡又黄又爽| 91亚洲精选| 视频二区亚洲精品| 婷婷六月在线| 久久综合干| 天天综合网色| 欧美日本不卡| 国产成人精品亚洲日本对白优播| 四虎免费视频网站| 亚洲男人的天堂久久香蕉网| 国产成人精品无码一区二| 婷婷午夜天| 亚洲乱码精品久久久久..| 毛片在线播放a| 国产在线观看人成激情视频| 无码精品国产dvd在线观看9久| 国产农村1级毛片| 成人a免费α片在线视频网站| 欧美第二区| 国产精品视频导航| 久久久久久久97| 欧美精品三级在线| 精品一区国产精品| 亚洲首页国产精品丝袜| 久久6免费视频| 免费jjzz在在线播放国产| 亚洲欧洲日产国产无码AV| 91小视频在线播放| 欧美亚洲综合免费精品高清在线观看 | 久久一日本道色综合久久| 欧美影院久久| 久久精品日日躁夜夜躁欧美| 2021国产乱人伦在线播放| 怡红院美国分院一区二区| 日本一区二区不卡视频| 国产流白浆视频| 免费中文字幕在在线不卡 | 久久免费成人| 国产福利小视频在线播放观看| 亚洲三级色| 亚洲狼网站狼狼鲁亚洲下载| 九九香蕉视频| 久久性视频| 亚洲精品成人片在线观看| 国产欧美又粗又猛又爽老| 72种姿势欧美久久久大黄蕉| 亚洲一道AV无码午夜福利| 日本手机在线视频| 日韩精品欧美国产在线| 亚洲91精品视频|