999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一種基于概率的覆蓋粗糙集模型研究

2012-09-20 02:29:12王小改李巧艷
渭南師范學院學報 2012年10期
關鍵詞:定義特征系統

王小改,李巧艷,王 璐

(西安工程大學理學院,西安710048)

0 引言

1982年波蘭數學家Z.Pawlak首次提出了粗糙集理論[1],這是一種處理不確定性和不精確性問題的新的數學工具,在數據挖掘、知識約簡等方面得到成功的應用.1983年Zakowski[2]從實際應用出發,提出了覆蓋粗糙集模型,并討論了相關的性質.2003年William Zhu和WANG Fei-yue[3]在覆蓋粗糙集的基礎上給出了約簡的概念和方法,證明了一個覆蓋通過約簡得到的最簡覆蓋是唯一的,并且證明了最簡覆蓋相同的兩個覆蓋產生相同的上、下近似.

1 一種基于概率的覆蓋粗糙集模型

定義1[4]設U是有限論域,集函數P∶2U→[0,1]成為概率側度,若

(1)P(U)=1,

(2)當A∩B=?,有P(A∪B)=p(A)+p(B),

若P是U上的概率測度,稱A,B?U且P(B) >0,稱

為在事件B發生的情況下事件A發生的條件概率.

定義2 (覆蓋、覆蓋近似空間)設U是一個論域,C是U的一個子集族.如果C中的所有子集都不空,且∪C=U,則稱C是U的一個覆蓋,稱有序對 <U,C>為覆蓋近似空間.

定義3[5](最小描述)設 <U,C > 為一個覆蓋近似空間,x∈U,則稱

為x的最小描述.

定義4 (覆蓋下近似、上近似)設C={K1,K2,…,Kn}是論域U上的一個覆蓋,P為定義在U的子集類構成的σ代數上的概率測度,記A=(U,C,P)為覆蓋概率近似空間,則對任意X?U,0≤β<α≤1,定義X的關于A=(U,C,P)依參數α,β的下近似和上近似分別為:

X 的關于 A=(U,C,P) 依參數 α,β,的覆蓋邊界域為 Bn(X,α,β)=

定理1 對于定義4下的覆蓋上、下近似有如下性質:

2 覆蓋粗糙集的數字特征

文獻[6]介紹給出了粗糙集的數字特征.本節我們在文獻[6]的基礎上討論定義4給出的覆蓋粗糙集的數字特征.

定義5 (集合的近似精度和粗糙度)設C是論域U上的一個覆蓋,對?X?U,稱集合X的α近似精度和ρ粗糙度分別為

對每一個X?U,有0≤α(X)≤1.當α(X)=1時,X的邊界域為空集,所以集合X是可定義的;當α(X)<1時,集合X有非空的邊界域,所以集合是不可定義的;當集合X為空集時,我們就定α(X)=α(?)=1.

X的α粗糙度與ρ近似精度恰恰相反,它反映了我們在覆蓋C對于集合X表達的范疇了解的不完全程度.

定義6 (近似分類精度和近似分類質量)設C是論域U上的一個覆蓋,以及論域U上的一個劃分π(U)={X1,X2,X3,…,Xn} ∈ Π(U),且這個劃分獨立于覆蓋 C.其中子集 Xi(i=1,2,…,n) 是劃分π(U)的等價類.首先定義π(U)的下近似和上近似分別為:

定義7 (知識庫中系統參數的重要度)設C是論域U上的一個覆蓋,C表示描述覆蓋近似空間 <U,C>的一組數或單個的系統參數.?X?U和獨立于系統參數C的論域U的一個劃分π(U)={X1,X2,…,Xn},定義集合X關于系統參數C的重要度和劃分π(U)關于系統參數C的重要度分別為

由定義,系統參數具有以下性質:

(1)?X?U,π(U)∈∏(U),0≤sigC(X)≤1;0≤sigC(π(U))≤1.

(2)當sigC(X)=1時,表明覆蓋C可精確描述出集合X.

(3)當sigC(X)=0時,表明覆蓋C無法判斷論域U中的任意元素是否屬于概念X.

(4)X系統參數C的重要度越大,表明用覆蓋C描述集合X的近似精度就越高.

(5)當sigC(π(U))=1時,表明覆蓋C可精確描述出劃分π(U),即劃分π(U)是比覆蓋C所表示的劃分更粗的劃分.

(6)當sigC(π(U))=0時,表明覆蓋C無法判斷論域U中的任意元素是否屬于劃分π(U)中的概念Xi(i=1,2,…,n).

(7)劃分π(U)系統參數C的重要度越大,表明用覆蓋C描述該劃分π(U)的似精度就越高.

(8)無論集合還是劃分,它的系統參數C的重要度越大,表明覆蓋C分類能力越強.

(9)無論集合還是劃分,它的系統參數C的重要度隨著C的細劃而單調遞增.

3 覆蓋粗糙集的拓撲特征

定義8 設C是論域U上的一個覆蓋,

定理3 (1)集合X為C-可定義,或C-粗糙可定義,或C-全不可定義,當且僅當 ~X為C-可定義的,或C-粗糙可定義,或C-全不可定義;

(2)X為C-外(或內)不可定義當且僅當 ~X為C-外(或內)不可定義.

所以X為C-粗糙可定義? ~X為C-粗糙可定義.

綜上所述,集合X為C-可定義,或C-粗糙可定義,或C-全不可定義,當且僅當 ~X為C-可定義的,或C-粗糙可定義,或C-全不可定義.

同理可證(2)成立.

4 結語

本文提出了一種新的覆蓋粗糙集的上、下近似定義,并討論了其性質.同時,研究了其數字特征與拓撲特征,豐富了覆蓋粗糙集的研究.

[1]Pawlak Z.Rough sets[J].International Journal of Computer and Information Sciences,1982,11:341 -356.

[2]Zakowski W.Approximation in the space(U,∏)[J].Demonstration Mathematic,1983,16:761 -769.

[3]William Zhu,WANG Fei-yue.Reduction and axiomization of covering generalized rough set[J].Information Sciences,2003,152:217 -230.

[4]孫秉珍,鞏增泰.變精度概率粗糙集模型[J].西北師范大學學報(自然科學版),2005,41(4):23-26.

[5]Zhu W,Wang F Y.Reduction and axiomization of covering generalized rough sets[J].Information Sciences,2003,152:217 -230.

[6]苗奪謙,李道國.粗糙集理論、算法與應用[M].北京:清華大學出版社,2008.34-57.

猜你喜歡
定義特征系統
Smartflower POP 一體式光伏系統
工業設計(2022年8期)2022-09-09 07:43:20
WJ-700無人機系統
ZC系列無人機遙感系統
北京測繪(2020年12期)2020-12-29 01:33:58
如何表達“特征”
不忠誠的四個特征
當代陜西(2019年10期)2019-06-03 10:12:04
抓住特征巧觀察
連通與提升系統的最后一塊拼圖 Audiolab 傲立 M-DAC mini
成功的定義
山東青年(2016年1期)2016-02-28 14:25:25
線性代數的應用特征
河南科技(2014年23期)2014-02-27 14:19:15
修辭學的重大定義
當代修辭學(2014年3期)2014-01-21 02:30:44
主站蜘蛛池模板: 97国产成人无码精品久久久| 午夜欧美在线| 亚洲中文字幕国产av| 91无码人妻精品一区| 欧美中文字幕在线二区| 免费一级毛片| 香蕉网久久| 午夜免费视频网站| 亚洲国产成人久久精品软件| 国产乱子伦无码精品小说| 亚洲成AV人手机在线观看网站| 毛片视频网址| 日本久久免费| 毛片一区二区在线看| 亚洲看片网| 四虎在线观看视频高清无码 | 国产在线一区视频| 在线另类稀缺国产呦| 亚洲国产中文精品va在线播放| 麻豆精品国产自产在线| 这里只有精品在线播放| 国产精品精品视频| 亚洲欧美精品日韩欧美| 久热精品免费| 亚洲免费成人网| 亚洲无码四虎黄色网站| 五月天香蕉视频国产亚| 精品国产三级在线观看| 日韩午夜伦| 日本一区高清| 波多野结衣爽到高潮漏水大喷| 国产丝袜啪啪| 久久综合丝袜长腿丝袜| 亚洲av成人无码网站在线观看| 秘书高跟黑色丝袜国产91在线| 欧美中文字幕第一页线路一| 国产精品亚洲天堂| 亚洲最大综合网| 国产美女视频黄a视频全免费网站| 国产午夜福利亚洲第一| 精品福利视频导航| 欧美在线三级| 一区二区影院| 欧美不卡视频一区发布| 91小视频在线| 午夜色综合| 人人艹人人爽| 2020国产在线视精品在| 国产JIZzJIzz视频全部免费| 日本国产一区在线观看| 一区二区三区国产| 伊在人亚洲香蕉精品播放| 国产小视频网站| 不卡的在线视频免费观看| 亚洲经典在线中文字幕| 久久国产亚洲欧美日韩精品| 日本人又色又爽的视频| 久久国产精品波多野结衣| 色婷婷国产精品视频| 国产精品护士| 97视频在线精品国自产拍| 人妖无码第一页| 久久精品最新免费国产成人| 国产亚洲精品资源在线26u| 制服丝袜一区| 噜噜噜久久| 91亚洲精选| 美女视频黄频a免费高清不卡| 国产成+人+综合+亚洲欧美| 日本五区在线不卡精品| 国产欧美网站| 999国产精品| 国产三区二区| 午夜丁香婷婷| 亚洲人成网址| 五月激情综合网| 国产一在线观看| 波多野结衣中文字幕久久| 国产亚洲视频免费播放| 很黄的网站在线观看| 亚洲精品动漫| 亚洲中文字幕97久久精品少妇|