【摘要】建筑結構優化對建筑整體的穩定性、可靠性、耐久性有非常重要的作用。文章針對建筑結構優化設計的主要因素,以及結構優化的方法等方面做簡要的分析,以提高建筑結構的整體的穩定性、耐久性等性能。
【關鍵詞】結構設計;結構優化;結構類型
0引言
建筑結構優化,即在一些建筑結構的設計方案中選取最優的或最適宜的設計方案,它參照數學中的模型最優化原理應用到建筑工程結構設計方案的優化比選中。研究發現,建筑結構在使用過程中是否穩定、耐久、合理等,主要決定于在建筑結構設計時選定的結構類型是否最優、是否最符合工程結構的需要。對于同一座建筑工程項目,不同的結構設計師知識儲備不同,因此可能會設計出不同的結構類型、結構體系,但經過結構方案的優化、從而選取最優化的結構類型,提高建筑結構的使用壽命、穩定性能。
1建筑結構優化的主要因素
1.1荷載設計
研究發現,任何一座建筑結構都需要受到水平力和豎向荷載的作用,同時建筑還要承受較大的風荷載、地震力的作用等。當建筑結構的整體高度比較低時,由結構本身的重力引起的豎向荷載對結構的作用比較明顯,而水平荷載作用在結構上,產生的內力和位移比較小,往往在計算時不考慮水平荷載的作用;若在較高層建筑設計中,雖然所受到的豎向荷載仍對結構產生較大程度的影響,但水平荷載對建筑結構本身的影響比豎向荷載產生的影響更加強烈。研究表明,隨著建筑結構整體高度的逐漸增加,水平荷載對建筑結構產生的影響越將會越來越大,因此,在建筑結構高度較高時,結構所承受的水平荷載對結構的影響則不可忽視。
1.2選取結構類型較輕的
在建筑結構優化過程中,要盡量選取結構體較輕的。在現代結構優化設計中,設計人員越來越重視選用輕質高強材料,從而做大程度上減輕整體結構的自重。由于在多層建筑結構中,水平荷載對結構產生的影響處于較次要地位,結構所承受的主要荷載是豎向荷載。由于多層建筑樓層較少,整體高度相對比較低,結構自重相對來說較輕,對材料的強度要求不是特高。
但隨著建筑結構高度的增加,在較多的樓層作用下,結構產生的自重荷載則會比較大,使得建筑結構對基礎產生較大的豎向荷載,同時在水平荷載的作用下,結構的豎向構件(柱)中會產生較大的水平剪力和附加軸力。為了使得結構滿足剛度和強度的要求,通常采取加大結構構件的截面尺寸,但是加大構件的截面尺寸會使得結構的整體自重增加。因此在高層建筑結構首先應該考慮如何減輕結構的自重。
研究表明,當在高層或超高層建筑結構優化設計時,選用結構強度高、自重較輕的鋼結構、高強混凝土結構可以很大程度上減小建筑結構的自重。
1.3 側向位移
據相關資料表明,建筑結構的側向位移隨著建筑高度的增加而逐漸增大,因此,在建筑結構的優化設計中,對層數較少、高度較低的結構,可以不考慮其側向位移對結構的影響。但隨建筑結構高度的增加,整體結構的側移對結構產生的影響則不可忽視。
研究表明,由于水平荷載對結構作用產生的側移隨著建筑高度的增加而逐漸增大,且側移量與結構高度成一定的關系。
在進行高層建筑結構優化設計時,既需要充分考慮建筑結構整體是否具有足夠的承載能力,能否承受風荷載的沖擊作用,又要求結構具有足夠的抗側移性能,當建筑結構受到較大的水平力作用下,其可以很好地控制產生過大的側移量,確保結構整體的穩定性能。
與低層或多層建筑相比,高層建筑結構的剛度稍微差一些,在發生地震災害時,結構的側向變形更大。為了確保高層建筑結構在進入塑性階段后,結構整體仍具有較強的抗側移性能,保持結構的穩定性,則需要在高層建筑結構的構造上采取合適的措施,確保結構具有足夠的延性,從而滿足結構的剛度要求。
2建筑優化方法綜述
2.1基本假設
(1)彈性體假設
目前,對建筑結構進行工程分析時,均采用彈性的分析方法。當結構受到風荷載或豎向荷載時,假設結構處于彈性工作狀態,符合建筑結構的實際受力狀態。但是當受到地震災害或臺風襲擊時,結構產生較大的側向位移,更甚出現裂縫,使得結構進入到塑性階段,此時不可以再用彈性變形計算,應采用彈塑性理論進行分析。
(2)小變形假設
小變形假設普遍應用于結構變形分析中。但當結構頂點的水平位移與結構的高度比值大于0.002時,就不可以忽略P—Δ效應對結構的影響了。
(3)剛性樓板假設
在高層建筑結構分析時,假設樓板的自身平面內剛度無限大,而自身平面外的剛度則忽略不進行計算。采用這一假設,在很大程度上減少了高層建筑結構位移的自由度,減小了計算的難度,并為筒體結構采用空間薄壁桿的計算理論提供了保障。研究發現,剛性樓板假設一般適用于框架結構體系和剪力墻結構體系中。
2.2結構優化方法
(1)并行算法
由于高層建筑結構的主要因素是結構的抵抗水平力的性能。因此,抗側移性能的強弱成為高層建筑結構設計的關鍵因素,且是衡量建筑結構安全性、穩定性能的標準。
由于在建筑結構中,單位建筑結構面積的結構材料中,用于承擔重力荷載的結構材料用量與房屋的層數近似成正比例線性關系。此外,用于建筑結構樓頂的結構材料用量幾乎是定值,不隨結構的層數變化;但是用于墻、柱等結構構件的材料用量隨樓房的層數成線性正比例增加;而對于抵抗側向移動的結構材料用量,與樓房結構層數的二次方的關系增長。圖3-1表示在風荷載作用下的5跨鋼框架結構,不同的結構層數結構材料各個構件用量。
研究表明,樓房結構所采用的結構體系是否具有較好的抗側力性能,在很大程度上影響結構材料的用量,綜合考慮各方面的條件,通過精心設計確定結構的最優化設計方案,使結構體系的材料用量降低到最小程度。從上圖中的虛線以上陰影部分就是結構優化設計節約的鋼材用量,因此高層建筑結構方案的優化設計可以在很大程度上節約工程的總造價。
(2可靠度優化法
在建筑結構的優化設計時,必須進行結構的整體可靠度優化。在地質災害發生不活躍的地區,風荷載是主要的水平荷載。因此,在非地震災害區高層建筑結構的方案選型時,應優先選用抗風性能比較好的結構體系,也就是選用風壓體型系數較小的建筑結構體系。比如結構外形呈曲線流線型變化的建筑結構圓形、橢圓形等,或是結構從下往上逐漸減小的截錐形體系的風壓體形系數較小,有利于很好地抗風。此外,在對結構進行平面布置時,適合選取結構平面形狀和結構剛度分布均勻對稱的結構體系類型,這樣可以在很大程度上減小風荷載作用下的扭轉效應引起的結構變形和內力的影響。同時,還要限制高層建筑結構的高寬比,避免結構發生傾覆和失穩現象。
(3)高層體系優化法
由于建筑使用性能的不同,所以其對內部空間的要求不同。同時,高層建筑結構使用功能不同,則其平面布置也發生改變。通常,住宅和旅館的客房等宜采用小空間平面布置方案;辦公樓則適合采用大小空間均有;商場、飯店、展覽廳以及工廠廠房等則適宜采用大空間的的平面布置;宴會廳、舞廳則要求結構內部沒有柱子的大空間。由于不同的結構體系可以提供的內部空間的大小不同,因此,在建筑結構設計階段,應該首先根據建筑結構的使用功能,選用合適的結構類型。
3結束語
綜上所述,在確定高層建筑結構方案時,要全面考慮結構的使用功能、場地類別、設防烈度、建筑高度、地基基礎類型、結構材料和施工工藝,同時還要考慮結構的設計、技術以及經濟保障等,選擇最優化的結構體系。
參考文獻
[1] 謝琳琳.關于高層建筑結構選型決策的研究[D],重慶:重慶大學碩士學位論文,2001
[2] 鐘國華.高層建筑結構設計及某工程結構選型探討[D],重慶:重慶大學碩士學位論文,2006
[3] 王濤.高層住宅剪力墻結構設計與研究[D],濟南:山東大學碩士學位論文,2008