李冬,陸小榮
(無錫工藝職業技術學院,江蘇 宜興 214206)
窯爐溫度決定了陶瓷產品燒成品質的優劣,輥道窯監控系統主要通過測量窯頂或窯側的溫度來進行實時監測,溫度測量是通過沿窯長方向的窯頂或窯側安裝數個熱電偶來采集各點溫度信號。溫度要達到設定值,須波動小,且左右平衡,上下溫差穩定,產品品質才可能達標。要降低窯爐生產能耗,提高能源利用率就必須提高全自動控制水平,合理安排工藝和設備盡可能減少熱損失。對爐內溫度進行自動控制,保證溫度符合燒成曲線,保持窯內溫度均勻不變。
輥道窯是典型大滯后、大時間常數的近似一階系統,沿輥道窯縱向分布若干個溫度測點,溫度采用單回路控制結構。每點溫度由燒成曲線得出,控制目標要使溫度測量值接近設定值并且波動很小[1]。窯爐的溫度是利用熱電偶來測定的,而溫度的控制是通過調節相應段噴嘴的燃料流量來實現的。溫度控制回路結構如圖1 所示,熱電偶采樣溫度作為測量值,用戶的設定作為期望值,用燃料閥門開度為控制量,使測量值跟蹤期望值。在一定工藝條件滿足后,溫度穩定在設定值的波動范圍內,就能保證生產出高品質產品。只有根據窯溫設定的曲線控制窯溫,才能保證優質低耗。

圖1 輥道窯的溫度控制回路結構
模糊控制實質上就是利用計算機來代替自然語言所描述的控制活動。其控制算法是把各種環境參數綜合起來分析考慮,然后進行模糊控制。再根據實驗結果和經驗總結出模糊控制規則,經模糊推理得到模糊控制表,使綜合參數的相互影響擬合到最佳狀態。模糊控制有許多良好的特性,它不需要得到被控對象的精確數學模型,具有響應速度快、超調小、過渡時間短等優點[2]。比PID 控制調節速度快、魯棒性好,但模糊控制穩態精度欠佳。
窯爐作為一個復雜多變量被控對象,并不具有確定性輸入/輸出關系,其運行機理是復雜的,物理量之間的關系也常常是模糊的、不確定的,經典控制方法是難于實現這類對象的自動控制。然而,經驗豐富的窯爐技術人員通常能用手工操作的方式,控制一個復雜的窯爐生產過程,燒制出高品質的產品。總結出窯爐技術人員豐富的窯爐控制經驗,形成經驗性的通用控制規則,編制成計算機程序,并基于計算機構成模糊控制器,用模糊控制器來代替這些控制規則,從而實現對窯爐這個復雜的對象實現的自動控制。模糊控制算法也稱模糊控制規則,實質上是根據窯爐操作工人在窯爐操作過程豐富的實踐經驗推演出的一條條模糊條件語句的集合,形成模糊控制器的核心。
工業窯爐必須通過對燒成溫度進行很好的控制才能保證產品品質。而輥道窯燒成溫度的控制方式主要控制窯內溫度,然后輔助控制壓力和氣氛。對于輥道窯的溫度過程控制,必須克服溫度、壓力和氣氛等測量參數的多變性、非線性、噪聲和不對稱的增益特性及較大的滯后性等因素的影響。這些不穩定因素使得窯爐溫度控制很難達到設定值,嚴重影響了產品的產量和品質。目前工業窯爐控制通常采用的都是按溫度等采集的信號與測量值進行給定的PID 控制,由于信號采集、處理等復雜原因,導致了對控制目標不能達到滿意的控制效果[3]。根據上述分析,將傳統的PID 控制和模糊算法相結合,采用模糊PID控制算法對窯爐溫度進行控制,可以滿足在不同工況下窯爐生產對控制性能的要求[3]。
窯爐系統在大偏差范圍內時,需加強比例環節的控制作用;當溫度接近穩態而只有小范圍的偏差時,要減少比例控制作用,使溫度控制系統借助于熱慣性接近穩定值,這樣不僅有利于減少超調,而且也不影響上升時間。控制系統要達到響應快,穩態精度高,超調小,過渡時間短,可把模糊PID 控制應用在控制系統中。在大偏差范圍內采用模糊控制,較好地控制系統的動態響應,在小偏差范圍內采用PID 控制,較好地控制系統的穩態精度、超調、過渡時間。
溫度控制的主要任務是維持被控對象的溫度值在燒成工藝要求的范圍內。由于通常輥道窯的溫度是一個復雜的熱力模型,受周圍環境條件和設備不穩定等綜合影響,具有較多外部干擾及不確定性。因此很難得到精確的數學模型。參考相關資料,窯爐溫度大多可近似用一階慣性加滯后環節來描述。較合理的傳遞函數如下:

1)放大系數K
放大系數K 表示為窯爐溫度每上升1 ℃時所需要的熱量。如果系統對象的放大系數越大,在系統受到干擾時,實際溫度值距離給定值的偏差就越小,就越容易自動調節系統的平衡;反之,調節參數距離給定值的偏差也就越大,調節系統就越不容易保持平衡。
2)對象的時間常數T
時間常數T 的大小反映了被控對象受到干擾后,溫度值需要多長時間才能達到新的穩定值。時間常數T 是表示對象慣性大小的物理量。對溫控系統來說,時間常數T越大,溫度達到穩定值的時間就長;T 越小,溫度很快就能達到穩定值。因此時間常數T 不僅可以表示調節參數達到給定值的快慢,同時也表示對象熱慣性的大小。
3)對象的滯后時間τ
溫控系統受到突發的干擾作用后,溫度值并不能隨即發生變化,而需要經過一段時間才開始變化,這段時間稱為滯后時間。滯后時間對溫度調節將產生不利的影響,它降低了溫度控制系統的穩定性,增加了溫度的調節誤差,延長了到達穩定值的時間。
使用增量式控制算法,運用模糊控制進行PID 三個參數的整定,應用MATLAB 仿真軟件設計一個SIMULINK 仿真程序。
仿真時根據式(1)作為被控溫度對象的傳遞函數。在Simulink 中用一個傳遞函數模塊和一個延遲模塊組合起來描述被控對象(圖2)。

圖2 被控對象的仿真結構圖
SIMULINK 仿真結構框圖如圖3 所示。
由臨界比例法可知PID 的三個初始參數分別為:KP=1;KI=0.28;KD=0.2。

圖3 模糊PID 控制器的SIMULINK 仿真結構圖
圖4 是分別用參數自整定模糊PID 控制算法和傳統PID 控制算法對系統進行MATLAB 仿真的階躍相應輸出結果[4]。

圖4 PID 與模糊PID 的階躍響應輸出曲線圖
從仿真結果可以看出,常規PID 算法和模糊參數自整定PID 算法兩者控制性能的差別。可以明顯看出,相比較后者,前者穩定所需的時間大于后者,而且其輸出相應曲線在達到穩定之前出現了波動,存在超調,其控制性能不穩定,而模糊參數自整定PID 算法可以實現無超調、無靜差、具有較快的響應速度。
[1]趙燕.基于高速以太網現場總線的陶瓷輥道窯控制系統[D].武漢:武漢理工大學碩士學位論文,2007.
[2]劉素芹,劉新平,戚平,等.PID 與模糊控制算法的比較及其改進[J].控制工程,2003,(1):51-52,93.
[3]余陽春,王曉春.FUZZY-PID 控制系統在工業窯爐控制中的應用[J].陶瓷學報,2006,27(3):339-342.
[4]吳振順,姚建均,岳東海.模糊自整定PID 控制器的設計及其應用[J].哈爾濱工業大學學報,2004(11):1578-1580 .