周道鋒
我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數學家商高就提出,將一根直尺折成一個直角,如果勾(短直角邊)等于三,股(長直角邊)等于四,那么弦等于五。即“勾三、股四、弦五”。它被記載于我國古代著名的數學著作《周髀算經》中,在這本書的另一處,還記載了勾股定理的一般形式。中國古代的幾何學家研究幾何是為了實用,是唯用是尚的。在勾股定理教學中反思如下:
一、轉變師生角色,讓學生自主學習
由同學們的作圖,我們發現有的直角三角形的三邊具有這種關系,有的直角三角形不具有這種性質。當然作圖存在著誤差。可仍然證明不了我們的猜想是否正確。下面我們用拼圖的方法再來驗證一下。請同學們拿出準備好的直角三角形和正方形,利用拼圖和面積計算來證明2a+2b=2c(學生分組討論。)學生展示拼圖方法,課件輔助演示。
新課標下要求教師個人素質越來越高,教師自身要不斷及時地學習新知識,接受新信息,對自己及時充電、更新,而且要具有詼諧幽默的語言表達能力。既要有領導者的組織指導能力,更重要的是要有被學生欣賞佩服的魅力,只有學生配合你,信任你,喜歡你,教師才能輕松駕御課堂,做到應付自如,高效率完成教學目標。
“教師教,學生聽,教師問,學生答,教室出題,學生做”的傳統教學摸模式,已嚴重阻礙了現代教育的發展。這種教育模式,不但無法培養學生的實踐能力,而且會造成機械的學習知識,形成懶惰、空洞的學習態度,形成數學的呆子,就像有的大學畢業生都不知道1平方米到底有多大?因此,新課標要求老師一定要改變角色,變主角為配角,把主動權交給學生,讓學生提出問題,動手操作,小組討論,合作交流,把學生想到的,想說的想法和認識都讓他們盡情地表達,然后教師再進行點評與引導,這樣做會有許多意外的收獲,而且能充分發揮挖掘每個學生的潛能,久而久之,學生的綜合能力就會與日劇增。
數學的創造性不能沒有邏輯思維,學習數學可以幫助養成理性思考的習慣。數學并不是公式的堆壘,也不是圖形的匯集,數學有邏輯性很強的體系。數學不是只強調計算與規則的課程,而是講道理的課程。培養與運用邏輯思維,并不是不顧及學生的可接受性一味地片面強調推理的嚴密和體系的完整,而是既要體現邏輯推理的作用,又不片面夸大它。幾何的教學體系有別于幾何的科學體系,在幾何教學中,講道理并完全不等同于純粹的形式證明,幾何教學培養邏輯思維能力同樣要有的放矢,循序漸進,從直觀到抽象,從簡單到復雜……
二、轉變教學方式,讓學生探索、研究、體會學習過程
學生學會了數學知識,卻不會解決與之有關的實際問題,造成了知識學習和知識應用的脫節,感受不到數學與生活的聯系,這是當今課堂教學存在的普遍問題,對于學生實踐能力的培養非常不利的。現在的數學教學到處充斥著過量的、重復的、不斷循環的、人為挖掘的訓練。
學習的過程性:
(1)關注學生是否積極參加探索勾股定理的活動,關注學生能否在活動中積思考,能夠探索出解決問題的方法,能否進行積極的聯想(數形結合)以及學生能否有條理的表達活動過程和所獲得的結論等;
(2)關注學生的拼圖過程,鼓勵學生結合自己所拼得的正方形驗證勾股定理。
學習的知識性:掌握勾股定理,體會數形結合的思想。
三、提高教學科技含量,充分利用多媒體
幾何圖形可以直觀地表示出來,人們認識圖形的初級階段中主要依靠形象思維。遠古時期人們對幾何圖形的認識始于觀察、測量、比較等直觀實驗手段,現代兒童認識幾何圖形亦如此,人們可以通過直觀實驗了解幾何圖形,發現其中的規律。然而,因為幾何圖形本身具有抽象性和一般性,一種幾何概念可能包含無限多種不同的情形,例如有無數種形狀不同的三角形。對一種幾何概念所包含的一部分具體對象進行直觀實驗所得到的認識,一定適合其他情況回答不了的問題。因此,一般地,研究圖形的形狀、大小和位置。
培養邏輯推理能力,作了認真的考慮和精心的設計,把推理證明作為學生觀察、實驗、探究得出結論的自然延續。在這套教科書的幾何部分,七年級上、下兩冊要先后經歷“說點兒理”“說理”“簡單推理”幾個層次,有意識地逐步強化關于推理的初步訓練,主要做法是在問題的分析中強調求解過程所依據的道理,體現事出有因、言之有據的思維習慣。
由于信息技術的發展與普及,直觀實驗手段在教學中日益增加,有些學校還建立了“數學實驗室”,這些對于幾何學的學習起到積極作用。隨著教學研究的不斷深入,直觀實驗會在啟發誘導、化難為易、檢驗猜想等方面進一步大顯身手。但是,直觀實驗終歸是數學學習的輔助手段,數學畢竟不是實驗科學,它不能像物理、化學、生物等學科那樣最后通過實驗來確定結論。實驗幾何只是學習幾何學的前奏曲或第一樂章,后面的樂曲建立在理性思維基礎上,邏輯推理是把演奏推向高潮的主要手段。
四、轉變評價手段,讓每個學生找到學習數學的自信
評價就其實質來講,乃是一種監控機制。這種反饋監控機制包括“他律”與“自律”兩個方面。所謂“他律”是以他人評價為基礎的,“自律”是以自我評價為基礎的。每個人素質生成都經歷著一個從“他律”到”自律”的發展過程,經歷著一個從學會評價他人到學會評價自己的發展過程。實施他人評價,完善素質發展的他人監控機制很有必要。每個人都要以他人為鏡,從他人這面鏡子中照見自我。但發展的成熟、素質的完善主要建立在自律的基礎上,是以素質的自我評價、自我調節、自我教育為標志的。因此要改變單純由教師評價的現狀,提倡評價主體的多元化,把教師評價、同學評價、家長評價及學生的自評相結合。尤其要突出學生的自評,提高他們的自我認識、自我調節、自我評價的能力,增強反思意識,培養健康的心理。
注重數學與生活的聯系,從學生認知規律和接受水平出發,這些理念貫徹到教材與課堂教學當中,很好地激發了學生學習數學的興趣。學生們善于提出問題、敢于提出問題、解決問題的能力強,已經成為數學新課標下學生表現的一個標志。
通過學習幾何可以認識豐富多彩的幾何圖形,建立與發展空間觀念,掌握必要的幾何知識,培養運用這些知識認識世界與改造世界的能力。但是,這些并不是幾何學的全部教育功能。從更深層次看,學習幾何學的一個重要的作用是:以幾何圖形為載體,培養邏輯思維能力,提高理性思維水平。這正是自古希臘開始幾何教學一直倍受重視的主要原因。
讓學生享受數學的有趣:可利用愉快的游戲、生動的故事、激烈的競賽、入境的表演、熱情的掌聲等創設出一種愉悅的學習情境,誘發學生的學習情趣;讓學生時常感受到“數學真奇妙!”,從而產生“我也想試一試!”的心理。
讓學生享受數學的有用:借助生活情境,讓學生尋找有關的數學問題,使學生體會到我們的生活中蘊涵著豐富的數學問題,感受數學學習在生活中的作用。
讓學生享受數學的精彩:創設一切機會讓學生學會思考,樂于思考、善于思考,只有這樣,數學才能展示其精彩的一面;在教學中可有意識地安排一些問題讓學生多途徑思考,發現答案有多種多樣;讓他們體味出更多的精彩!享受數學的成功:“教育教學的本質就是幫助學生成功。”一次成功的機會卻可以十倍地增強學生的信心;因此,課堂上教師應毫不吝嗇自己鼓勵的眼神、贊許的話語,批改作業時盡量少一些令人生厭的“×”,可以寫上“再算算”。