999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

三缺位Keggin結(jié)構(gòu)磷鎢酸甲基苯基硅衍生物[(C4H9)4N]3[α-A-PW9O34(C6H5SiCH3)3]的合成和表征

2012-09-18 06:31:14張東娣王科燕慶霞馬鵬濤王敬平
關(guān)鍵詞:結(jié)構(gòu)

張東娣王 科燕慶霞馬鵬濤王敬平*,

(1河南大學(xué)藥學(xué)院,開(kāi)封 475004)

(2河南大學(xué)化學(xué)化工學(xué)院分子與晶體工程研究所,開(kāi)封 475004)

三缺位Keggin結(jié)構(gòu)磷鎢酸甲基苯基硅衍生物[(C4H9)4N]3[α-A-PW9O34(C6H5SiCH3)3]的合成和表征

張東娣1,2王 科2燕慶霞2馬鵬濤2王敬平*,2

(1河南大學(xué)藥學(xué)院,開(kāi)封 475004)

(2河南大學(xué)化學(xué)化工學(xué)院分子與晶體工程研究所,開(kāi)封 475004)

通過(guò)三缺位Keggin結(jié)構(gòu)雜多陰離子[α-A-PW9O34]9-和二氯甲基苯基硅烷在乙腈溶液中反應(yīng),合成了一例結(jié)構(gòu)新穎的甲基苯基硅衍生物[(C4H9)4N]3[α-A-PW9O34(C6H5SiCH3)3](1),并對(duì)其進(jìn)行元素分析,紅外光譜,紫外光譜,熱分析和X-射線單晶衍射等表征。該配合物屬于三方晶系,空間群為 R3m,晶胞參數(shù):a=2.261 3(2)nm,b=2.261 3(2)nm,c=1.797 6(4)nm,V=7.960 2(18)nm3,Z=3。在配合物中,陰離子[α-A-PW9O34(C6H5SiCH3)3]3-呈C3v對(duì)稱,3個(gè)甲基苯基硅基團(tuán)連接在三缺位的陰離子[α-A-PW9O34]9-表面,整個(gè)陰離子顯示“開(kāi)放結(jié)構(gòu)”。

有機(jī)硅;三缺位磷鎢酸鹽;晶體結(jié)構(gòu);合成

The design and synthesis of derivatized polyoxometalates (POMs)have attracted considerable attention in recent years originating from the fundamental interest of modeling catalysis by metal oxides as well as potential applications in different fields,including bifunctional catalysis, antiviral and antitumoral chemotherapy[1-2].It is known that covalent attachment of organic or organometallic groups to POMs can be a strategy for increasing the structural diversity and improving their properties[3-7].This approach has beenvery successful for the synthesis of organic-inorganic hybrid POMs and a large number of such POMs have been synthesized and characterized in solution or in solid state since the pioneering work of Klemperer et al.[8].

To date,there are three main types available in the literature regarding organometallic groups,namely organostannyl derivatives[9-15],organophosphoryl[16-20]and organosilyl derivatives[21-32],also,there are a few of organonoblemetallic derivatives[33-35]reported in the latest years.Among them,organosilyl derivatives are of particular interest and have been investigated for a long time probably because the isolated organosilyl groups can be easily incorporated into mono-,di-,or trivacant POMs.In 1979,the group of Knoth obtained the first organosilyl derivative[α-SiW11O39{O(SiR)2}]4-(R=C2H5,C6H5,NC (CH2)3,C3H5)by reaction of trichloro organosilanes with lacunary precursor[α-SiW11O39]8-[24].In particular,Thouvenot and co-workers studied this system deeply,and have reported a series of orgnosilylderivatives,such as[α2-P2W17O61(RSi)2O]6-[25],[(γ-SiW10O36)(RSi)2O]4-[27],[(γ-SiW10O36)(RSiO)4]4-[27],α-A-[PW9O34(tBuSiO)3(RSi)]3-[28],α-B-[AsW9O33(tBuSiO)3(HSi)]3-[28],[(α-PW10O36)-(tBuSiOH)2]3-[29],and α-A-[PW9O34(tBuSiO)3(SiR)]3-[32].Several years ago we reported on two new monoorganosilyl group-substituted organosilyl derivatives, α-A-[NnBu4]3[PW9O34(RSiO)3(RSi)](R=C2H5,CH3)[30].However,in marked contrast to the extensive reports of monoorganosilyl derivatives aforementioned,few diorganosilylgroup-substituted organosilyl derivatives areknown.Therefore,we decided to investigate the interaction of diorganosilyl groups with trivacant heteropolytungstates in some detail.Herein we report on the synthesis,single-crystal X-ray structure of[(C4H9)4N]3[α-A-PW9O34(C6H5SiCH3)3](1),which represents the first polyoxoanion-based diorganosilyl group-substituted organosilyl derivative.

1 Experimental

1.1 Synthesis of[(C4H9)4N]3[α-A-PW9O34(C6H5SiCH3)3]

Compound 1 can be synthesized as follows:Na9[α-A-PW9O34]·nH2O (1.95 g,0.80 mmol)[36]and NnBu4Br (0.78 g,2.42 mmol)were suspended in 50 mL of CH3CN and then C6H5SiCH3Cl2(0.62 g,3.25 mmol)was added dropwise under vigorous stirring.This solution was refluxed for 24 h and filtered.And then the resulting solution was allowed to evaporate slowly at room temperature.Colorless block crystals of 1 suitable for X-ray crystallography were obtained after several days.Yield:ca.30% (Based on Na9[APW9O34]·nH2O).Anal.Calcd.for C69H132N3O34PSi3W9(%):C,24.98;H,4.01;N,1.27;P,0.93;Si,2.54;W,49.87.Found(%):C,24.88;H,4.00;N,1.10;P,1.01;Si,2.57;W,49.97.

Similar to [α-A-PW9O34(tBuSiO)3(RSi)]3-[28],the formation for 1 can be written as follow:

1.2 X-ray crystallography

Intensity data for 1 were collected at 296 K on a Bruker ApexⅡdiffractometer using the graphitemonochromated Mo Kα radiation (λ=0.071 073 nm).The structure was solved by combination of SHELXS-97 (direct methods)and SHELXH-97 (Fourier and least-squares renement)[37].Lorentz polarization and Muti-scan absorption corrections were applied.All non hydrogen atoms were refined anisotropically.Hydrogen atoms attached to carbon atoms were geometrically placed.All hydrogen atoms were refined isotropically asaridingmodeusingthedefaultSHELXTL parameters.Crystallographic data and structure refinements for 1 are summarized in Table 1.

CCDC:830334.

1.3 Characterization

Elemental analyses(C,H,and N)were performed on a Perkin-Elmer 240C elemental analyzer.ICP analyses were performed on a Perkin-Elmer Optima 2000 ICP-OES spectrometer.IR spectra were obtained on a Nicolet 170 SXFT-IR spectrometer using the technique of pressed KBr pellets in the range 400~4 000 cm-1.XRPD were recorded on a Philips X′Pert-MPD instrument withCu Kα radiation (λ=0.154 056 nm)in the range 2θ=10°~40°at 293 K.TG analyses were carried out under N2atmosphere on a Mettler-Toledo TGA/SDTA 851einstrument with theheating rate of 10℃·min-1from 25 to 800℃.UV-Vis absorption spectra were obtained with a U-4100 spectrometer(distilled water as solvent)at 300 K.

Table 1 Crystallographic data and structural refinements for 1

2 Results and discussion

2.1 Crystal structure

Single crystal X-ray diffraction reveals that 1 crystallizes in the trigonal space group R3m.The molecular structure of 1 is composed of one[α-A-PW9O34(C6H5SiCH3)3]3-polyoxoanions and three [(C4H9)4N]+cations(Fig.1).As shwon in Fig.1a,the polyoxoanion[α-A-PW9O34(C6H5SiCH3)3]3-consists of a[α-A-PW9O34]9-framework with three equivalent C6H5SiCH3groups,and each C6H5SiCH3group isgrafted onto this polyoxoanion by two Si-O-W bridges.Different from the close cage structure of α-A-[NnBu4]3[PW9O34(RSiO)3(RSi)](R=C2H5,CH3)[30],the polyoxoanion[α-A-PW9O34(C6H5SiCH3)3]3-displays an open structure while keeping the geometry of the parent trivacant polyoxoanion[α-A-PW9O34]9-.As we know,the POM-based organosilyl derivatives previously reported are limited and mainly confined to monoorganosilyl group-substituted species.There is still no report about diorganosilyl analogue.Consequently,the most remarkable structural feature of 1 is that it is the first trivacant tungstophosphatebased example ofdiorganosilylgroup-substituted organosilylderivative in which the Siatom is connected to two organic groups.There are minor disorder in the ligand with C2,C3,C4/C4,C5,C6,C7/C7 in 1 which lie about an inversion centre.

Compared to the saturated Keggin structure,the P heteroatom adopts a slightly distorted tetrahedral geometry coordinated by oxygen atomswith an average P-O bond length of 0.153 3(12)nm,which is ascribed to the removal of three corner-shared WO6octahedra and the incorporation of three C6H5SiCH3groups.Fig.1b shows that the incorporated silicon atoms are defined by two O atoms from[α-A-PW9O34]9-moieties with average bond lengths 0.162 6(9)nm and twocarbon atomsfrom themethyland phenyl,respectively.This coordination mode is similar to Sn atoms of[{Sn(CH3)2}4(H2P4W24O92)2]28-[15],Si atoms aswell as Sn atoms are bound to two organic groups.Although there has been such organotin derivative,stillhasno any similarreportforPOM-based diorganosilyl group-substituted organosilyl derivative.To our knowledge,1 is the first example of POM-based diorganosilyl group-substituted organosilyl derivative.Packing arrangement viewed down c axis of the polyoxoanion in 1 is illustrated in Fig.2.The infinite hexa-number rings are formed via π-π and electrostatic interactions with one polyoxoanion locating in the center of the ring.

2.2 FT-IR spectra

The IR spectrum of 1 (Fig.3)is very similar to that of Na9[α-A-PW9O34]·nH2O,which is indicative of the retention of the [α-A-PW9O34]9-framework.In the low-wavenumber region, characteristic vibration patterns derived from the Keggin frameworks are observed.Four characteristic vibration bands assigned to Ⅴ(W-Ot), Ⅴ(P-Oa), Ⅴ(W-Ob)and Ⅴ(W-Oc)appear at 974 and 938,1 088 and 1 028,872,and 812 cm-1for 1,respectively.Additionally,the stretching bands of-CH3and-C6H5have been typically observed at 2 874~2 961 and 3 040~3 072 cm-1,respectively.The bands at wide 3 420 and strong 1 625 cm-1are attributed to the lattice water and ligand water molecules.As above mentioned,the resultsofIR spectrum arewell identical with those of X-ray diffraction strutural analysis.

2.3 UV-Vis spectrum

The UV-Vis spectrum(Fig.4)of 1 displays a strong absorption at 260 nm and a weak peak at near 191 nm,which are associated with the charge-transfer bands corresponding to Ot→W and Ob(c)→W,respectively.

2.4 TG analyses

The thermalgravimetric curve of1 (Fig.5)indicates two steps of weight loss,giving a total weight loss of 30.63%in the range of 25~850 ℃ ,accordant with the calculated loss of 29.28% .Thefirst stage from 25 to 412℃is attributed to the removal of three organic ammonium molecules,and the observed weight loss 22.40%is consistent with the calculated value 21.93%.The second stage with the weight loss of 8.23%occurs between 412 and 800℃,which may be assigned to the loss of three methyl and three phenyl(calcd.7.35%).

2.5 XRPD patterns

The experimental XRPD pattern of the bulk product of 1 is in good agreement with the simulated one that are based on the results from single-crystal XRD,which indicates the phase purity of the sample(Fig.6).The different intensities of the experimental and simulated XRPD patterns are due to the variation in the preferred orientation of the powder sample during data collection.

3 Conclusions

In summary,we have successfully incorporated diorganosilylgroupsintoa trivacantKeggin-type tungstophosphate.The title compound is the first example of POM-based diorganosilyl group-substituted organosilyl derivative.Further,the successful synthesis of 1 may provide possibilities for designing new diorganosilyl group-substituted organosilyl derivatives.

[1]Pope M T.Heteropoly and Isopoly Oxometalates.Berlin:Springer-Verlag,1983.

[2]Pope M T,Müller A.Angew.Chem.Int.Ed.Engl.,1991,30:34-38

[3]Proust A,Thouvenot R,Gouzerh P.Chem.Commun.,2008,6:1837-1852

[4]Yamase T.Chem.Rev.,1998,98:307-326

[5]CoronadoE,Gómez-GarciaCJ.Chem.Rev.,1998,98:273-296

[6]Rhule J T,Hill C L,Judd D A.Chem.Rev.,1998,98:327-358

[7]Gouzerh P,Proust A.Chem.Rev.,1998,98:77-111

[8]Ho R K C,Klemperer W G.J.Am.Chem.Soc.,1978,100:6772-6774

[9]Chorghade G S,Pope M T.J.Am.Chem.Soc.,1987,109:5134-5138

[10]Xin F,Pope M T.Organometallics,1994,13:4881-4886

[11]Xin F,Pope M T.Inorg.Chem.,1996,35:5693-5695

[12]Xin F,Pope M T,Long G J,et al.Inorg.Chem.,1996,35:1207-1213

[13]Sazani G,Pope M T.Dalton Trans.,2004,13:1989-1994

[14]Bareyt S,Piligkos S,Hasenknopf B,et al.J.Am.Chem.Soc.,2005,127:6788-6794

[15]Hussain F,Kortz U,Keita B,et al.Inorg.Chem.,2006,45:761-766

[16]Sun Z G,Liu Q,Liu J F.Inorg.Chem.Commun.,2000,3:328-330

[17]Mayer C R,Hervé M,Lavanant H,et al.Eur.J.Inorg.Chem.,2004,5:973-977

[18]Mayer C R,Thouvenot R.J.Chem.Soc.Dalton Trans.,1998:7-13

[19]Kim G S,Hagen K S,Hill C L.Inorg.Chem.,1992,31:5316-5324

[20]Mayer C R,Herson P,Thouvenot R.Inorg.Chem.,1999,38:6152-6158

[21]Schroden R C,Blanford C F,Melde B J,et al.Chem.Mater.,2001,13:1074-1081

[22]Mayer C R,Thouvenot R,Lalot T.Macromolecules,2000,33:4433-4437

[23]Judeinstein P,Deprun C,Nadjo L.J.Chem.Soc.Dalton.Trans.,1991,8:1991-1997

[24]Knoth W H.J.Am.Chem.Soc.,1979,101:759-760

[25]Mayer C R,Roch-Marchal C,Lavanant H,et al.Chem.Eur.J.,2004,10:5517-5523

[26]Mayer C R,Neveu S,Cabuil V.Angew.Chem.,Int.Ed.Engl.,2002,41:501-503

[27]Mayer C R,Fournier I.Chem.Eur.J.,2000,6:105-110

[28]Mazeaud A,Ammari N,Robert F,et al.Angew.Chem.,Int.Ed.Engl.,1996,35:1961-1964

[29]Mazeaud A,Dromzee Y,Thouvenot R.Inorg.Chem.,2000,39:4735-4740

[30]Niu J Y,Li M X,Wang J P.J.Organomet.Chem.,2003,675:84-90

[31]Hasegawa T,Shimizu K,Seki H,et al.Inorg.Chem.Commun.,2007,10:1140-1144

[32]Agustin D,Coelho C,Mazeaud A,et al.Z.Anorg.Allg,Chem.,2004,630:2049-2053

[33]Sakai Y,Shinohara A,Hayashi K,et al.Eur.J.Inorg.Chem.,2006,1:163-171

[34]Nomiya K,Hayashi K,Kasahara Y,et al.Bull.Chem.Soc.Jpn.,2007,80:724-731

[35]Bi L H,Al-Kadamany G,Chubarova E V,et al.Inorg.Chem.,2009,48:10068-10077

[36]Klemperer W G,Ginsberg A P.Inorganic Syntheses,1990,27:74-85

[37]Sheldrick G M.SHELXTL97,Program for Crystal Structure Solution,University of G?ttingen,G?ttingen,Germany,1997.

A Methylphenylsilyl Group-Substituted Derivative Based on the Trivacant Keggin Structure Tungstophosphate[(C4H9)4N]3[α-A-PW9O34(C6H5SiCH3)3]:Synthesis and Structural Characterization

ZHANG Dong-Di1,2WANG Ke2YAN Qing-Xia2MA Peng-Tao2WANG Jing-Ping*,2
(1Pharmaceutical College,Henan University,Kaifeng,Henan 475004,China)
(2Institute of Molecular and Crystal Engineering,College of Chemistry and Chemical Engineering,Henan University,Kaifeng,Henan 475004,China)

A methylphenylsilyl group-substituted derivative[(C4H9)4N]3[α-A-PW9O34(C6H5SiCH3)3](1)has been obtained by reaction of the trivacant [α-A-PW9O34]9-anion with dichloromethylphenylsilane C6H5SiCH3Cl2in acetonitrile.The new complex was characterized by elemental analysis,IR spectra,UV spectra,thermogravimetric analysis and X-ray crystallography.The compound 1 crystallizes in the trigonal space group R3m,with lattice constants a=2.261 3(2)nm,b=2.261 3(2)nm,c=1.797 6(4)nm,V=7.960 2(18)nm3,and Z=3.The polyoxoanion[α-A-PW9O34(C6H5SiCH3)3]3-has a structure of virtual C3vsymmetry with three C6H5SiCH3groups grafted on the surface of the trivacant tungstophosphate and displays an “open-structure”.CCDC:830334.

organosilyl;trivacant tungstophosphate;crystal structure;synthesis

O614.61+3

A

1001-4861(2012)10-2236-05

2012-03-26。收修改稿日期:2012-09-06。

國(guó)家自然科學(xué)基金(No.21071042);河南省基礎(chǔ)與前沿技術(shù)研究課題(No.122300410126)資助項(xiàng)目。

*通訊聯(lián)系人。E-mail:jpwang@henu.edu.cn

猜你喜歡
結(jié)構(gòu)
DNA結(jié)構(gòu)的發(fā)現(xiàn)
《形而上學(xué)》△卷的結(jié)構(gòu)和位置
論結(jié)構(gòu)
新型平衡塊結(jié)構(gòu)的應(yīng)用
模具制造(2019年3期)2019-06-06 02:10:54
循環(huán)結(jié)構(gòu)謹(jǐn)防“死循環(huán)”
論《日出》的結(jié)構(gòu)
縱向結(jié)構(gòu)
縱向結(jié)構(gòu)
我國(guó)社會(huì)結(jié)構(gòu)的重建
人間(2015年21期)2015-03-11 15:23:21
創(chuàng)新治理結(jié)構(gòu)促進(jìn)中小企業(yè)持續(xù)成長(zhǎng)
主站蜘蛛池模板: 国产v精品成人免费视频71pao | 国产精品久久久久久久久久98| 欧美97色| 成年午夜精品久久精品| 2021国产v亚洲v天堂无码| 国产丝袜第一页| 亚洲一区二区在线无码| jizz国产在线| 欧美性精品| 亚洲无码高清一区二区| 亚洲AV无码久久精品色欲| 在线观看视频一区二区| 日韩久草视频| 国产jizzjizz视频| 午夜激情婷婷| 国产又大又粗又猛又爽的视频| 欧美国产中文| 亚洲欧洲自拍拍偷午夜色无码| 91久久精品日日躁夜夜躁欧美| 欧美日本在线| 免费在线国产一区二区三区精品| 亚洲欧美激情小说另类| 67194在线午夜亚洲| 国产三级精品三级在线观看| 中文国产成人精品久久一| 九九这里只有精品视频| 国产精品黄色片| 无码高潮喷水在线观看| 99精品在线视频观看| 国产h视频在线观看视频| 中国成人在线视频| 日韩精品毛片| 亚洲男女在线| 国产成人久久综合777777麻豆| 欧美日韩国产在线人| 国产99免费视频| 久久国产精品影院| 中日韩一区二区三区中文免费视频 | 亚洲不卡影院| 国产成人欧美| 国产爽妇精品| 久久伊人久久亚洲综合| 婷婷丁香在线观看| 国产乱码精品一区二区三区中文 | 蜜臀av性久久久久蜜臀aⅴ麻豆| 99re精彩视频| 国产成人高清精品免费软件| 成人一区在线| 人妻无码中文字幕一区二区三区| 亚洲成人高清无码| 又污又黄又无遮挡网站| 在线一级毛片| 99热这里只有免费国产精品 | 2021国产精品自产拍在线观看| 视频在线观看一区二区| 国产日韩欧美精品区性色| 成人亚洲国产| 找国产毛片看| 国产精品区视频中文字幕| 亚洲精品va| 女高中生自慰污污网站| 亚洲毛片在线看| 免费在线看黄网址| 国产女人水多毛片18| 亚洲欧美另类视频| 欧洲成人免费视频| 乱人伦99久久| 亚洲男人天堂久久| 伊人久久精品亚洲午夜| 一级片免费网站| 国产成人91精品| 国产精品偷伦在线观看| 女人18毛片水真多国产| 丝袜无码一区二区三区| 久久天天躁狠狠躁夜夜2020一| 亚洲高清无码精品| 国内精品视频| 午夜激情福利视频| 亚洲swag精品自拍一区| 精品久久777| 亚洲第一成网站| 中文字幕亚洲专区第19页|