許昌職業技術學院 機電工程系 李亞男

采用RC 選頻網絡構成的振蕩電路稱為RC 振蕩電路,它適用于低頻振蕩,一般用于產生1 Hz~1 MHz的低頻信號。因為對于RC 振蕩電路來說,增大電阻R 即可降低振蕩頻率,而增大電阻是無需增加成本的。從結構上來看,正弦波產生電路應包括放大電路、正反饋網絡、選頻網絡和穩幅電路,這些是必要條件,其中的選頻網絡可以設置在放大電路中,也可設置在正反饋網絡中,甚至可以設置在放大電路的負反饋網絡中。但這不是隨意的,要保證對于選頻網絡的中心頻率而言,能夠滿足幅度條件和相位條件,正弦波振蕩器是一種基本的電子電路,電子技術試驗中經常使用的低頻信號振蕩器就是一種正弦波振蕩電路.無論對于哪種振蕩電路,用傳統方法精確分析起振、振幅、振蕩頻率的大小都是十分困難的,而用EWB 軟件則可進行仿真分析.本文,筆者以文氏橋振蕩電路為例,采用EWB 軟件對其正弦波振蕩器的起振過程及各參數對頻率和振幅的影響進行仿真分析,以期對同行有所參考。
理想運算放大器具有虛斷特牲,為克服RC移相振蕩器的缺點,常采用RC 串并聯電路作為選頻反饋網絡的正弦振蕩電路,也稱為文氏橋振蕩電路,其結構如圖1所示。

圖1 文氏橋振蕩電路結構
它由兩級共射電路構成的同相放大器和RC 串并聯反饋網絡組成。由于φA=0,這就要求RC串并聯反饋網絡對某一頻率的相移φF=2nπ,才能滿足振蕩的相位平衡條件。
由圖1可知,當f0=1/(2πRC),F 的模最大,且|F|=1/3,φF=0;當f>f0時,|F|減小,且φF≠0,f0=1/(2πRC),由|AF|>1 知起振條件為|A|>1,這表明RC 串并聯網絡具有選頻特性,因此圖1電路滿足振蕩的相位平衡條件。如果同時滿足振蕩的幅度平衡條件,就可產生自激振蕩,振蕩頻率f=f0=1/(2πRC)=1.592 kHz。
文氏橋振蕩器不僅振蕩較穩定,波形良好,而且振蕩頻率在較寬的范圍內能方便地連續調節,其相位φA+φF=2nπ(n=0,1,2,…)。在設計振蕩器時首先需要考慮相移。從理論上講,利用文氏電路產生正弦波非常簡便,然而從實際情況考慮實際意義不大,因為電阻的精度很好控制,而電容容值的精度很難控制,即使是精度為±20%的電容成本也很高。比較明智的辦法是首先考慮電容器精度對電橋性能的影響,然后找到一種低成本的彌補辦法。
為了穩定輸出電壓的幅值,一般應在電路中加入非線性環節。非線性環節的作用必須保證開環放大倍數k穩定在3,當k<3 時,應加大RF或減小R,而當遇k>3 時,應減小RF或加大R。經過調節電阻R1來改變起振情況。振蕩器的慢速起振過程如圖1所示,快速起振過程如圖2所示。

圖2 慢速起振過程

圖3 快速起振過程
1.當f=f0時,反饋信號與原輸入信號同相位,滿足相位條件;反饋電路輸出電壓只有反饋電路輸入電壓的且最大。因此,集成運放組成f0的放大電路中RF略大于2R1時就能滿足振幅條件,從而產生振蕩,振蕩頻率為f0=1/(2πRC)。若RF<2R1,電路不能起振;若RF>2R1輸出電壓Uo的波形會產生接近方波失真。
2.當f≠f0時,反饋電路輸出信號與輸入信號的相位不同相,無正弦波信號電壓輸出。
3.為產生振蕩,f=f0信號電壓必須有一個從微弱開始逐漸增大,直至穩定的過程。實用中,常采用改變RF/R1來實現穩幅。例如,選擇負溫度系數的熱敏電阻作反饋電阻RF,當輸出電壓增加使RF的功耗增大,它的溫度上升,其負溫度系數使它的阻值下降,于是閉環電壓放大倍數減小,達到穩幅目的。同理,也可選擇正溫度系數的熱敏電阻作電阻R1,實現穩幅。RC文氏橋振蕩電路結構簡單,起振容易,頻率調節方便,適用于低頻振蕩場合,最高振蕩頻率一般為10~100 kHz。